
CA-Edit: Causality-Aware Condition Adapter for High-Fidelity Local Facial
Attribute Editing

Xiaole Xian1*, Xilin He1*, Zenghao Niu1, Junliang Zhang1, Weicheng Xie1, 3†, Siyang Song4, Zitong
Yu5, Linlin Shen1, 2, 3

1Computer Vision Institute, School of Computer Science & Software Engineering, Shenzhen University,
2National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University,

3Guangdong Key Laboratory of Intelligent Information Processing, 4University of Exeter, 5Great Bay University

Abstract
For efficient and high-fidelity local facial attribute editing,
most existing editing methods either require additional fine-
tuning for different editing effects or tend to affect beyond
the editing regions. Alternatively, inpainting methods can
edit the target image region while preserving external ar-
eas. However, current inpainting methods still suffer from
the generation misalignment with facial attributes descrip-
tion and the loss of facial skin details. To address these chal-
lenges, (i) a novel data utilization strategy is introduced to
construct datasets consisting of attribute-text-image triples
from a data-driven perspective, (ii) a Causality-Aware Con-
dition Adapter is proposed to enhance the contextual causal-
ity modeling of specific details, which encodes the skin de-
tails from the original image while preventing conflicts be-
tween these cues and textual conditions. In addition, a Skin
Transition Frequency Guidance technique is introduced for
the local modeling of contextual causality via sampling guid-
ance driven by low-frequency alignment. Extensive quanti-
tative and qualitative experiments demonstrate the effective-
ness of our method in boosting both fidelity and editabil-
ity for localized attribute editing. The code is available at
https://github.com/connorxian/CA-Edit.

Introduction
Efficient and high-fidelity local facial attribute editing with
textual description represents a challenging task in computer
vision. GANs-based methods (Wang et al. 2022; Pernuš,
Štruc, and Dobrišek 2023) have explored this task, which
primarily optimize the original image within the latent space
with a pre-trained StyleGAN model (Karras et al. 2020).
However, these GANs-based methods require additional
fine-tuning for different attributes. Subsequently, the prior
diffusion-based image editing methods based on the text-to-
image (T2I) diffusion models achieve image editing in var-
ious ways. These methods are either based on P2P (Hertz
et al. 2022), utilizing the original image attention injection
mechanism to preserve the layout, or based on DDIM Inver-
sion (Song, Meng, and Ermon 2020), modifying the latent
at the noise level. However, such methods may lead to in-
consistencies beyond the editing target area. Regarding lo-
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Figure 1: (Top) The existing text-guided inpainting pipeline
for our local attribute editing task. (Bottom) Our method
takes account of the causality of the the specific details from
the original image, improving the editability and the fidelity.

cal facial attribute editing, image inpainting is a technique
focused on local masked region painting, which also ben-
efits from the recent advances in diffusion models (Avra-
hami, Lischinski, and Fried 2022; Yang et al. 2023; Yang,
Chen, and Liao 2023). Besides, image inpainting has been
also developed for local facial attribute editing, which fo-
cuses on the inpainting of local masked regions, based on
advanced diffusion models (Avrahami, Lischinski, and Fried
2022; Yang et al. 2023; Yang, Chen, and Liao 2023). Text-
guided image inpainting(Avrahami, Lischinski, and Fried
2022) allows prompt-driven content generation in specific
areas without finetuning during inference, while maintain-
ing consistency between the editing and unmasked regions,
which is thus used in our method.

However, existing methods for image inpainting may suf-
fer from concerns in terms of editability and fidelity. The
first problem: they (Zhang, Rao, and Agrawala 2023; Ju
et al. 2024) struggle to understand the contextual relation-
ship between unmasked facial regions and the textual de-
scription, resulting in the neglect of the text prompt while
creating a plain completion ( Fig.1 (a) ). For addressing this
problem, Hd-Painter (Manukyan et al. 2023) can better align
the inpainting generation with the text by modifying the la-
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tent, while it still fails for local facial text prompts. The root
cause is that previous diffusion models are primarily trained
on natural image-text pairs, lacking the fine-grained knowl-
edge of human faces.

The second problem: For facial inpainting, previous
works (Rombach et al. 2022; Yang, Chen, and Liao 2023) do
not take adequate consideration of the contextual causality
between the masked region and the specific details (skin tex-
ture, skin tone, and other details) of the original image. The
causality consideration is further constrained by the conflict
between textual editing conditions and the preservation of
these details in original image. In facial images, even slight
differences in these details become visibly obvious, largely
impairing the overall naturalness. ( Fig.1 (b) ) Therefore, the
key to maintaining the skin details and mitigating the dif-
ference lies in the reasonably causality-aware modeling of
these specific details from the original image.

For addressing this problem, existing approaches adapt
the parallel attention with textual conditions(i.e. IP-Adapter
(Ye et al. 2023)) to inject original image information and
enhance contextual causality modeling. However, as shown
in Fig. 1, this causality conflicts modeling with the text
condition may lead to severe content leakage. ( Fig.1 (c) )
Meanwhile, from a localized contextual perspective, exist-
ing methods (Ju et al. 2024; Xu et al. 2024) lack explicit ap-
proaches for this fine-grained local context, causing dishar-
mony in boundary regions of the primary editing regions,
while the skin transitions are generally smooth.

To address these challenges, we proposed our CA-Edit
from the local attribute data construction and causality-
aware condition adapter. For addressing the first prob-
lem, training on detailed textual captions of local facial at-
tributes would be crucial for editability. To this end, we in-
troduce a data construction pipeline, leveraging Multimodal
Large Language Models (MLLMs) (Chen et al. 2023; Li
et al. 2023) for automatic local facial attribute captioning
and the face parsing model for segmentation acquisition.
For addressing the second problem, we introduce an ad-
ditional adapter for original image condition, as well as a
sampling guidance during inference, to fully explore orig-
inal image cues. Specifically, (i) the Causality-Aware Con-
dition Adapter (CA2) is proposed to enhance the causality
modeling while preventing the conflict with textual condi-
tion. (ii) a sampling guidance technique called Skin Transi-
tion Frequency Guidance (STFG) is proposed to mitigate the
artifacts on the ‘boundary regions’ via enhancing the simi-
larity between the generated image and the low-frequency
components of the original image.

The main contributions of this work are summarized as:

• To address the limitations of existing datasets lacking
local facial attribute captions, we propose LAMask-
Caption, the first dataset with detailed local facial cap-
tions which contains 200,000 high-quality facial images
and employs Large Multimodal Models (MLMMs) for
automatic captioning of local facial regions.

• To jointly address the issues of fine-grained context mod-
eling and content leakage, we propose the novel CA2)
that enhances contextual causality modeling in primary

editing regions while regularizing the visual condition
according to the textual condition and latent. Further-
more, we propose the novel STFG to preserve the skin
details on the boundary regions by enhancing the low-
frequency similarity with the original image during in-
ference.

• Quantitative and qualitative experiments demonstrate
that CA-Edit produces more harmonious and natural out-
comes, showcasing the superiority of our method in local
attribute editing.

