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a b s t r a c t

Curve or surface reconstruction is a challenging problem in the fields of engineering design, virtual reality,
film making and data visualization. Non-uniform rational B-spline (NURBS) fitting has been applied to
curve and surface reconstruction for many years because it is a flexible method and can be used to
build many complex mathematical models, unlike certain other methods. To apply NURBS fitting, there
are two major difficult sub-problems that must be solved: (1) the determination of a knot vector and
(2) the computation of weights and the parameterization of data points. These two problems are quite
challenging and determine the effectiveness of the overall NURBS fit. In this study, we propose a new
method, which is a combination of a hybrid optimization algorithm and an iterative scheme (with the
acronym HOAAI), to address these difficulties. The novelties of our proposed method are the following:
(1) it introduces a projected optimization algorithm for optimizing the weights and the parameterization
of the data points, (2) it provides an iterative scheme to determine the knot vectors, which is based on
the calculated point parameterization, and (3) it proposes the boundary-determined parameterization
and the partition-based parameterization for unorganized points. We conduct numerical experiments to
measure the performance of the proposed HOAAI with six test problems, including a complicated curve,
twisted and singular surfaces, unorganized data points and, most importantly, real measured data points
from the Mashan Pumped Storage Power Station in China. The simulation results show that the proposed
HOAAI is very fast, effective and robust against noise. Furthermore, a comparison with other approaches
indicates that the HOAAI is competitive in terms of both accuracy and runtime costs.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In computer-aided design, curve and surface reconstruction are
used in a broad set of applications in a variety of fields. The aim
of reconstruction is to construct a mathematical model that ap-
proximates an unknown curve or surface from many data points.
These points are usually the scanningpoints from two-dimensional
(2D) slices of a three-dimensional (3D) shape or the iso-parametric
curves on a surface. A few approaches, such as the polygonal
mesh method [1], continuous global optimization [2] and interpo-
lation [3], have been introduced; these approaches either produced
low-accuracy results or required the data points to be relatively
exact. In addition, they were time-consuming. In another class of
reconstructionmethods, the real shape is presented through an ap-
proximation technique with a free-form parametric mathematical
model that is flexible and can accurately depict a wide variety of
geometries.

Among the basic parametric functions, which are fundamental
elements for constructing approximate curves or surfaces, B-spline
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and non-uniform rational B-spline (NURBS) are generally used. An
approximation with B-splines is chosen for consideration because
it contains a small number of unknown parameters and consumes
a small amount of computational time.

Based on the B-spline function, reconstruction with multi-
patch and subdivided surfaces is often considered due to the weak
requirement of the structure of the provided points. Methods such
as multi-patch network, parameterization on the patches [4], and
quadtree-like subdivisions [5] have been reported. Viewing the
curve or the surface reconstruction as an optimization problem is
also a notable class of approaches, such as reconstruction with the
Levenberg–Marquardt algorithm [6], the trust region algorithm [7],
the Gauss–Newton optimization method [8], the two-step genetic
algorithm [9], and other optimization schemes and algorithms
[10,11].

However, a B-spline surface is not recommended for some
surface reconstructions because it cannot accurately represent
certain complicated geometries. In contrast, NURBS provides a
sophisticated and promising choice to represent a wide variety of
smooth objects, especially conical surfaces, due to its flexibility
and versatility. Based on the NURBS surface, the reconstructions
were performed by making use of evolutionary intelligence
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techniques [12–15] and particle swarm optimization (PSO) [16].
However, some artificial intelligence techniquesmay be somewhat
time-consuming because they are based on random search
strategies, while the real situation easily consists of thousands
of reconstructions, making them low-efficiency algorithms. The
reconstruction was presented as an optimization problem by
minimizing a penalty function [17]. This method consisted of
computing the derivatives of the penalty function with respect to
(w.r.t.) the knot vectors, which made the optimization complex
and time-consuming.

To improve the accuracy and to accelerate the convergence
process, this study proposes a newmethod that is a combination of
a hybrid optimization algorithm and an iterative scheme (namely,
HOAAI). It brings together a new projected optimization algorithm
and an iteration technique in NURBS fitting for the reconstruction
of 3D curves and surfaces from clouds of complicated data points.

This paper is structured as follows. Section 2 introduces the ba-
sic definitions and notations for NURBS fitting. Section 3 provides
detailed descriptions of the HOAAI, including the determination
of initial solutions, the projected optimization algorithms for the
weight coefficients, and the iterative scheme of the knot vectors. In
Section 4, numerical experiments are conducted for test problems.
Methods for parameterizing unorganized points and numerical ex-
periments are presented in Section 5. Finally, our discussions and
conclusions are provided in Sections 6 and 7, respectively.

