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Abstract. Dropout has been widely used to improve the generaliza-
tion ability of a deep network, while current dropout variants rarely
adapt the dropout probabilities of the network hidden units or weights
dynamically to their contributions on the network optimization. In this
work, a clustering-based dropout based on the network characteristics
of features, weights or their derivatives is proposed, where the dropout
probabilities for these characteristics are updated self-adaptively accord-
ing to the corresponding clustering group to differentiate their contri-
butions. Experimental results on the databases of Fashion-MNIST and
CIFARI10 and expression databases of FER2013 and CK+ show that
the proposed clustering-based dropout achieves better accuracy than the
original dropout and various dropout variants, and the most competitive
performances compared with state-of-the-art algorithms.

Keywords: Feature and weight clustering - Feature derivative
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1 Introduction

To improve the generalization ability of deep networks, regularizer and batch nor-
malization [1] and sparse deep feature learning [2] were proposed to reduce the
possibility of over-fitting. Dropout [3] that randomly drops network hidden units
or weights, has been also applied to many object recognition problems [4]. Moti-
vated from the hidden unit dropout, connection (weight) dropout [5] was proposed
dropout weight elements randomly. Khan et al. [6] proposed to perform dropout
for the spectral transformation of a feature map, where three different variants
corresponding to the reshaped dimension of the feature map were introduced.
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However, the hidden units or weights in the traditional dropout are sup-
pressed element by element, which may neglect the structural information
implied in the element block. Tompson et al. [7] proposed spatial dropout to
drop one entire feature map, i.e. the hidden units in one feature map are all
dropped or retained simultaneously. Poernomo and Kang [8] divided the fea-
tures into two groups with equal size according to the magnitudes of hidden
unit responses [9], and assigned a dropout probability to each group. Mean-
while, an additional cross-map dropout [8] was proposed, where the elements at
the same coordinate on different feature maps are dropped or retained simultane-
ously. However, two groups are not large enough to differentiate the contributions
among different features, more groups should be devised. Rohit et al. [10] pro-
posed the guided dropout by dropping nodes according to the strength of each
node. Zhang et al. [11] proposed the region dropout to use the combination of
the salient regions for training. However, the relative positions and sizes of the
regions are fixed, which are not flexible enough. Zhang et al. [12] proposed grid
dropout to reduce the searching space to facilitate the exploration of the global
feature. However, the elements in the same grid may be significantly different
from each other, the same dropout probability assigned to the entire grid may
not work well for the significantly different elements in the same grid.

For the characteristics (hidden unit, feature or weight) grouping for
dropout, the state-of-the-art dropout variants do not partition these characteris-
tics with enough flexibility and diversity. Actually, for network back propagation,
even adjacent elements in feature map and weight matrix contribute largely dif-
ferently to the network loss. For example, Fig. 1 shows the active regions of the
feature maps of an expression image with ResNet18 [13], where different feature
maps are categorized into three different levels of importance, i.e. insignificant,
fair and significant according to the heat maps response. Intuitively, the magni-
tude of the characteristic element response should be negatively correlated with
the probability of the dropout probability. However, traditional dropout and the
state-of-the-art variants can not gather these insignificant feature maps or ele-
ments distributed on an entire map for dropout. In this work, network element
clustering is introduced in dropout to group the similar elements to share the
same dropout probability. Thus, with the proposed clustering, the insignificant
elements can be suppressed simultaneously by assigning the corresponding group
with a large dropout probability.

For the dropout probability setting, the fixed dropout probability throughout
the network training may neglect the dynamic influences of different parts for the
network optimization. Wager et al. [14] treated the dropout training as a form
of adaptive regularization with the approximation of second-order derivative. Ba
and Frey [15] proposed a self-adaptive dropout by updating a probability mask
matrix according to matrix elements’ performance. In this work, the dropout
probabilities are updated dynamically according to the clustering group of aver-
age characteristic response.
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Fig. 1. Six of the 512 feature maps of an example expression in the last convolution
layer of the residual network (ResNet18) [13]. According to the effect of the areas of
interest on the RaFD database, the feature maps can be divided into different impor-
tance levels, i.e. insignificant, fair and significant.