Related Work
Generative Face Editing
The advancement of facial editing and manipulation has
been promoted by the emergence of recent generative ap-
proaches. Early efforts in this area have explored the ap-
plication of GANs-based models (Karras, Laine, and Aila
2019; Shen et al. 2020; Yang et al. 2021; Xia et al. 2021).
MaskGAN (Lee et al. 2020) demonstrated the benefit of us-
ing spatially local face editing. InterFaceGAN (Shen et al.
2020) regularizes the latent code of an input image along
a linear subspace. Recently, increasing researchers have re-
sorted to diffusion models to enhance the generative capabil-
ity for face editing. Methods like (Ding et al. 2023; Jia et al.
2023) both explored the use of 3D modalities as reference
cues to make facial image editing more robust and control-
lable. Xu et al. (Xu et al. 2024) finetune a diffusion model
for editing tasks tailored to the individual’s facial character-
istics. However, these approaches require extra conditions
beyond text, limiting their suitability for our task due to user
accessibility issues.

Text-driven image editing
Early works (Nitzan et al. 2022; Andonian et al. 2021; Xia
et al. 2021) leveraging pretrained GAN generators (Karras,
Laine, and Aila 2019) have explored the text-driven image
synthesis. Among approaches for semantic image editing,
text-guided image editing based on diffusion models has
garnered growing attention. (Gal et al. 2022a; Ruiz et al.
2023; Rombach et al. 2022; Morelli et al. 2023; Mao, Wang,
and Aizawa 2023; Zhong et al. 2023; Brooks, Holynski, and
Efros 2023) have exploited diffusion models for text-driven
image editing. Textual Inversion (Gal et al. 2022a) gener-
ates an image by learning a concept embedding vector com-
bined with other text features. For better control of the orig-
inal semantic cues, InstructPix2Pix (Brooks, Holynski, and
Efros 2023) enables image editing based on textual instruc-
tions by leveraging a conditioned diffusion model trained
on a dataset generated from the combined knowledge of a
language model and a text-to-image model. DiffusionCLIP
(Kim, Kwon, and Ye 2022) and Asyrp (Kwon, Jeong, and
Uh 2022) draw inspiration from GAN-based methods (Gal
et al. 2022b) that use CLIP, and use a local directional CLIP
loss between image and text to manipulate images. However,
these methods either require additional finetuning or lead to
changes outside target editing regions, which fail to meet the
requirement of local editing.
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Figure 2: The pipeline of LAMask-Caption construction.

Diffusion Models for Inpainting
Image inpainting is devoted to reconstructing or filling in the
missing regions of an image in a visually coherent manner.
Benefited from the pretrained T2I diffusion models, many
prominent works (Avrahami, Lischinski, and Fried 2022;
Yang et al. 2023; Ju et al. 2024; Lugmayr et al. 2022; Yang,
Chen, and Liao 2023) that are zero-shot and do not affect
the regions outside the edited area, were developed. Sta-
ble Diffusion Inpainting (Rombach et al. 2022) and Con-
trolNet Inpainting (Zhang, Rao, and Agrawala 2023) both
leverage large-scale pre-trained T2I models, fine-tune them
to adapt models for this task. During inference, the method
(Avrahami, Lischinski, and Fried 2022) removes noises in
a weighted manner according to the mask at each time
step, which can reduce the occurrence of unnatural artifacts.
(Levin and Fried 2023) use a continuous mask rather than
a binary mask, to enable fine-grained control over the dif-
fusion of each pixel. Paint-by-example (Yang et al. 2023)
uses image embedding to replace the original text embed-
ding to improve image-to-image inpainting. However, due
to the lack of image-text pairs of face attributes for training
or adequate causality exploration in keeping the skin details,
the inference stage of the aforementioned methods often re-
sults in artifacts.

Preliminaries
Diffusion Model. Diffusion models are a family of gener-
ative models that consist of the processes of diffusion and
denoising. The diffusion process follows the Markov chain
and gradually adds Gaussian noise to the data, transforming
a data sample x0 ∼ q(x0) into the noisy sample x1:T =
x1,x2, · · · ,xT in T steps. The denoising process utilizes
a learnable model to generate samples from this Gaussian
noise distribution denoted as pθ(x0:T ) at time step t based
on the condition c, where θ denotes the learnable parame-
ters. Eventually, the training of the model is formulated as:

L = Ex0,ϵ∼N (0,I),c,t∥ϵ− ϵθ(xt, c, t)∥22, (1)

where x0 denotes the original image, c, t ∈ [0, T ] represents
the condition and the timestep of the diffusion process.

Reference Net for Diffusion Model. As introduced in
BrushNet(Brooks, Holynski, and Efros 2023) and Control-
Net(Zhang, Rao, and Agrawala 2023), a reference net is
constructed by adding an additional branch dedicated to the
spatial condition, which is well-suited for our task-specific
mask generation. The additional condition is first encoded
with the reference net, which is then added into the skipped
connections of the Stable Diffusion (Rombach et al. 2022)
UNet after being processed by zero convolutions. Eventu-
ally, the noise prediction of U-Net with the reference net is
formulated as ϵθ(xt, cimg, ctxt, t), where cimg and ctxt rep-
resent the image and text conditions, respectively.

Method
To enable local facial attributes inpainting, we first con-
struct the dataset LAMask-Caption including the face im-
ages, textual descriptions of local facial attributes and the
specific segmentation mask of the attributes (Fig. 2). To
adapt the T2I model to our task, we trained a reference net-
work copied from the U-Net. Based on this network, we in-
troduced Causality-Aware Condition Adapter (CA2) to en-
hance skin detail causality while balancing textual and vi-
sual cues for precise and seamless attribute editing. Addi-
tionally, to reduce the artifacts between generated content
and the unmasked regions, our Skin Transition Frequency
Guidance (STFG) technique further leverages the skin detail
in the original image during inference, to avoid the effect of
imprecise input masks.

LAMask-Caption Construction Pipeline
A key reason that current diffusion models encounter diffi-
culties with local facial editing is the lack of precise textual
captions describing local facial attributes in the training data,
as mainstream diffusion models are primarily trained on
large-scale natural image datasets such as Laion-2B (Schuh-
mann et al. 2022) or MS-COCO (Lin et al. 2014). Hence, a
face dataset with local attributes-text pairs is essential for
finetuning the pretrained diffusion model to adapt to fa-
cial local attribute editing. While the existing CelebA-dialog
dataset (Jiang et al. 2021) and FaceCaption-15M (Dai et al.
2024) contain manually annotated textual captions for each
image, it mainly focuses on overall attributes (i.e. age, skin)
rather than local facial attributes. Therefore, their global cap-
tions would fail to meet the demand as training data of local
facial attribute editing, which motivates us to develop a new
dataset with complete local facial attribute captions.

Specifically, we introduce our LAMask-Caption, a dataset
consisting the triples of detailed textual captions of lo-
cal facial attributes, high-resolution images and attribute
masks. The overview of our LAMask-Caption construc-
tion pipeline is shown in Fig. 2. Via this framework,
we collect a high-quality facial image dataset comprising
200,000 high-quality images by combining filtered images
from FaceCaption-15M with selections from FFHQ and
CelebMask-HQ datasets.