2. Basic definitions and notations

2.1. NURBS functions

For a given nondecreasing real-number sequence T = {t0,
t1, . . . , tp+k, tp+k+1}, which is called a knot vector, the i-th B-spline
basis function Ni,k(u) of order k+ 1 (or degree k) is defined by the
Cox–De Boor formula [18]

Ni,0(u) :=

1, if ti ≤ u < ti+1,
0, otherwise (1)

where 0 ≤ i ≤ p, and

Ni,k(u) :=
u− ti

ti+k − ti
Ni,k−1(u)+

ti+k+1 − u
ti+k+1 − ti+1

Ni+1,k−1(u). (2)

In Eq. (2), the convention 0
0 = 0 is applied if necessary. The

interval [ti, ti+k+1) is called the support of Ni,k(u) because Ni,k(u)
= 0 for u ∉ [ti, ti+k+1). This local support property can be
employed to greatly simplify the computation of the NURBS fitting.
In most practical uses, the knot vector is selected to be non-
uniform; in other words, each knot ti may appear more than
once, or that the knots {ti} ({ti} are the simplification of {ti, i =
0, . . . , p+k+1}without confusion) are not uniformly distributed.
The most common non-uniform knot vector is constructed by
simultaneously repeating the end knots the same number of times
as the order of the B-spline and normalizing these values in the
interval [0, 1]; in other words, t0 = · · · = tk = 0 and tp+1 =
· · · = tp+k+1 = 1. Because curve reconstruction is a special case of
surface reconstruction, we consider only the notations related to
the surface reconstruction without loss of generality.

Given a set of 3D control points {Di,j = (D1
i,j,D

2
i,j,D

3
i,j), i =

0, . . . , p; j = 0, . . . , q} where (p + 1)(q + 1) is the number
of control points, with the corresponding weights {wi,j, i =
0, . . . , p; j = 0, . . . , q} and the two knot vectors T = {t0,
t1, . . . , tp+k, tp+k+1}, S = {s0, s1, . . . , sq+l, sq+l+1}, a (k+ 1, l+ 1)-
order NURBS parametric surface is defined as follows:

P(u, v) =

p
i=0

q
j=0

wi,jDi,jNi,k(u)Nj,l(v)

p
i=0

q
j=0

wi,jNi,k(u)Nj,l(v)

(3)
where {wi,j, i = 0, . . . , p, j = 0, . . . , q} ⊂ [0,∞) and the
parameters u, v are normalized to the interval [0, 1].

2.2. Fitting and parameterization of the data points

For a given set of 3D data points {Qi,j = (Q 1
i,j,Q

2
i,j,Q

3
i,j), i =

0, . . . ,m, j = 0, . . . , n} where (m + 1)(n + 1), which is larger
than (p + 1)(q + 1), is the number of data points, we construct
an associate parameter pair (ui, vj) for each of the data points Qi,j,
which is called a point parameterization. The least squares(LSQ)
fitting error Els is calculated as follows:

Els =
m
i=0

n
j=0

∥Qi,j − P(ui, vj)∥
2

=

m
i=0

n
j=0

Qi,j −

p
α=0

q
β=0

wα,βDα,βNα,k(ui)Nβ,l(vj)

p
α=0

q
β=0

wα,βNα,k(ui)Nβ,l(vj)


2

. (4)

Only two vectors u = {u0, . . . , um}, v = {v0, . . . , vn} are
required to store the information related to the point parameteri-
zation. In general, if we increase the number of control points, then
this fitting error can decrease; however, it will lead to an increase
in computation time. Therefore, when setting the number of con-
trol points, the number chosen is a balance between the accuracy
that is needed and the runtime cost. The control points {Dα,β} can
be obtained by using LSQ algorithms to solve the system in (4).

2.3. Derivatives of the NURBS function with respect to the parameters

The derivatives of the NURBS function w.r.t. the weight
coefficients are easily calculated as the following:

∂P(u, v)

∂wi,j
=

Ni,k(u)Nj,l(v)(Di,jswn− swdn)
swn2

(5)

where
swn = swn(u, v) ,

p
α=0

q
β=0

wα,βNα,k(u)Nβ,l(v),

swdn = swdn(u, v) ,

p
α=0

q
β=0

wα,βDα,βNα,k(u)Nβ,l(v).

The derivative of the NURBS function w.r.t. the parameter u can be
computed as the following:

∂P(u, v)

∂u
=

swn · swdnu− swdn · swnu
swn2

(6)

where
swnu = swnu(u, v) ,

p
α=0

q
β=0

wα,β

dNα,k(u)
du

Nβ,l(v),

swdnu = swdnu(u, v)

,

p
α=0

q
β=0

wα,βDα,β

dNα,k(u)
du

Nβ,l(v)

where dNα,k(u)
du is the derivative ofNα,k(u)w.r.t. the parameteru. Cox

and de Boor [18] suggested a simple and fast formula to compute
this derivative when given lower-order B-spline function values,
as follows:

dNα,k(u)
du

= k

Nα,k−1(u)
tα+k − tα

−
Nα+1,k−1(u)
tα+k+1 − tα+1


. (7)

The derivative of P(u, v) w.r.t. the parameter v can be similarly
derived and we omit it here.
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Fig. 1. Framework of the HOAAI.