To consider the characteristic for dropout, the fully connected (FC) layer
features (i.e. layer input) and weight matrix in a deep network are often used
as the discriminative features to determine the recognition performance. Conse-
quently, FC features, the weights, together with their derivatives are used as the
characteristics for the clustering.

The main contributions of this work are summarized as follows

e A new dropout based on the clustering of FC features, weights or their deriva-
tives is proposed;

e Self-adaptive renewal of dropout probabilities is proposed based on the
response magnitude of each group of feature, weight or derivative cluster-
ing;

e Competitive performances are achieved on the databases of Fashion-MNIST
and CIFARI10, and expression databases of FER2013 and CK+-.

This paper is structured into the following sections. The proposed clustering-
based dropout is introduced in Sect. 2. The experimental results and the corre-
sponding illustrations are demonstrated in Sect. 3. Finally, the conclusions and
a discussion are presented in Sect. 4.

2 The Proposed Algorithm

In this section, the difference between the proposed dropout and the traditional
version [3] is first illustrated, then the framework of the proposed algorithm
is introduced. Finally, the related network configuration and loss function are
presented.

Figure 2 shows the difference between the traditional dropout and the pro-
posed clustering-based dropout. Compared with the traditional dropout (a) that
the FC features are dropped with an uniform dropout probability, the proposed
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Fig. 2. The traditional dropout [3] ((a), (c)) and the proposed dropout based on clus-
tering ((b), (d)). p, {p1, ..., pm } are the assigned dropout probabilities. #class denotes
the number of classes, © = {z1, ..., Z» } denotes the FC input, n is the feature dimension,
W = {Wi, ..., W,} denotes the weight matrix.

dropout (b) takes into account the variation among different feature elements. As
shown in Fig. 2(d), clustering is performed on the column vectors of a 2D weight
matrix, in this way, the elements of each weight vector share the same dropout
probability. Based on the network element clustering, different dropout proba-
bilities are assigned to the corresponding groups to differentiate their different
contributions.

The framework of the proposed dropout is presented in Fig.3, where the
convolution layers are followed by an average pooling layer and a FC layer, then
the dropout is performed on the network characteristics, i.e. features, weights
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Fig. 3. The framework of the proposed clustering-based dropout. Notations z, W,
L and y are the features input, weight matrix, network loss and output of the FC
layer, £ is the network loss function, p; is the dropout probability assigned to the i-th
cluster C;.
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or their derivatives related with the FC layer. Finally, the dropout probabilities
corresponding to the clusters are updated in a self-adaptive mode.

2.1 Clustering-Based Dropout with Adaptive Probability

For the proposed dropout, four kinds of characteristics are used for the clustering
and presented as follows

e Feature vector z, i.e. the FC layer input vector;
e The weight matrix, i.e. W, between the FC layer input and output y;
e The derivatives of the loss with respect to (w.r.t.) the feature x and the weight

: : oL 9L .
matrix W, i.e. 5%, 57%;

With the clustering of the FC features, weights or their derivatives, the self-
adaptive renewal algorithm of the dropout probabilities is proposed as follows.

Vi = ﬁ EteCi t”h

’Vmin = mini rYi? "Yjﬂa%‘ = maXi ,7277 ) (1)
1P = Pruin T P 2

pi =1—1p;.

where the user-defined parameters pyin = 0.2, pmas = 0.8 are the minimal and
maximal dropout probabilities, ; is the average of the Li-norm values of the
i-th cluster C;. p; is the dropout probability assigned to the i-th cluster C;. For
feature or feature derivative, variable ¢ is a scalar element of the average response
of a batch of elements; for weight or weight derivative clustering, ¢ denotes one
of their column vector with the dimension of #class.