We employ Multimodal Large Language Models
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(MLLMs) (Chen et al. 2023; Li et al. 2023) to generate
local textual captions, encouraging diverse responses
that describe the face images from various perspectives,
including direct, indirect, and subjective perceptions. Ad-
ditionally, we use a fine-tuned BiSeNet (Yu et al. 2018) to
create segmentation masks for 19 facial attributes. Hereto,
caption-mask pairs corresponding to local facial regions
could be acquired, forming the core component of the
proposed LAMask-Caption.

Causality-Aware Condition Adapter (CA2)

One naive approach for injecting skin detail as a visual con-
dition into a diffusion model is usually achieved through
cross-attention, which requires parallel addition of cross-
attention modules for the original image embedding, akin to
IP-Adapter (Ye et al. 2023; Wang et al. 2024). However, we
argue that the direct injection of visual cross-attention would
lead to over-reliance on the visual condition during training
while ignoring textual editing conditions (Jeong et al. 2024;
Qi et al. 2024). To this end, we propose the novel Causality-
Aware Condition Adapter (CA2), as shown in Fig. 3, which
injects specific skin details from the original image as image
embedding through an additional attention mechanism, and
adaptively adjusts the intensity of visual condition injection.
The adjustment is conducted based on the influence of the
textual prompt on the existing features, aiming to balance the
impact of textual and visual conditions. The adapter encodes
the contextual causality between the main editing region and
specific skin details, while preventing visual-textual condi-
tion conflicts.

In our proposed CA2, both the vision and text encoders
of a pretrained CLIP are utilized for the feature extraction,
formulated as:

{
ftxt = CLIPtxt(txt) ∈ Rnt×ct

fvis = CLIPvis(x) ∈ Rnv×cv (2)

where nt, nv denote the numbers of text and visual tokens,
and ct, cv are the dimensions of text and vision tokens.
CLIPtxt, CLIPvis are the CLIP text and vision encoders,
respectively. x is the original image.

Subsequently, we intend to use the textual pooling token
fpool
txt ∈ R1×ct along with the diffusion model’s latent fea-

tures Z ∈ Rnz×cz to predict textual importance scores. We
spatially replicate fpool

txt to fs
txt ∈ Rnz×ct to align the token

numbers, where nz is the token number of Z.
To obtain the score that is used to weight the importance

of visual condition, a simple two-layer MLP with a softmax
activation function is constructed as the score predictor. The
score takes the concatenation of textual class token and dif-
fusion latent features along the channel dimension as input
and then predicted following:

Score = S(Concat(Z, fs
txt)) (3)

where S(·) is the score predictor, Score ∈ Rnz and then it
will be reshaped to match the spatial dimension of the latent
feature. Meanwhile, the visual cross-attention map is calcu-
lated as:

Avis = Softmax(
Q(Kvis)

⊤
√
d

) (4)

where Q = Z WQ, Kvis = fvisW
K
vis, are the query of la-

tent feature Z and the key from vision feature fvis, respec-
tively. WQ and WK

vis are the corresponding weight matrices.
The query matrix of the vision feature is the same as that of
text cross-attention. Pixels with higher textual importance
scores should have their vision attention suppressed, as this
indicates stronger textual editing. Conversely, pixels with



lower scores should receive higher vision attention to en-
hance dependence on the original image. Therefore, we in-
tend to suppress the vision attention values within the mask
region according to the obtained Score as:

As
vis = Avis ⊙ (1− Score⊙M)

F s
vis = As

visVvis
(5)

where ⊙ denotes the Element-wise product, M is the in-
put mask that has been downsampled to the same spatial res-
olution as the Score prior to the flattened representation.
Vvis = fvisW

V
vis denotes the value of vision feature in

cross-attention. Eventually, the latent feature processed by
our CA2 can be computed as:

Ftxt = Softmax(
Q(Ktxt)

⊤
√
d

)Vtxt

Zs = Ftxt + F s
vis

(6)

where Ktxt and Vtxt denote the key and value of ftxt in
Eq. (2), respectively.

Skin Transition Frequency Guidance (STFG)
While CA2 preserves skin details in the main editing areas,
real-world facial editing often uses imprecise masks, lead-
ing to unnatural transitions in ‘boundary regions’. These
smooth skin areas are sensitive to low-frequency changes.
To address this, we introduce a sampling guidance technique
for low-frequency components during denoising, to produce
natural transitions in these regions.

Specifically, given the localization and semantic represen-
tation capabilities of textual cross-attention maps in diffu-
sion models to identify ‘boundary regions’. The mean of at-
tention maps, i.e., Atxt is computed across all text tokens
and attention layers. We identify the ‘boundary regions’ as
regions within the mask M where the attention values on
Atxt are below a threshold γ(Atxt,M). The indexes Idx of
the pixels belonging to ‘boundary region’ is represented as:

Idx = {(i, j)|Atxt(i, j) ≤ γ(Atxt,M)}
γ(Atxt,M) = µ(Atxt ◦M)− σ(Atxt ◦M)

(7)

where Atxt ◦M represents the elements of Atxt within the
mask M , µ(·) and σ(·) denote the operators of mean and
standard deviation.

We further employ frequency guidance in the Fourier do-
main to selectively enhance low-frequency similarity on the
estimated latent, i.e., designing a guidance function to pixel-
wisely align the low-frequencies between the original noisy
latent zt and the predicted latent ẑt on each timestep t. Since
the frequency components should be calculated on the clean
latent, we estimate the one-step prediction ẑt→0 from ẑt as:

ẑt→0 = ẑt√
ᾱt

−
√
1−ᾱtϵθ(ẑt,t)√

ᾱt
(8)

where ᾱt is the hyperparameter of noise schedule parameter.
Subsequently, we only keep the low-frequency components
(H2 < h < 3H

4 andW
2 < w < 3W

4 in FFT shifted image)
of ẑt→0 and z0 in the frequency domain to obtain ẑ′t→0 and

z′0, respectively. Consequently, the guidance function used
to align these two can be defined as follows:

g(z′0, ẑ
′
t→0) =

1

|Idx|
∑

(i,j)∈Idx

∥∥∥ẑ′

t→0(i, j)− z
′

0(i, j)
∥∥∥2
2

(9)
where |Idx| is the cardinality of the set Idx. We fol-
low the score-based guidance (Song et al. 2020), and use
g(z′0, ẑ

′
t→0) to steer the diffusion process. Eventually, we

can update the direction of ϵ̂t as follows:

ϵ̂t = ϵθ(zt, t, txt, x)− λρt∇ztg(z
′
0, ẑ

′
t→0) (10)

where λ is a hyperparameter of the guidance strength and ρt
denotes the noise schedule parameter of timestep t.