3. The proposed HOAAI

In this section,we provide detailed descriptions of the proposed
HOAAI, including the determination of the initial solution com-
prised of the parameterization and the knot vectors, the computa-
tion of the control points, the iterative scheme of the knot vectors,
and the projected optimization algorithms for new weight coeffi-
cients and the new parameterization of the data points. The pro-
cess is divided into the following eight steps. In the first step, the
initial parameterization, the initial knot vector and the weight co-
efficients are computed; this step is presented in Sections 3.1 and
3.2. The second step is to apply the classical LSQ method using ei-
ther the SVD or the LU technique to obtain the control points and
the corresponding fitting error, which is shown in Section 3.3. The
third step is to compute the derivatives of the fitting error w.r.t. all
the parameters {ui, vj, wα,β} shown in Section 3.4. For the fourth
step, we employ the projected optimization algorithms in Sec-
tion 3.5 in deriving the new point parameterization andweight co-
efficients. Based on these new parameter values, the control points
and the fitting error are recalculated in the fifth step. The sixth
step is to judge whether this new fitting error is smaller than the
given precision. If it is, the results are output; otherwise, the sev-
enth step is executed, which judges whether the fitting error de-
scends slowly. If it does, the procedure proceeds to the eighth step
to iterate the knot vectors, as presented in Section 3.6, then pro-
ceeds to the third step. Otherwise, the procedure goes directly to
the third step. The entire framework of the HOAAI is presented
in Fig. 1.
3.1. Parameterization of the data points

For the LSQ fitting problem (4), the initial point parameteriza-
tion {(ui, vj)} that is associatedwith the data points {Qi,j} can affect
the fitting error. To obtain this initial parameterization, we simply
utilize the arc length parameterization reported in the literature
as uniform, centripetal and chord length parameterization for or-
ganized data points. A generalization of the method for the points
{Qi,j} has been proposed by Lee [19] as follows:

uj
0 = 0, v0

i = 0, j = 0, . . . , n, i = 0, . . . ,m

uj
i = uj

i−1 +
∥Qi,j − Qi−1,j∥

e

m
s=1
∥Qs,j − Qs−1,j∥

e
,

i = 1, . . . ,m, j = 0, . . . , n

v
j
i = v

j−1
i +

∥Qi,j − Qi,j−1∥
e

n
t=1
∥Qi,t − Qi,t−1∥

e
,

j = 1, . . . , n, i = 0, . . . ,m

(8)

where e ∈ [0,∞). Each parameter pair (ui, vj) that corresponds
to the data point Qi,j is then computed by averaging, as follows:
ui =

1
n+1

n
j=0 u

j
i, vj =

1
m+1

m
i=0 v

j
i .

3.2. Initialization of the knot vector

To guarantee that the matrix MT
· M in the following Eq. (13)

is non-singular or not ill-conditioned, the Schoenberg–Whitney
conditions in [18] imply that equal numbers of data points
should be allocated inside the support domains of all of the
B-splines. Thus, in our proposed method, the initial knot vector
{t0, t1, . . . , tp+k, tp+k+1} is computed according to the parameteri-
zation of the data points, as follows:

t0 = · · · = tk = u0 = 0,
tp+1 = · · · = tp+k+1 = um = 1,

tk+i =
1
NT

NT
r=1

u[ic−r+1] − (1− ic + [ic])(u[ic ] − u[ic−1]),

ic , i ·
m+ 1

p− k+ 1
, i = 1, . . . , p− k.

(9)

where NT ≥ 1 is an integer. The knot vector S = {s0, s1, . . . ,
sq+l, sq+l+1} can be similarly derived when considering the
parameterization vector v = {v0, . . . , vn}. When NT = 1 and the
data points are distributed uniformly, this computing method in
Eq. (9) is equivalent to the uniform method, where the lengths of
all of the intervals between the knot vectors are equal.

3.3. Computation of the control points and the fitting error

We first transform the fitting error (4) into the followingmatrix
form:

Els = ∥M · D − Q ∥22 =
m
i=0

n
j=0

BT
i,jBi,j (10)

where Bi,j = P(ui, vj)−Qi,j andmatrices D and Q are, respectively,
the vectorizations of the control points {Dα,β} and the data points
{Qi,j} that are obtained by stacking one set of column-points on top
of another, as follows:
D = (D0,0, . . . ,Dp,0, . . . ,Dα,β , . . . ,D0,q, . . . ,Dp,q)

T ,

Q = (Q0,0, . . . ,Qm,0, . . . ,Qi,j, . . . ,Q0,n, . . . ,Qm,n)
T .

(11)
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The corresponding coefficient matrix is M , which is given in
Eq. (12), where R(i,j)

α,β =
wα,βNα,k(ui)Nβ,l(vj)p

θ=0
q

τ=0 wθ,τNθ,k(ui)Nτ ,l(vj)
.

M =



R(0,0)
0,0 · · · R(0,0)

p,0 · · · R(0,0)
α,β · · · R(0,0)

0,q · · · R(0,0)
p,q

R(m,0)
0,0 · · · R(m,0)

p,0 · · · R(m,0)
α,β · · · R(m,0)

0,q · · · R(m,0)
p,q

· · · · · · · · · · · ·

R(i,j)
α,β · · · R(i,j)

α,β · · · R(i,j)
α,β · · · R(i,j)

α,β · · · R(i,j)
α,β

· · · · · · · · · · · ·

R(0,n)
0,0 · · · R(0,n)

p,0 · · · R(0,n)
α,β · · · R(0,n)

0,q · · · R(0,n)
p,q

R(m,n)
0,0 · · · R(m,n)

p,0 · · · R(m,n)
α,β · · · R(m,n)

0,q · · · R(m,n)
p,q


. (12)

Therefore, the control points {Di,j} can be obtained through the
minimization of the system (10) or, in other words, by solving the
following linear system:

MT
·M · D = MT

· Q. (13)
To evaluate the effectiveness of the fitting results, two error

measures, the relative average error (RAE) and the relative
maximum error (RME), are introduced as follows:

RAE =
1
3

3
k=1

m
i=0

n
j=0
|Bk

i,j|

Mk · (m+ 1) · (n+ 1)
,

RME =
3

max
k=1

max
i,j
|Bk

i,j|

Mk

(14)

where Mk = maxi,j |Q k
i,j| (Qi,j = (Q 1

i,j,Q
2
i,j,Q

3
i,j)).