Based on the updated dropout probabilities, the proposed dropout is per-
formed on the employed characteristic, i.e. FC features vector, weight matrix
or their derivatives. More precisely, the dropout on the features or weights is
formulated as follows

r; ~ Bernoulli(p,, ),

Feature dropout: {
T— T HT,

. [ mask; ~ Bernoulli(pw,),
Weight dropout: { W e W % mask, (2)
Wi atb;
Yi = w

where * denotes element-wise product, W; denotes the i-th column of W, p,,
and pw, are the dropout probabilities assigned to x; and W, respectively. In the
network training stage, the connection weights are weighted with the probability
of 1 — Di-

2.2 Clustering Algorithm and Network Configuration

For the network element clustering, k-means algorithm is employed, which is
formulated as following equations in an iterative mode

{Ci = ﬁ 2tec; b (3)

Iy = argmini<;<m||c; — t/[3.
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where m is the number of clusters, ¢; is the center vector of the i-th cluster C;,
and #C; denotes the number of samples, I; is the updated label of the sample
t, variable t is defined in Eq. (1).

For the characteristics of the derivatives w.r.t. the features and Weights the
similar clustering in Eq. (3) are performed by replacing « or W with 2 893 or 881517
then the features or weights based on the results of derivative clustering are used
for the dropout in Eq. (2).

The residual network (ResNet18) [13] is used for the training and evalua-
tion. ResNet18 fits the residual mapping F and then appends it to the identity
mapping im to estimate the output H = F + im, rather than fitting the out-
put H directly. ResNet18 was reported to be able to decrease the possibility of
weight gradient vanishing when the network is very deep. The configuration of
the ResNet18 network is presented in Fig. 4.
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Fig. 4. The network structure of ResNet18. N x N denotes the image size. Co, Bn,
R, AvPo and FC denote the convolution, batch normalization, ReL.U, average pooling
and fully connected layers, respectively. # F'ilts and #class denote the numbers of
feature maps and classes, respectively.

The cross entropy softmax function is used as the network discrimination
loss, which is formulated as follows

T+ by,
E = _l Z eWTfl‘+b I (4)
where [; is the label of the i-th sample. The derivatives of the loss £ w.r.t. the
feature = and weights W, i.e. 25, 2% are calculated automatically with network

Dz AW
back propagation. For clarity, the proposed dropout is presented in Algorithm 1.

2.3 Implementation Details

We perform the experiments using four-kernel Nvidia TITAN GPU Card and
the Pytorch platform. The learning rate is updated with cosine annealing and



52 7. Wen et al.

Algorithm 1. The proposed dropout.

1: Initialize the network parameters and cluster number m.

2: for s =0,---, MaxIter do

3:  Select a combination of the characteristics (x, W, % and %) for clus-
tering with k-means algorithm.

4:  Update the dropout probability of the features x or weights W in each
cluster with equation (1) with the interval of IntBat batches.

5:  Perform dropout on the features x or weights W with equation (2).

6: end for

N

: Output the trained network model for testing.

SGD optimizer is employed. IntBat = 1, m = 10, the batch size and learning
rate are 64 and 0.01, respectively.

3 Experimental Results

The experiments are performed in the following sequence. First, the employed
databases are introduced; Second, various clustering parameter settings and
dropout variants are evaluated on four public recognition problems; Lastly, the
proposed dropout is compared to the state-of-the-art algorithms.

The Fashion-MNIST (FM.) [16] is a standard dataset of clothing, which con-
sists of 28 x 28 pixels of grayscale clothing images with 60,000 training and 10,000
testing samples.

The CIFAR10 (CIF.) [17] dataset consists of 50,000 training and 10,000 test-
ing samples, each with 32 x 32 pixels of RGB color. The task is to classify the
images into 10 different objects.

The FER2013 (FER.) [18] database consists of 35887 grayscale face images
with size 48 x 48, which is collected from the internet and used for a challenge.
The faces were labeled with one of seven categories, i.e. angry, disgust, fear,
happy, sad, surprise and neutral. The training, public test (validation) and final
test (testing) sets consist of 28,709, 3,589 and 3,589 examples, respectively.

The CK+ [19] database consists of 593 expression sequences from 123 sub-
jects, where 327 sequences are labeled with one of seven expressions, i.e. six
basic and ‘contempt’ expressions. Five non-neutral images sampled from each
expression sequence are used for testing. The person-independent strategy with
ten-fold setting is employed for CK+ testing. The example samples of the four
databases are presented in Fig. 5.