Experiment
Evaluation Metric
Objective Metrics. To comprehensively evaluate the perfor-
mance of different methods on the task of local facial at-
tributes editing, we utilize FID / Local-FID (Heusel et al.
2017), LPIPS (Zhang et al. 2018), identity similarity (ID),
MPS (Zhang et al. 2024) and HPSv2 (Wu et al. 2023) as
evaluation metrics. FID and LPIPS are used to provide an
estimate of image fidelity. It’s important to note that in this
specific task, unlike general image generation, lower LPIPS
values indicate higher fidelity. MPS and HPSv2 are more
effective and comprehensive zero-shot objective evaluation
metrics on text-image alignment and human aesthetics pref-
erences. ID evaluates the face identity between the results
and the original images.

User Study. Besides comparisons on objective metrics,
we also conduct a user study via pairwise comparisons to
determine whether our method is preferred by humans. The
generation results are evaluated on three dimensions: face
fidelity (FF), text-attribute consistency (TAC), and human
preference (HP).

Experimental Setup
Benchmark. As this work serves as one of the text-guided
local facial attribute editing, we introduce FFLEBench, i.e.,
one pioneering benchmark evaluation dataset for this task,
motivated by the lack of corresponding benchmark and eval-
uation dataset. FFLEBench comprises a total of 15,000 sam-
ples drawn from FFHQ, accompanied by the local masks
and the corresponding textual captions. Note that the sam-
ples drawn from FFHQ to construct the FFLEBench are in-
dependent with those used for training. The masks are the
convex hull or the dilation of the segmentation masks, aim-
ing to imitate the rough mask input.

Implementation Details. All the cross-attention maps
and the score map are upsampled to the resolution of 64
× 64. To preserve the original information in the regions
outside the mask, we blend the latent variable following
Blended Diffusion (Avrahami, Lischinski, and Fried 2022).

Quantitative Experiment Results
We quantitatively evaluate our method on FLEBench, com-
pared with baseline models using both objective metrics and
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Inference with DDIM Scheduler 
ScoreOriginal Edited

Figure 5: The visualization of the score in CA2 during in-
ference. The lighter regions indicate the higher values in the
maps. The DDIM scheduler with t = 50 timesteps is used.

user study. As shown in Tab. 2, the proposed method sur-
passes the compared methods except for the FID of Sta-
ble Diffusion Inpainting. Particularly, better performance on
FID and LPIPS indicates that our method can edit facial at-
tributes with higher fidelity. Due to its tendency to neglect
the text prompt to maintain high fidelity, SD inpainting ex-
hibits the lowest FID score. Our approach outperforms on
the MPS and HPS v2 metrics, indicating our edits align with
human aesthetics and maintain textual consistency. All the
observation highlights the strength of our approach in pre-
serving visual coherence and effectively capturing the tex-
tual guidance during the editing. In addition, our approach
achieves better local attribute editing results without requir-
ing the extra fine-tuning time for different attributes, which
is needed by other facial editing methods (fine-tuning time
shown in brackets after the method names).

Ours w/o STFGw/o CA2

”Magnetic eyes””Tall and prominent nose“

MaskOriginal Original Mask

P.I.
Figure 6: Ablation study of our modules. “Parallel Injection
(P.I.)” removes the score in Eq. (3), “w/o CA2” removes the
CA2 but preserves textual condition.

In the user study, the percentages represent the proportion
of users who prefer our method over others. As shown in
Tab. 2, our method attains the top rank compared to the other
inpainting and face editing methods.

Qualitative Experiment Results
Comparison with the SOTAs. In Fig.4, our method is qual-
itatively compared with the state-of-the-art (SOTA) methods



Table 1: Quantitative comparisons between the state-of-the-art methods and ours. ”Ours vs.” indicates the proportion of users
who prefer our proposed method over a comparative approach. The proportion in user study exceeding 50% indicates that our
method outperforms the counterpart. MPS exceeding 1.00 indicates that our method outperforms the counterpart. local-FID
(L-FID) is computed within the bounding box of the mask region. Number in “( )” is the time required for single attribute
fine-tuning of facial editing methods.

Method Objective Metrics User study (Ours vs. )
FID/L-FID (↓) LPIPS (↓) HPSv2(↑) ID (↑) MPS (↑) FF (↑) TAC (↑) HP (↑)

SD Inpainting 3.11/1.61 0.175 0.248 0.63 1.03 86.05% 79.32% 77.88%
BrushNet 5.45/2.30 0.285 0.254 0.59 1.34 86.05% 83.17% 82.69%
IntructPix2Pix 8.36/5.36 0.160 0.263 0.67 1.03 87.98% 83.65% 85.09%

DiffusionClip (310s) 8.19/5.68 0.301 0.257 0.73 1.13 93.56% 68.29% 92.31 %
Asyrp (408s) 8.11/6.32 0.260 0.240 0.62 1.80 86.05% 63.29% 84.28 %
StyleClip (40s) 6.38/4.83 0.249 0.263 0.63 1.09 93.68% 83.17% 68.38%

Ours 4.81/1.99 0.085 0.264 0.72 / / / /

w  STFG
w/o STFG

C
A

D

Frequency Radius
0.05R 0.1R 0.15R 0.20R 0.25R0R

0

(a) (b) (c) (d)

Figure 7: Cumulative amplitude difference (CAD) in the
Fourier domain between the sampled and the original im-
ages is calculated within the mask region, specific to the
FFT-shifted image with a radius representing by the x-axis
(R is the max of Frequency Radius). (a) and (c) are the sam-
pled images with (‘w’) STFG. (b) and (d) are the sampled
images without (‘w/o’) STFG.

across the local facial attributes, such as eyes, ears, and ac-
cessories. Other manipulation results are in the supplemen-
tary materials. Prompt neglect is an issue for other methods
that sometimes struggle to modify local attributes according
to textual descriptions, as evident in the “sparse eyebrows”
example (second row). While they can capture text seman-
tics in some cases, they miss the original images’ specific
skin details, compromising overall fidelity.

In addition, InstructPix2Pix, and the facial editing meth-
ods (i.e. StyleClip, DiffusionClip and Asyrp) exhibit un-
desirable content leakage into adjacent regions, resulting
in effects beyond the intended target area. In contrast to
prior limitations, our method enhances consistency between
edited regions and text prompts, while preserving original
skin details by understanding the contextual causality be-
tween generation and source image information.

Analysis of the Score in CA2. We visualize the score in
Eq.(3) during inference to explore how our CA2 dynami-

cally prevents the conflict between visual and textual condi-
tion. The lighter region of a score map corresponds to higher
values, which in turn indicates less injection of image fea-
tures in those regions. As shown in Fig. 5, our model ini-
tially exhibits more attention to the image prompts in the
early timesteps, i.e., it refers to the original image to main-
tain the skin tones. As the inference continues, the model
relies less on the original image and generates the contents
according to text. Furthermore, it shows that the score map
exhibits lower values at the edges and in regions with mini-
mal editing, suggesting that these regions rely more heavily
on the original image. This is consistent with the motivation
of the score in CA2, which enables the model to spatially
control the sensitivity of image prompts.