3.4. Derivatives of the fitting error

From Eqs. (5) and (6), we obtain the derivatives of the NURBS
function w.r.t. the weight coefficients {wα,β} and the parameter
u. By viewing the fitting error Els as the multi-variable function
of {wα,β}, {ui} and {vj}, we need only to minimize Els by adjusting
these variables.

The derivatives of the fitting error Els w.r.t. the weight
coefficient wα,β and ur are computed as follows:

∂Els
∂wα,β

= 2
m
i=0

n
j=0

∂P(ui, vj)

∂wα,β

· BT
i,j. (15)

∂Els
∂ur
= 2

n
j=0

∂P(ur , vj)

∂ur
· BT

r,j (16)

where ∂P(ui,vj)
∂wα,β

and ∂P(ur ,vj)
∂ur

are calculated as in Eqs. (5) and (6),
respectively.

3.5. New projected algorithms for the point parameterization and
weight coefficients

To obtain the optimal weight coefficients and the point
parameterization, we employ the classical optimization method
Levenberg–Marquardt (LM) or conjugate gradient (CG) that is
associated with the gradient descent (GD) method [20], and
the iterative directions are projected into the space of feasible
directions [21,22].

The LM optimization algorithm has been widely adopted
in addressing non-linear unconstrained LSQ problems. For our
optimization problem, which is actually a non-linear constrained
problemwith linear constraints (17), not all the iterative directions
of the LM algorithm are feasible:0.5 ≤ wα,β ≤ 1.5, α = 0, . . . , p, β = 0, . . . , q,
ui ≤ ui+1 − eps, i = 0, . . . ,m− 1,
vj ≤ vj+1 − eps, j = 0, . . . , n− 1.

(17)
In Ref. [17], the constraints of the parameters {ui}, {vj} were
set in the interval [0, 1]. In spite of its relative ease of use in
handling constraints using a penalty function, thismethodmay not
yield a high approximation accuracy because it does not utilize the
information implied by the relative positions of the data points.
Moreover, the large number of monotonicity constraints in our
optimization problem reduces the effectiveness of the penalty
method.

In our algorithm, the projected gradient method is employed.
In other words, the solution is iterated away from the infeasible
region into the feasible region. Moreover, when the fitting error
in the projected direction decreases slowly, implying that the
effectiveness of the LM algorithm is greatly reduced, the projected
GD iterative direction is adopted as an alternative. The iterative
direction is projected into the space of feasible directions w.r.t.
the current solution. When the iterative step length is quite small,
this projection is implemented by setting the components of the
iterative direction vector to zero where the constrained conditions
are violated. This procedure is presented in Algorithm 1.

When the number of optimization variables is as large as the
number of data points, we are likely to consider the CG algorithm
which is more suitable for solving large-scale problems. Similar to
Algorithm 1, the combination of the projected CG and projected
GD can be used to solve our optimization problems, with step 4
and steps 20–26 in Algorithm 1 being altered as follows:
4: if k = 0 or Els(xk−1)−Els(xk)

Els(xk)
≤ ρ then

∆xk = −JTk
else βk−1 =

JTk Jk
JTk−1Jk−1

, ∆xk = −JTk + βk−1 ·∆xk−1
end if

20-26: Find the optimal value αopt in [0, α] through exact
search algorithm, such as the golden section method [20]
xk+1 = xk + αopt ·∆xk
Compute Els(xk+1)

where Jk is the corresponding Jacobi vector, which records the
derivatives of the error rk w.r.t. all the variables; upper bound
α and increment vector 1xk are obtained through steps 5–19 in
Algorithm 1; βk is a scalar that makes the searching directions
conjugate. This generated algorithm is simply denoted as PCGAGD.

3.6. Iterative scheme of the knot vector

It was reported in [11,23,24] that the knot vector can be
adaptively placed according to the curvature or the performance of
the fitting for the curve approximation.Weiss et al. [25] proposed a
knot refinement procedure that depends on the shape of the fitting
surface. Ma and Kruth [26] suggested computing the knot vectors
according to the known point parameterization by averaging some
terms of the components of the parameterization.