To evaluate different model settings in the proposed dropout, three indepen-
dent trails are performed for each parameter or model setting. Table 1 presents
the average recognition accuracies and their standard variances using different
network characteristics. For the dropout fusing with two characteristics in the
last two columns of Table 1, the clustering with each characteristic is weighted
by 0.5 for the dropout probability update in Eq. (1).
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Fig. 5. Example images and the corresponding labels of the Fashion-MNIST, CIFAR10,
FER2013 and CK+ databases.

Comparing the 4th and 5th (or 6th and 7th) columns in Table1, the pro-
posed algorithm with the clustering of FC features generally achieves better per-
formance than that of weight matrix. Comparing the 3rd column with 4th-9th
columns, one can observe that the proposed dropout significantly outperforms
the original dropout with the significance level of 0.05 on the four databases,
especially for FER2013 and CK+ databases, large improvements of 0.35% and

Table 1. Average recognition rates (%, even row) and their standard variances (odd
row) of different parameter settings on the four databases. Notations of ‘data.’, ‘Non’
and ‘Ori.” are the abbreviations of ‘database’, ‘non dropout’ and ‘original dropout’,
respectively. For the original dropout, the best performances are achieved when the
dropout probability is set as 0.5.  means that the proposed dropout is significantly
better than the original dropout with Student’s t-Test [20] under the significance level
of 0.05.

Dat. |Non |Ori. |z w g—é gT[f/ x—i—g—g z+ W
FM. 94.08 94.03 94.277 94.287/94.21 194.16 ' 94.227 | 94.25%
0.08 0.03/ 0.01 | 0.06 | 0.12 | 0.09 | 0.08 | 0.05
CIF. 94.5 |94.48 94.72" 194.62 |94.657 94.591  94.827 94.68%
0.09 0.11/ 0.09 | 0.09 | 0.06  0.01 | 0.1 0.03
FER. | 72.68 72.87 73.08 73.08 |72.95 |73.197|73.13 |73.22f
0.13| 0.15 0.36 | 0.05 | 0.23  0.03 0.3 0.1

CK+ 96.64 | 96.53|98.37" | 97.76" |98.171 | 97.551 | 98.167 | 98.27F
0.01 0.35 0.14 | 029 | 023 025 025 | 0.14
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1.84% are achieved. Meanwhile, the fusion of multiple clustering results can bal-
ance the performances with single ones on the four databases, which achieved
the best performances on the Cifar1l0 and FER2013 databases.

Table 2. Average recognition rates (%, even row) and their standard variances (%, odd
row) of the dropout variants of spatial dropout (S.D.) [7], cross map (C.M.) dropout
[8], biased dropout (B.D.) [8], feature x dropout with two-cluster clustering (z 2-c),
and our feature dropout with m = 10 clusters.

Dat. |S.D. CM. BD. |z2c z c+ S la+w
FM. 94.03 94.04|94.12 94.17 94.27 94.22 | 94.25
0.03 0.09 0.08 0.5 0.01 | 0.08 | 0.05
CIF. |94.58 94.63 94.48 94.69 94.72 94.82 | 94.68
0.07 0.04 005 0.02 009 01 | 0.03
FER. 72.92 72.95|72.74 72.92 73.08 73.13 |73.22
0.19 0.25 0.11 0.14 036 03 | 0.1

CK+ 97.15 97.35 97.25 97.96 98.37 98.16  98.27
0.64 0.18] 0.53 0.38 0.14 | 025 | 0.14

To compare the proposed dropout with other dropout variants, Table 2 shows
the accuracies and their standard variances of five dropout variants. For the
dropout probability update with two groups [8], biased dropout (B.D.) and 2-
cluster clustering (x 2-c), the characteristic of FC features are employed.

Comparing the 4th and the 5th columns, Table 2 shows that feature clustering
outperforms the feature equipartition [8] on the four databases, which illustrates
the effectiveness of the clustering employed in the proposed dropout. When the
same clustering is employed, 10-cluster setting (6th column) still performs better
than 2-clusters (5th column) on the four databases, which reveals that 10-cluster
clustering matches the variations of FC features better than 2-cluster clustering.