Analysis of the frequency guidance of STFG.
To study the capacity of STFG in enhancing the low-

frequency similarity during sampling, we calculate the cu-
mulative amplitude difference in the Fourier domain be-
tween the sampled and the original images, varying as the
frequency radius within the mask region. The amplitude dif-
ference specific to our STFG (the orange line) fluctuates
around zero, indicating that STFG can effectively promote
low-frequency similarity between the sampled and original
images, which is helpful for the skin detail preservation. The
images shown above the graph demonstrate that the arti-
facts in the edge region have been effectively eliminated by
STFG.

Ablation Study
We demonstrate the effectiveness of our module through
the generation qualitative quality and quantitative metrics
(appendix). As shown in the second column in Fig. 6, af-
ter removing CA2, the variant simply follows the text in-
structions, making the generated content inconsistent with
skin tone of original image. The model without the score in
Eq. (3) exhibited obvious content leakage and was unable to
faithfully follow the text description. It demonstrates that the
score in Eq. (3) plays a role in encouraging the model to pri-
oritize textual editing. For the inference without our STFG,
it shows that there are obvious artifacts present in the regions



around the attributes, i.e., the boundary regions.

Conclusion
This paper introduces a novel inpainting technique for local
facial attribute editing that overcomes the long-lasting issues
in current models, i.e. the hardness of following the local fa-
cial attribute description and the lack of contextual causal-
ity modeling on mask regions. We present a new data strat-
egy and a Causality-Aware Condition Adapter to effectively
incorporate original image skin details for causality mod-
eling while preventing conflict between visual and textual
condition. Moreover, a Skin Transition Frequency Guidance
is introduced to improve the coherence of generated content
around the boundaries. Extensive experiments show the su-
perior performance of our method over current SOTA ones.

Acknowledgment
The work was supported by the National Natural Sci-
ence Foundation of China under grants no. 62276170,
82261138629, the Guangdong Basic and Applied Basic
Research Foundation under grants no. 2023A1515011549,
2023A1515010688, the Science and Technology In-
novation Commission of Shenzhen under grant no.
JCYJ20220531101412030, and Guangdong Provincial Key
Laboratory under grant no. 2023B1212060076.

References
Andonian, A.; Osmany, S.; Cui, A.; Park, Y.; Jahanian, A.;
Torralba, A.; and Bau, D. 2021. Paint by word. arXiv
preprint arXiv:2103.10951.
Avrahami, O.; Lischinski, D.; and Fried, O. 2022. Blended
diffusion for text-driven editing of natural images. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 18208–18218.
Brooks, T.; Holynski, A.; and Efros, A. A. 2023. Instruct-
pix2pix: Learning to follow image editing instructions. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 18392–18402.
Chen, L.; Li, J.; Dong, X.; Zhang, P.; He, C.; Wang, J.;
Zhao, F.; and Lin, D. 2023. Sharegpt4v: Improving large
multi-modal models with better captions. arXiv preprint
arXiv:2311.12793.
Dai, D.; Li, Y.; Liu, Y.; Jia, M.; YuanHui, Z.; and Wang, G.
2024. 15M Multimodal Facial Image-Text Dataset. arXiv
preprint arXiv:2407.08515.
Ding, Z.; Zhang, X.; Xia, Z.; Jebe, L.; Tu, Z.; and Zhang,
X. 2023. Diffusionrig: Learning personalized priors for fa-
cial appearance editing. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
12736–12746.
Gal, R.; Alaluf, Y.; Atzmon, Y.; Patashnik, O.; Bermano,
A. H.; Chechik, G.; and Cohen-Or, D. 2022a. An image
is worth one word: Personalizing text-to-image generation
using textual inversion. arXiv preprint arXiv:2208.01618.
Gal, R.; Patashnik, O.; Maron, H.; Bermano, A. H.; Chechik,
G.; and Cohen-Or, D. 2022b. Stylegan-nada: Clip-guided

domain adaptation of image generators. ACM Transactions
on Graphics (TOG), 41(4): 1–13.
Garibi, D.; Patashnik, O.; Voynov, A.; Averbuch-Elor, H.;
and Cohen-Or, D. 2024. ReNoise: Real Image Inversion
Through Iterative Noising. arXiv:2403.14602.
Hertz, A.; Mokady, R.; Tenenbaum, J.; Aberman, K.;
Pritch, Y.; and Cohen-Or, D. 2022. Prompt-to-prompt im-
age editing with cross attention control. arXiv preprint
arXiv:2208.01626.
Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; and
Hochreiter, S. 2017. Gans trained by a two time-scale up-
date rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30.
Jeong, J.; Kim, J.; Choi, Y.; Lee, G.; and Uh, Y. 2024. Vi-
sual Style Prompting with Swapping Self-Attention. arXiv
preprint arXiv:2402.12974.
Jia, H.; Li, Y.; Cui, H.; Xu, D.; Yang, C.; Wang, Y.;
and Yu, T. 2023. DisControlFace: Disentangled Control
for Personalized Facial Image Editing. arXiv preprint
arXiv:2312.06193.
Jiang, Y.; Huang, Z.; Pan, X.; Loy, C. C.; and Liu, Z. 2021.
Talk-to-Edit: Fine-Grained Facial Editing via Dialog. In
Proceedings of International Conference on Computer Vi-
sion (ICCV).
Ju, X.; Liu, X.; Wang, X.; Bian, Y.; Shan, Y.; and Xu, Q.
2024. Brushnet: A plug-and-play image inpainting model
with decomposed dual-branch diffusion. arXiv preprint
arXiv:2403.06976.
Karras, T.; Laine, S.; and Aila, T. 2019. A style-based gen-
erator architecture for generative adversarial networks. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, 4401–4410.
Karras, T.; Laine, S.; Aittala, M.; Hellsten, J.; Lehtinen, J.;
and Aila, T. 2020. Analyzing and improving the image qual-
ity of stylegan. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 8110–8119.
Kim, G.; Kwon, T.; and Ye, J. C. 2022. Diffusionclip: Text-
guided diffusion models for robust image manipulation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 2426–2435.
Kwon, M.; Jeong, J.; and Uh, Y. 2022. Diffusion models
already have a semantic latent space. 2210.10960.
Kwon, M.; Jeong, J.; and Uh, Y. 2023. Diffusion Models
Already Have A Semantic Latent Space. In The Eleventh In-
ternational Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023.
Lee, C.-H.; Liu, Z.; Wu, L.; and Luo, P. 2020. MaskGAN:
Towards Diverse and Interactive Facial Image Manipulation.
In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR).
Levin, E.; and Fried, O. 2023. Differential diffusion: Giving
each pixel its strength. arXiv preprint arXiv:2306.00950.
Li, Y.; Hou, X.; Zheng, D.; Shen, L.; and Zhao, Z. 2024.
FLIP-80M: 80 Million Visual-Linguistic Pairs for Facial
Language-Image Pre-Training. In ACM Multimedia 2024.