Obtaining the knot vectors through optimization, Laurent-
Gengoux and Mekhilef [17] computed the derivatives of the
fitting error w.r.t. the knot vectors by differentiating the Cox–De
Boor formula (2). This differentiating procedure is complicated,
especially for high-order B-spline functions, requiring us to
perform approximately (m+1)2k(k+2)+(n+1)2l(l+2) symbolic
differential operations to compute the derivatives of the basis
spline functionsw.r.t. all the knots for a single iteration,where k+2
is the number of knots contained in every basis function Ni,k(u)
and m + 1 is the number of basis functions in the u-parameter
direction. This complexity is high when the degrees k, l of the
B-spline functions are large, which may be one reason that only
cubic B-spline functions are employed in NURBS reconstruction
in [17]. Meanwhile, the numbers of the optimization variables
and constraints increase when the knot vectors are added to the
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Algorithm 1 The projected LM and GD algorithms
1: Initialize variable x0 = {x10, . . . , x

N
0 } where x = {{wα,β},

{ui}, {vj}}, and parameters µ0 = Els(x0), β = 10 · µ0, α =

1, ρ = 5 · 10−3, Eps1, Eps2, SF = 0.8, k = 0;
2: Calculate the Jacobi vector J0 = J(x0) = ∇Els(x0)
3: while ∥Jk∥ > Eps1 or k ≤ MAXGEN do
4: LM direction: 1xk = −(JTk Jk + µkI)−1JTk Els(xk)
5: for j = 1, . . . ,N do
6: while xjk+1 = xjk + α1xjk do not satisfy the conditions in

Eq. (17) do
7: Scale α to a smaller number by α← SF · α
8: if α < Eps2 then
9: α← Eps, 1xjk = 0

10: for r = j− 1, . . . , 1 do
11: if condition violated then
12: 1xrk = 0
13: else
14: break(jump out of the latest for loops)
15: end if
16: end for
17: end if
18: end while
19: end for
20: Compute Els(xk+1)
21: if Els(xk)−Els(xk+1)

Els(xk)
> ρ then

22: If µk > β,µk ← µk − β
23: else
24: µk ← µk + β . Employ GD direction: 1xk+1 = −JTk+1
25: k← k+ 1, α← 1. Goto step 5
26: end if
27: k← k+ 1, α← 1, calculate Jk = J(xk) = ∇Els(xk)
28: end while
29: Output the fitting error and optimization variable values.

optimization, which places a heavy burden on the penalty function
method.

In this study, the knot vectors are obtained indirectly by adjust-
ing the positions of the data points inside every two knots. In other
words, we use Eq. (9) to recompute the knot vector if the calcu-
lated fitting error cannot reach the given accuracy and descends
very slowly. In this case, this procedure provides an easy and fast
implementation for the iterative scheme for the knot vectors.

4. Numerical experiments

To verify the efficiency and effectiveness of the HOAAI, we have
conducted several numerical experiments. Here, we choose a test
problem on curve fitting, four test problems from [9] on surface
reconstruction and one test problem on modeling a set of real-
measured data points from the Mashan Pumped Storage Power
Station in China. These test problems involve complicated curves
and twisted and singular surfaces. We present the numerical
results, discuss the impact of some of the other preferences on the
performance ofHOAAI, compareHOAAIwith someother published
approaches w.r.t. both the accuracy and the runtime cost and
investigate the robustness of HOAAI against noise.

Test problem 1: a spiral curve. This parametric curve is given
by the following:x = 2(1− sin θ),
y = 2(1− cos θ), θ ∈ [0, 4π ]
z = 3θ2.

Test problem 2: a B-spline surface. For the convenience of
comparison, we consider the same number, 14,400, of data points
as in [9]. These points are obtained from a (5,4)-order B-spline
surface with 8× 6 control points.

Test problem 3: shell surface. This parameterized surface is
defined as follows:

x =
1
5


1−

v

2π


cos(2v)[1+ cos(u)] +

1
10

cos(2v),

y =
1
5


1−

v

2π


sin(2v)[1+ cos(u)] +

1
10

sin(2v),

u, v ∈ [0, 2π ]

z =
v

2π
+

1
5


1−

v

2π


sin(u).

Fitting this surface is not trivial because the surface is both twisted
and concave and exhibits a singularity at the end of the surface.

Test problem 4: pisot surface. This complicated genus-one
surface is given in parametric form by the following:x = A cos(B+ u)(2+ cos(v)),
y = C cos(D− u)(2+ E cos(F + v)), 0 ≤ u, v ≤ 2π,
z = E cos(F + u)(2+ G cos(H − v)).

where A = 0.655866, B = 1.03002, C = 0.754878,D =
1.40772, E = 0.868837, F = 2.43773,G = 0.495098 and H =
0.377696. This surface is chosen for our numerical study because
it is a genus non-zero surface that can reflect the complexity of the
model shape in practice.

Test problem 5: crescent surface. This intricate concave
surface is given in parametric form by the following:x = [2+ sin(2πu) sin(2πv)] sin(3πv),
y = [2+ sin(2πu) sin(2πv)] cos(3πv), u, v ∈ [0, 1],
z = cos(2πu) sin(2πv)+ 4v − 2.

The chosen surface is challenging because it is closed, singular and
highly distorted along the boundaries of the surface.

Test problem 6: pump surface. The problem addressed here
is the construction of a mathematical model of the complete
characteristic surface of the Mashan Pumped Storage Power
Station in China through a set of real-measured data points
with three variables: rotation speed, flow and moment (see the
supplementary Excel table). For the pumped storage power station,
the operating modes must be transferred from one to another
to adapt to variations in the network load. To guarantee the
operating safety, we must respond with the running conditions
quickly and frequently; for this reason, the concrete mathematical
relations between the characteristic parameters of the running
pump turbine must first be established. Among these parameters,
rotation speed, flow andmoment are themost crucial, and only the
relations of these three parametersmust be obtained.However, the
measured values of these three parameters for different openings
of the wheels often contain a large amount of noise. Moreover,
the curves that are obtained by linking all the measured points
with the same opening are often crossed, collective and twisted,
which implies further difficulties associated with this surface
approximation. In this test problem, it is preferable to compute
one of the two parameterization vectors u, v by utilizing the given
openings of the wheels.