To study the variations of the dropout probabilities with the proposed
dropout, Fig. 6 presents the numbers of FC features elements in 10 clusters with
different iteration epochs. One can observe that the elements with large response
values after training account for a small proportion of the number of the entire
FC features. More precisely, the feature elements are mostly concentrated in
the cluster with small response value. This observation is similar to that of the
network compression [21] and Le-normalization on FC feature for generalization
ability improvement. Meanwhile, large difference among the numbers of feature
neurons in different clusters is observed, which implies the diverse contributions
of different feature groups for network training. By taking into account this dif-
ference, the proposed dropout with the feature clustering can better differentiate
the feature contribution than the original dropout during network training.

Regarding to the runtime of the proposed algorithm, the time complexity
of the k-means algorithm for FC features is O(n) (n is the feature dimension),
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Fig. 6. The number of feature elements of 10 clusters with different iteration epochs on
the FER2013 databases, where the FC feature average is used to label the corresponding
cluster.

which is almost negligible compared with the network training. For the clustering
with weights or weight derivatives, the runtime of the k-means is O(n - #class).
To reduce the runtime cost of the weight clustering in the proposed training, the
clustering is performed periodically after a interval of IntBat batches. Mean-
while, the testing performances of the proposed algorithm against the num-
ber of interval batches, i.e. IntBat are presented in Fig. 7. Figure 7 shows that
a even better performance can be achieved by the proposed algorithm with
the fine tuning of the number of interval batches, i.e. IntBat = 10. Thus, a
slightly large number of interval batches help clustering not only save the runtime
cost, but also learn more stable information to contribute to the performance
improvement.
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Fig. 7. The performances of the proposed algorithm with different setting of the inter-
val batches (IntBat) on the Fashion-MNIST database.

To compare the performance of the proposed algorithm with other state-
of-the-art approaches, Tables3 compares the testing recognition rates of the
proposed algorithm with those reported in eight state-of-the-art works on the
four databases, where 10-cluster clustering of feature and feature derivative is
employed in the proposed dropout. For the CK+ database, the works using the
same seven expressions as this paper are included for the comparison.
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Table 3. Comparison of accuracies (Acc.) of different algorithms (Algor.) on FM.,
CIF., FER. and CK+ databases.

FM. CIF. FER. CK+

Algor. | Acc. |Algor. |Acc. |Algor. Acc. | Algor. Acc.
CBD [8]]92.03 |CBD [8] |82.45 | Mollahosseini [22] |66.4 | Jung [23] | 97.25
DS [24] |- DS [24] |88.1 |DS [24] 71.32 | Liu [25] |97.1
BC [26] |- BC [26] |91.73 | Wen [27] 69.96 |- -

GD [10] |- GD [10] |94.12 |- - - -
Ours 94.27 | Ours 94.82 | Ours 73.22 | Ours 98.37

Tables 3 show that the proposed algorithm achieves the consistently best per-
formances on the four databases among the state-of-the-art algorithms, where
large improvements of 2.24%, 0.7%, 1.9% and 1.12% are achieved by the proposed
algorithm on the Fashion-MNIST, CIFAR10, FER2013 and CK+ databases,
respectively. The competitive performances verify the effectiveness of the pro-
posed dropout with the clustering of FC feature and weight matrix.

4 Conclusion

To take into account that the elements in the fully connected (FC) features,
weights, derivatives of features and weights contribute differently to the network
optimization, a clustering-based dropout with self-adaptive dropout probability
is proposed. The proposed dropout is further embedded into the FC layer of
ResNet18 for four public databases, i.e. Fashion-MNIST, CIFAR10, FER2013
and CK+, the experimental results verify the competitiveness of the proposed
dropout compared with other dropout variants and the related state-of-the-art
algorithms.

Although competitive results are achieved by the proposed clustering-based
dropout, there remains room for further improvement. First, the influences of
introduced hyper-parameters on the network learning, such as the number of
clusters, should be further explored. Second, the theoretical analysis of the
clustering-based dropout with different model selections should be deeply stud-
ied. Lastly, the proposed dropout should be applied in more models and tasks.
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