Li, Y.; Zhang, Y.; Wang, C.; Zhong, Z.; Chen, Y.; Chu,
R.; Liu, S.; and Jia, J. 2023. Mini-Gemini: Mining
the Potential of Multi-modality Vision Language Models.
arXiv:2403.18814.
Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ra-
manan, D.; Dollár, P.; and Zitnick, C. L. 2014. Microsoft
coco: Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzer-
land, September 6-12, 2014, Proceedings, Part V 13, 740–
755. Springer.
Lugmayr, A.; Danelljan, M.; Romero, A.; Yu, F.; Timofte,
R.; and Van Gool, L. 2022. Repaint: Inpainting using de-
noising diffusion probabilistic models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, 11461–11471.
Manukyan, H.; Sargsyan, A.; Atanyan, B.; Wang, Z.;
Navasardyan, S.; and Shi, H. 2023. HD-Painter:
High-Resolution and Prompt-Faithful Text-Guided Im-
age Inpainting with Diffusion Models. arXiv preprint
arXiv:2312.14091.
Mao, J.; Wang, X.; and Aizawa, K. 2023. Guided image
synthesis via initial image editing in diffusion model. In
Proceedings of the 31st ACM International Conference on
Multimedia, 5321–5329.
Mao, Q.; Chen, L.; Gu, Y.; Fang, Z.; and Shou, M. Z. 2023.
MAG-Edit: Localized Image Editing in Complex Scenar-
ios via Mask-Based Attention-Adjusted Guidance. arXiv
preprint arXiv:2312.11396.
Mokady, R.; Hertz, A.; Aberman, K.; Pritch, Y.; and Cohen-
Or, D. 2023. Null-text inversion for editing real images
using guided diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 6038–6047.
Morelli, D.; Baldrati, A.; Cartella, G.; Cornia, M.; Bertini,
M.; and Cucchiara, R. 2023. LaDI-VTON: latent diffusion
textual-inversion enhanced virtual try-on. In Proceedings
of the 31st ACM International Conference on Multimedia,
8580–8589.
Nitzan, Y.; Aberman, K.; He, Q.; Liba, O.; Yarom, M.; Gan-
delsman, Y.; Mosseri, I.; Pritch, Y.; and Cohen-Or, D. 2022.
Mystyle: A personalized generative prior. ACM Transac-
tions on Graphics (TOG), 41(6): 1–10.
Patashnik, O.; Wu, Z.; Shechtman, E.; Cohen-Or, D.; and
Lischinski, D. 2021. Styleclip: Text-driven manipulation of
stylegan imagery. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, 2085–2094.
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Appendix

Details of Our Proposed LAMask-caption
To align the generated content and textual description, exist-
ing inpainting methods (Manukyan et al. 2023; Mao et al.
2023) reweigh the attention scores during the inference
stage. They hold the key insight that adjusting the noise
latent feature to attain higher cross-attention values to en-
hance its alignment with the specific text prompt. However,
their approach is based on that the base model already has
prior knowledge about the target editing content. The ma-
jor reason that current diffusion models fail to generalize
to local face inpainting is the lack of precise textual cap-
tions to the images, as mainstream diffusion models are
mainly trained on large-scale natural image datasets such
as Laion-2B (Schuhmann et al. 2022), Laion-Aesthetics(Lin
et al. 2014). While existing CelebA-dialog (Jiang et al.
2021), FaceCaption-15M (Dai et al. 2024) and FLIP-80M
(Li et al. 2024) mainly focus on overall attributes (i.e. age,
skin) rather than local facial attributes.

Therefore, we proposed LAMask-Caption that mainly
consists of face images, textual descriptions of local facial
attributes and the corresponding segmentation mask of the
regions. The examples of our LAMask-Caption are shown
in Fig. 9.

Inpainting Masks of Local Facial Attributes. Firstly,
segmentation masks for facial attributes are generated to
fit the training paradigm inpainting. Specifically, we used
a fine-tuned BiSeNet (Yu et al. 2018) to segment a face
into 19 parts (as shown in Fig. 9), where each local region
mask would have a corresponding caption generated by the
MLLMs. Given that the precise masks may lead the model
to learn trivial solutions during training (Yang et al. 2023),
resulting in artifacts around the boundary of the masked re-
gion in the inpainting content. Therefore, we use the image
erosion algorithm and Bessel curve fitting to the bounding
box of the mask as pre-processing methods to generate mask
augmentation.

Caption of local facial attributes. To obtain specific lo-
cal textual captions, the Multimodal Large Language Mod-
els (MLLMs) ShareGPT-4V (Chen et al. 2023), MGM
(Li et al. 2023) are employed for caption generation. The
MLLMs is given a textual prompt and a face image, and re-
quested to generate captions for each corresponding local
region. To enhance textual diversity, the MLLM is encour-
aged to generate the responses encompassing various per-
spectives including direct appearance descriptions, indirect
appearance descriptions (e.g. elf-like ears), and subjective
perceptual feelings (e.g. complex eyes as if he/she holds se-
crets that cannot be unravelled).

Details of the Skin Transition Frequency
Guidance (STFG)

We provide more details of our STFG in this section. As
shown in Fig. 8, our proposed STFG can reduce artifacts
and produce natural transitions in the “boundary regions”.

Low frequency Space

Original Sampling

 Inversion Sampling

Our Sampling

Skin Transition 
Frequency Guidance Original

sampling

Ours

w/o STFG

BoundaryRegion

Figure 8: The illustration of how STFG works. During the
sampling process, through the guidance of STFG, the pixels
in the “boundary region” of the latent gradually approach to
that of original image in the low-frequency domain.

In the main body, we propose to leverage textual cross-
attention maps of diffusion models as a prior to localize the
“boundary regions”, as the attention maps exhibit outstand-
ing localization performances and semantic understanding
ability (Simsar et al. 2023). Specifically, for each text to-
ken j = 1, · · · , l, where l is the number of text tokens, we
first upsample each textual cross-attention map Ai

txt[j] in
the Reference Net to the size H × W, and compute their
mean as:

Atxt =
1

m · l

m∑
i=1

l∑
j=1

(Ai
txt[j]) (11)

where m denotes the number of textual cross-attention lay-
ers of the Reference Net and Ai

txt[j] represents the attention
map of the j-th textual token from the i-th layer. To separate
the major editing regions and the transition regions within
the coarse mask, we define the regions within the mask that
are minimally influenced by the text prompt as the “bound-
ary regions”. We propose to identify the indexes Idx of all
the elements belonging to “boundary region” according to:

Idx = {(i, j)|Atxt(i, j) ≤ µ− σ} (12)

where µ and σ denote the mean and the variance of Atxt:

µ = 1
H·W

∑
i,j Atxt(i, j)⊙M,

σ =

√∑
i,j (Atxt(i,j)⊙M−µ)2

H·W

(13)

To preserve skin details, we propose to further enhance
the similarity of these boundary regions with the low-
frequency components of the original image. Since the fre-
quency component should be calculated based on the clean
latent, we first estimate the ẑt→0 from ẑt as:

ẑt→0 = ẑt√
ᾱt

−
√
1−ᾱtϵθ(ẑt,t)√

ᾱt
(14)

To pixel-wisely align the low-frequencies between the
original noisy latent zt and the predicted latent ẑt, math-
ematically, we propose to keep low-frequency components
of both the estimated latent ẑt→0 and the original latent z0,