4.1. Numerical results

We perform the HOAAI on a PC with a core processor operating
at 2.8GHzwith 4GBof RAM.Most of the computationswere imple-
mented in the popular scientific program Matlab, version 2009b,
while the large matrix M in Eq. (13) is constructed using C++ with
the interface function-mexFunction, as the construction procedure
contains a large number of loops. The simulation results are pre-
sented in Table 1. For all test problems, we use the preferences
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Table 1
The simulation results for six tested problems. NDP, NCP and OSF are the number of data points, the number of control points used and the order of B-spline function,
respectively. RAE and RME are relatively average fitting error and relatively maximum fitting error, respectively. Notations m and s are the abbreviations for minute and
second, respectively, which are adopted in the following tables.

Examples NDP NCP OSF RAE RME Time cost Algorithm used

Spiral curve 126 30 12 6.5× 10−5 1.3× 10−4 83 s Algorithm 1
B-spline surface 120× 120 14× 14 (6, 6) 3.1× 10−6 2.9× 10−5 7.4 m PCGAGD
Shell surface 45× 55 20× 20 (9, 9) 1.03× 10−7 6.1× 10−6 2.7 m Algorithm 1
Pisot surface 100× 105 20× 20 (8, 8) 1.27× 10−6 5.4× 10−5 11.3 m PCGAGD
Crescent surface 116× 124 30× 30 (8, 8) 8.6× 10−9 1.1× 10−8 5.7 m Algorithm 1
Pump surface 370× 14 40× 12 (16, 10) 8.8× 10−4 2.0× 10−3 7.3 m Algorithm 1
Fig. 2. Reconstruction of a spiral curve.

Fig. 3. Reconstruction of a B-spline surface. The left is data points, the right is the
fitting surface.

Fig. 4. Reconstruction of shell surface. The left is data points, the right is the fitting
surface.

Fig. 5. Reconstruction of pisot surface. The left is data points, the right is the fitting
surface.
Fig. 6. Reconstruction of crescent surface. The left is data points, the right is the
fitting surface.

Fig. 7. NURBS fitting of pump surface. The left is data points, the right is the fitting
surface.

e = 1 in Eq. (8) and NT = 1 in Eq. (9). The reconstruction curve or
surfaces of the test problems are shown in Figs. 2–7.

Numerical results show that our proposed method can yield
small fitting errors for a variety of complex surfaces in a relatively
small period of time. For test problem 6, an average fitting error
(RAE) from 5 × 10−3 to 1 × 10−3 is sufficient for real use, and
the proposed HOAAI can reach an accuracy of 1.8 × 10−3 in 7 s,
which demonstrates that our method responds rapidly to original
or newly-added data points. Because the fitting error decreases as
the number of control points increases, we employ a small number
of control points (using them to the greatest extent possible) on the
condition that a small fitting error can be obtained in an acceptable
period of time. Considering test problem 1 as an illustration, we
obtain an RAE of 6.5× 10−5 when the number of control points is
30, while a slightly larger RAE of 2.8× 10−4 can be obtained when
theNURBS curvewith 20 control points is chosen. TheNURBS curve
with 20 control points is preferable for a fitting accuracy of 10−4.

4.2. Performance of HOAAI with additional preferences for three test
problems

To evaluate the performance of the HOAAI, we conduct further
numerical experiments to investigate the influences of different
initial point parameterizations and knot vectors on both the
accuracy and runtime cost in three test problems: a spiral curve,
the crescent surface and the pump surface, and the influences
of different optimization algorithms in an additional two test
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Table 2
Results of time, cost and accuracy(RAE) for some other preferences. NT , e are the parameters in Eqs. (8) and (9), respectively. ALG denotes the algorithms used, k and l are
the orders of the chosen B-splines, and UNIFORM denotes the uniform knot vector satisfying that all intervals between two adjacent knots have the same length. LM, CG, QN,
and MLM are the abbreviations of Algorithm 1, PCGAGD, quasi-Newton [20], Moré’s form of Levenberg–Marquardt [27] algorithms, respectively, all the search directions
are projected into the space of feasible directions as in Algorithm 1.

e 0.5 1(proposed) 1.5 2

Spiral curve 1.3× 10−4 83 s 6.5× 10−5 83 s 8.5× 10−5 79 s 6.1× 10−5 83 s
Crescent surface 7.5× 10−9 5.7 m 8.6× 10−9 5.7 m 8.6× 10−9 7.2 m 4.5× 10−8 5.7 m
Pump surface 8.4× 10−4 7.3 m 8.8× 10−4 7.3 m 8.8× 10−4 10.0 m 8.8× 10−4 10.0 m