Skin: pale
Nose: large, straight, narrow nostrils, high bridge
Mouth: medium, closed, thin lips
Brow: thick, arched, dark
Ear: average, oval, low position, no piercing
Eye: almond-shaped, brown, short lashes, hooded eyelids
Lip: thin, pale
Eyeglasses: present, rectangular, black, medium thickness
Hair: short, black, combed back, low volume
Hat: none
Earring: none
Necklace: none

Skin: wrinkled
Nose: medium, straight, narrow nostrils, low bridge
Mouth: medium, smiling, lips closed
Brow: arched, medium thickness, grey
Ear: small, round, pierced
Eye: medium, round, blue, long lashes, hooded eyelids
Lip: medium, natural color, full
Eyeglasses: none
Hair: short, auburn, straight, low volume, no curls
Hat: none
Earring: small, round, pearl
Necklace: medium length, pearls

Skin: wrinkled, tanned
Nose: large, hooked
Mouth: small, thin lips, closed
Brow: thick, white
Ear: large, low-set
Eye: brown, small, deep-set
Lip: thin
Eyeglasses: none
Hair: long, white, curly
Hat: turban, gray
Earring: none
Necklace: none

Skin: pale, freckled
Nose: medium, straight, narrow, slight hump
Mouth: medium, lips full, closed, slight smile
Brow: arched, medium thickness, auburn
Ear: medium, pierced, lobe slightly elongated
Eye: medium, almond-shaped, blue
Lip: full, pink
Eyeglasses: none
Hair: long, thick, curly, auburn
Hat: none
Earring: small diamond stud
Necklace: none

Figure 9: Examples of our proposed LAMask-Caption.

which are first obtained as:

F(ẑt→0) = FFT(ẑt→0), F(z0) = FFT(z0)

F ′(ẑt→0) = F(ẑt→0)⊙ 1t, F ′(z0) = F(z0)⊙ 1t

ẑ′t→0 = IFFT(F ′(ẑt→0)), z′0 = IFFT(F ′(z0))

(15)

where FFT(·) and IFFT(·) are Fourier transform and in-
verse Fourier transform, respectively, 1t(i, j) = [H2 < i <
3H
4 andW

2 < j < 3W
4 ] is a Fourier mask, and designed as a

characteristic function.
We then employ the guidance in the Fourier domain to se-

lectively enhance low-frequency similarity on the estimated
latent, i.e., a guidance function g is designed to steer the dif-
fusion process and defined as follows:

g(z′0, ẑ
′
t→0) =

1
|Idx|

∑
(i,j)∈Idx

∥∥∥ẑ′

t→0(i, j)− z
′

0(i, j)
∥∥∥2
2
,

(16)
Eventually, the update direction ϵ̂t is defined as follows:

ϵ̂t = ϵθ(zt, t, txt, x)− λρt∇ztg(z
′
0, ẑ

′
t→0) (17)

where λ is a hyperparameter of the guidance strength and σt

denotes the noise schedule parameter of the timestep t.

Implement Details
During training, to enable a classifier-free guidance, we fol-
low (Ye et al. 2023) and set a probability of 0.05 to drop text
or image. We use the DDIM scheduler over T = 50 for de-
noising sampling during inference, maintaining a classifier-
free guidance scale of 7.5. During inference, we utilize our
STFG strategy to modify the latent variable on the “bound-
ary regions”. For the regions out of mask, we blend the latent

variable following Blended Diffusion (Avrahami, Lischin-
ski, and Fried 2022) to preserve region features outside the
mask. The whole training process and inference process are
shown in Algorithms 1 and 2 respectively. In addition, we
visualize the how to combine CA2 and STFG to obtain the
final inpainting result during inference in Fig. 10.

Algorithm 1: Training with our CA-Edit
1: repeat
2: Take {latent variable z0, vision condition cvis, text

condition ctxt and Mask M} from LAMask-Caption
dataset.

3: Obtain z0 ∼ q(z0), t ∼ Uniform({1, . . . , T}), ϵ ∼
N (0, I).

4: Obtain the visual and textual conditions fvis, ftxt in
Eq.(2) in the main body.

5: Use the Score in Eq.(3) to weigh the importance of
the visual condition spatially in Eq.(5).

6: Take gradient descent step based on the loss L in
Eq.(1) in the main body, where c is replaced with
{fvis, ftxt,M}.

7: until converged

When our algorithm is compared with the mask-free
methods that require the textual prompts of both original and
target images, “face” and “face with ...” are provided as the
original and target textual prompts. As for InstructPix2Pix
(Brooks, Holynski, and Efros 2023), i.e., an instruction-
based image editing method, we utilize editing instructions
such as “make” and “change” to manipulate images.
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Figure 10: Our inference pipeline.

Details of our proposed Benchmark
FFLEBench

Current datasets for text-based image editing methods pri-
marily exclude local attributes of a face. To enable a diffu-
sion model to generalize well to the text-driven local facial
attributes editing, we construct the dataset, i.e., LAMask-
Caption for this specific task. For a more detailed evalu-
ation of our method, we follow the construction pipeline
to develop a benchmark dataset FFLEBench, consisting of
15,000 images sourced from FFHQ (Karras, Laine, and Aila
2019). For masks of a human face and its various parts, in-
cluding masks of skin, eyes, nose, hair, etc., these masks
are processed through data augmentation (i.e. convex hull
or dilation) to imitate the rough masks in the real-world ap-
plication. For the text descriptions of the corresponding at-
tributes, it encompasses direct appearance descriptions, indi-
rect appearance descriptions and subjective perceptual feel-
ings.

Algorithm 2: Inference with our CA-Edit

Input: Diffusion steps T , noisy latent zT , original latent z0,
target text description txt, input mask M , our trained In-
painting models with parameter θ, text prompt and im-
age prompt ftxt, fimg .

Output: Final edited latent z0
1: for t = T to 1 do
2: Perform ẑt−1 = ẑt − ϵθ(t, ftxt, fimg, M, zt),

collect the textual attention maps {Ai
txt, i =

1, · · · , token length} during the denoising process.
3: Obtain the indexes Idx of the “boundary region” on

ẑt−1 using Eq.12 and Eq.13.
4: Obtain the one-step prediction ẑt→0 of ẑt using Eq.

14.
5: Use the guidance function g in Eq.16 to measure the

low-frequency similarity between ẑ
′

t−1 and z
′

0.
6: Update the noise latent of ϵθ with function g (Eq.17).
7: end for

Extended Qualitative Results
Results with Diverse Description. To showcase the capa-
bility of our proposed approach in following intricate in-

structions, we present the generated images under the same
input mask for various text descriptions, including both di-
rect and indirect ones. As shown in Fig. 11, the output im-
ages highlight the adaptability of our method in accommo-
dating diverse textual inputs while maintaining the reason-
ability of the edited content as well as the specific skin de-
tails.

Comparison with Existing Methods. In Fig. 15 and Fig.
16, we show additional visual comparison with image edit-
ing methods on more facial attributes. In addition to the
Qualitative Experiment Results in the main body, we in-
clude more inpainting methods ((Avrahami, Lischinski, and
Fried 2022; Manukyan et al. 2023)) and the Inversion-based
method (Renoise Inversion (Garibi et al. 2024) ) for the com-
parison. In these figures, we highlight the mask-free meth-
ods with blue color.

Figs. 15 and 16 show that these compared approaches ex-
hibit inferior performance when confronted with the task of
editing local regions, due to the lack of mask integration.
Meanwhile, such methods often result in substantial leakage
into incorrect regions during the process of localized editing
with complex semantic textual description, or even changes
of the individual identity (fourth column in Fig. 16).

Comparison with Inversion-based Diffusion Methods.
We also extend the comparison with existing approaches
depending on inversion-based diffusion, including both the
finetuning-required and finetuning-free paradigms. Among
them, DiffusionClip (Kim, Kwon, and Ye 2022) and Asyrp
(Kwon, Jeong, and Uh 2023) both require additional fine-
tuning for each previously unseen editing target with text
prompt pairs. These inversion-based methods introduce a
CLIP direction loss that aims to align the vector between
the original and edited images with the one between the cor-
responding textual prompts in CLIP space. Null-text Inver-
sion (Mokady et al. 2023) and Renoise Inversion optimize
the noise map during DDIM to further mitigate the error be-
tween the original image and the edited one in the resam-
pling path during inference. However, as illustrated in Fig.
12, such methods fail to deal with localized editing, strug-
gling to strike a trade-off between editability and fidelity.
Specifically, they either perform minor editing on the target
attributes or produce undesirable effects outside the target
attributes.
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Figure 11: The inpainting results under diverse textual descriptions. Our method can faithfully handle intricate texts in different
scenarios, including both direct descriptions and indirect descriptions.
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Figure 12: Comparison with the Inversion-based methods, i.e., Diffusionclip (Kim, Kwon, and Ye 2022), Asyrp (Kwon, Jeong,
and Uh 2023), Null-text Inversion (Mokady et al. 2023) and Renoise Inversion (Garibi et al. 2024).

Coarse Masks v.s. Fine-grained Masks. To shed light on
the reason behind using coarse masks, we conduct a toy ex-
periment with an example to illustrate the effects of coarse
and fine-grained masks on the generated results in Fig. 14.
It shows that fine-grained masks may lead to artifacts on
the edges, and results in a noticeable boundary between the
generated part and the unmasked regions during inference.
However, this does not happen when the coarse masks are
used.

Extended Quantitative Results

We incorporated CLIP’s text score (CS Text) and image
score (CS Image) as the Objective metrics. The former can
reflect the consistency between the image and text, while
the latter is used to evaluate the similarity between the orig-
inal and the inpainted images, serving as a metric for im-
age fidelity. Since the target of our editing is specific to hu-
man faces, in addition to using the general CLIP (Radford
et al. 2021), we also employ face-specific CLIP models (i.e.,
FaRL (Zheng et al. 2021), Flip (Li et al. 2024)) as the base



Table 2: Comparisons between the state-of-the-art methods and ours in terms of CLIP scores ( ×102). “CS Text” is the clip
similarity between text input and the edited image, while “CS Image” is the clip similarity between the original and edited
images.

Method FaRL (Zheng et al. 2021) FLIP (Li et al. 2024) CLIP (Radford et al. 2021)
CS Text (↑) CS Image (↑) CS Text (↑) CS Image (↑) CS Text (↑) CS Image (↑)

SD Inpainting 21.21 93.98 18.52 93.26 15.24 95.24
BrushNet 22.04 86.26 19.67 83.41 16.41 88.38
Blended 22.32 87.35 20.15 84.41 16.45 88.01
IntructPix2Pix 22.23 82.18 20.39 82.18 16.38 87.64

DiffusionClip 21.60 79.86 19.21 80.13 16.21 84.63
Asyrp 19.72 72.90 16.71 76.92 15.88 82.58
StyleClip 21.88 78.80 19.44 80.47 15.24 83.28

Ours 23.58 91.16 20.26 90.07 16.88 92.67

Table 3: Ablation study of our modules in terms of objective
metrics.

FID/local-FID (↓) LPIPS (↓) MPS (↑) HPSv2 (↑)

w/o CA2 4.13 0.138 1.06 0.239
Parallel Injection 9.80 0.153 1.03 0.262
w/o STFG 5.94 0.097 1.09 0.264
Ours 4.81 0.085 / 0.264

models for our evaluation.
The experimental results show that our method achieves

the best CLIP text score under different CLIP models, indi-
cating that our approach demonstrates better image-text con-
sistency performance on the FFLEbench dataset containing
complex textual descriptions. At the same time, our method
achieves the second-best CLIP image score, indicating that
our approach achieves a relatively higher fidelity in terms
of the overall edited image. Notably, SD Inpainting exhibits
overly high values on the CS Image metric, which is con-
sistent with the LPIPS results reported in Tab. 1 of the main
body, indicating that SD Inpainting may simply fill the mask
while neglecting the prompts.

Ablation Study with Quantitative Results
The ablation study of qualitative experiments is conducted
in the main body, we further present the quantitative re-
sults of the ablation study as shown in Tab. 3. The “Paral-
lel Injection” row represents the performance of the variant
of our method after removing the spatial control of visual
cross-attention, which may heavily rely on the visual cross-
attention injection and thus impair the textual control capa-
bility.

Discussion about the ID similarity metric
Since identity (ID) similarity serves as a vital metric in vari-
ous face-related generation tasks, we study whether it is ap-
plicable in our local facial editing task. Fig.13 shows that ID
similarity may not be as suitable for our task, i.e., the ID cues
on the eyebrows are damaged although the target attribute is

“Sparse 
eyebrows” 0.3087 0.9410 0.7724

Styleclip Hd-Painter OursOriginal

Figure 13: The limitation of identity (ID) similarity as a
performance measure. Our result show better alignment
with the textual prompt, despite lower ID similarity scores
achieved.

Original  Fine-grained
Mask

Coarse
Mask

Output Output

Figure 14: Comparison of the effects specific to coarse
masks and fine-grained masks on the generated results.

better aligned with the prompt. Therefore, while the ID sim-
ilarity metric can reflect the fidelity of the edited image by
measuring whether the ID is preserved, it may conflict with
the goal of image editing.
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Figure 15: Comparison with related zero-shot methods. We extend our comparison to include a inpainting method (Manukyan
et al. 2023) and an inversion-based method Renoise Inversion (Garibi et al. 2024). Other compared methods are InstructPix2Pix
(Brooks, Holynski, and Efros 2023), Blended Diffusion (Avrahami, Lischinski, and Fried 2022), SD inpainting (Wang et al.
2022) and StyleClip (Patashnik et al. 2021).
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Figure 16: Comparison with related zero-shot methods. We extend our comparison to include a inpainting method (Manukyan
et al. 2023) and an inversion-based method Renoise Inversion (Garibi et al. 2024). Other compared methods are InstructPix2Pix
(Brooks, Holynski, and Efros 2023), Blended Diffusion (Avrahami, Lischinski, and Fried 2022), SD inpainting (Wang et al.
2022) and StyleClip (Patashnik et al. 2021)
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