NT UNIFORM 1(proposed) 2 k/2 or l/2

Spiral curve 4.4× 10−4 83 s 6.5× 10−5 83 s 8.1× 10−5 83 s 8.4× 10−5 83 s
Crescent surface 3.5× 10−8 5.7 m 8.6× 10−9 5.7 m 9.4× 10−9 5.7 m 5.3× 10−8 5.7 m
Pump surface 5.3× 10−3 7.3 m 8.8× 10−4 7.3 m 8.8× 10−4 7.3 m 8.8× 10−4 9.2 m

ALG CG LM (proposed) QN MLM

Spiral curve 1.3× 10−4 83 s 6.5× 10−5 83 s 6.5× 10−5 80 s 6.5× 10−5 70 s
Crescent surface 9.5× 10−9 5.7 m 8.6× 10−9 5.7 m 8.6× 10−9 7.1 m 5.3× 10−9 5.7 m
Pump surface 9.7× 10−4 7.3 m 8.8× 10−4 7.3 m 8.8× 10−4 6.8 m 1.4× 10−3 7.3 m

ALG CG (proposed) LM QN MLM

B-spline surface 3.1× 10−6 7.4 m 3.1× 10−6 8.7 m 3.8× 10−6 7.4 m 3.1× 10−6 6.5 m
Pisot surface 1.27× 10−6 11.3 m 1.59× 10−6 11.3 m 1.27× 10−6 11.1 m 1.43× 10−6 11.3 m
problems: the B-spline surface and the pisot surface besides the
above three problems.

Table 2 lists the results of the accuracy and runtime costs of
the proposed HOAAI when the employed optimization algorithms
or parameter values in the point parameterization or iteration
formulas are modified. When one parameter value or strategy is
modified for comparison, the other parameters or strategies are
fixed according to the settings proposed in Table 1. The stopping
criterion is when either the runtime cost or the accuracy presented
in Table 1 is reached for all the test problems.

Table 2 demonstrates that the HOAAI can achieve better perfor-
mancew.r.t. either the accuracy or the runtime costwhen choosing
different parameter values or algorithms for different test prob-
lems. It can also be seen that PCGAGD is slightly more compet-
itive than Algorithm 1 on test problems 2 and 4; therefore, the
former algorithm is also adopted in this study. The performances of
the employed PCGAGD and Algorithm 1 do not differ much in the
considered test problems, but it is preferable to adopt the PCGAGD
algorithm when considering problems with many more variables
because PCGAGD eliminates the consideration of a large matrix
inverse. The slight differences between the results in Table 2
also imply that the proposed HOAAI is general for slight param-
eter perturbations for surface reconstruction from complicated
3D data.

4.3. Comparison with four other methods

According to the numerical results, our proposed approach,
HOAAI, exhibits good performance when used for the complex
problems described above. To further assess the performance of
the HOAAI, four other methods in the literature [8,9,14,17] are
selected for comparison, considering the CPU runtime cost and
the fitting error. We implement two methods presented in the
literature, Borges and Pastva [8] and Laurent-Gengoux Mekhilef
[17], and directly reference two results recently reported in the
literature [9,14]. A comparison of the results for test problem 2
to test problem 5 using all the considered methods is provided in
Table 3.

In Table 3, we observe that the HOAAI achieves the shortest CPU
runtime and an almost minimal fitting error compared with the
algorithms in [8,14,17] for all the test problems. When compared
with the method in [9], our proposed HOAAI also achieves a high
accuracy, 10−6 − 10−9, for all the test problems with a reasonable
runtime cost (tens of seconds to minutes). With the exception
of test problem 4, in which the proposed HOAAI still achieves
a high accuracy of 9.2 × 10−12 after 180 min of runtime, the
HOAAI method asymptotically achieves the same performance on
test problems 2 and 5. In other words, it achieves the RAE of
7.0 × 10−6 in 21 s for test problem 2 and the RAE of 6.9 ×
10−11 in 18.3 min for test problem 5. For test problem 3, our
method achieves a higher accuracy in a shorter time. Therefore, our
proposed method provides an alternative choice for solving one
class of reconstruction problems that are demanding of runtime
cost without requiring high accuracy. The method in [8] was
used only for curve fitting. With an accuracy of 10−2 to 10−5,
we implemented this method to solve our four test problems on
surface reconstruction. The accuracy was also quite low, although
the method was easy and fast to implement. The approaches
in [14,17] require a substantial amount of time for the surface
approximation and lose their effectiveness in some test problems.
These results illustrate that the HOAAI is competitive w.r.t. both
accuracy and runtime cost.

4.4. Robustness of the proposed HOAAI against noise

To investigate the robustness of the proposed HOAAI against
noise, we apply this approach to sets of perturbed data points in
the test problems. Two types of noise are primarily considered: one
type obeys a normal distribution N (0, σ

√
3
), and the other obeys a

uniform distribution [−σ , σ ]. In both types of noise, σ is chosen
to be F · δ, where F is a scale factor that reflects the intensity of
the noise, we consider values of 1%, 5% 10% and 20% in our trials.
And δ reflects the size of the surface and is set as mink(maxi,j Q k

i,j−

mini,j Q k
i,j). The parameters required for the proposed HOAAI are

set to be the same as those in Table 1. The numerical results of the
averages of the overall biases and the averages of the ten largest
biases w.r.t. different intensities of noise are presented in Table 4,
where the biases are the differences between the points without
noise and the approximate points of the perturbed points. The
points perturbed by different intensities of normally distributed
noise and their corresponding reconstruction curves are presented
in Fig. 8. In Fig. 9, the perturbed points and the same number
of points extracted from the reconstruction surface are depicted.
The reconstruction surfaces from the perturbed data points, which
are perturbed by 1%, 5%,10% and 20% intensity of the normally
distributed noise, are presented in Fig. 10.
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Table 3
A comparison between the proposed approach and four other methods on test problems (t.p.) 2–5. RT denotes the runtime on the test problem. NP is the number of data
points.

Method T.P.2(NP:14400) (RAE,RT) T.P.3(NP:2475) (RAE,RT) T.P.4(NP:10500) (RAE,RT) T.P.5(NP:14384) (RAE,RT)

[8] 2002 B-spline with LSQ. (1.5× 10−4, 7.4 m) (4.2× 10−5, 8.5 m) (5.8× 10−2, 15.3 m) (3.6× 10−4, 10.7 m)

[9] 2010 Interative two-step genetic
algorithm with LSQ fitting. Based on
stochastic search.

(7.0× 10−6, 8–15 s) (5.4× 10−7, 11–19 m) (3.8× 10−15, 120–180 m) (6.9× 10−11, 14–20 m)

[14] 2007 Multi-objective
evolutionary and genetic algorithm.

(≥ 10−2, h) (≥ 10−2, h) (≥ 10−2, h) (≥ 10−2, h)

[17] 1993 Penalty function with
classical optimization. Infeasible
iteration direction may exist,

(1.1× 10−4, 81.3 m) (5.9× 10−4, 63.2 m) (2.3× 10−3, 46.7 m) (6.2× 10−6, 35.4 m)

HOAAI-projected optimization and
iteration

(3.1× 10−6, 7.4 m)

(7.0× 10−6, 21 s)
(1.03× 10−6, 2.7 m) (1.27× 10−6, 11.3 m)

(9.2× 10−12, 180 m)

(3.8× 10−15, Not achieved)

(8.6× 10−9, 5.7 m)

(6.9× 10−11, 18.3 m)
Table 4
The numerical results about data points perturbed by different types and intensities of noise. The normal and uniform noises with intensities (F ) 1%, 5%,10% and 20% are
considered for this experiment. Percent sign(%) after every number is omitted for simplicity. In every parenthesis, the left is the average difference between the points NP
without noise and the corresponding approximation points NP of the noisy points, the right is the average of the ten largest biases between points NP and NP .

Spiral curve Normal size (F value) Uniform noise (F value)

1 5 10 20 1 5 10 20
(σ = 1.99) (0.18, 2.18) (0.75, 11.0) (1.6, 23.3) (3.1, 51.7) (0.19, 2.17) (0.75, 11.2) (1.7, 23.5) (3.2, 52.1)

Pisot surface Normal size (F value) Uniform noise (F value)
1 5 10 20 1 5 10 20

(σ = 1.97) (0.45, 1.53) (2.6, 7.68) (5.8, 21.8) (11.6, 45.1) (0.47, 1.58) (2.7, 7.85) (5.8, 22.1) (11.7, 45.4)
Fig. 8. Reconstructions of a spiral curve with noisy data points. From left to right, they are four sets of data points perturbed by 1%, 5%, 10% and 20% normally distributed
noises from the points of test problem 1 and corresponding reconstruction curves.
Fig. 9. Left is a set of data points perturbed by 10% normal distribution noise from
the points of test problem 4. Right is a set of data points from the reconstruction
surface.

Table 4 shows that the average biases between the points
without noise and the approximation points of the noisy points
increase according to the same orders of the added noise. However,
the proposed method becomes less valid when the reconstruction
curve or surface with perturbed points becomes distorted or rough
in some places. It can be seen in Table 4 that the average of the ten
largest biases w.r.t. 20% noise is significantly larger than twice the
quantityw.r.t. 10% noise for the spiral curve, and the quantityw.r.t.
10% noise is significantly larger than twice the quantity w.r.t. 5%
noise for the pisot surface. The abnormal increase of the ten largest
biases implies the invalidity of the reconstruction method on the
noisy points. Therefore, it can be concluded fromTable 4 and Figs. 8
and 10 that the proposed method is robust against no more than
20% noise for the spiral curve and no more than 10% noise for the
pisot surface.
5. Reconstruction with unorganized points

5.1. Boundary-determined parameterization

Efforts toward reconstruction with unorganized points from
complicated models frequently resort to subdivision or the multi-
patch of surfaces, such as subdivision methods [5,28], piecewise
smooth surface reconstruction [29], or representation methods
with multi-patch B-spline surfaces [4,30]. Representation with
a single patch surface is also considered for slightly simpler
geometry as a needless consideration of the continuity on
boundaries. However, the latter class of methods requires a good
initial parameterization to be made in advance.

For organized data points, Eq. (8) provides an initial parame-
terization for the proposed optimization method; for unorganized
points, because of its complexity, there is work referring specially
to this issue. A technique was developed for the parameteriza-
tion of a general genus-zero surface by obtaining a counterpart
on a spherical domain [31], and it was applied to a surface rep-
resentation with a B-spline surface [32]. An initial base surface
without intersections between the iso-parametric curves was cre-
ated through PDE and SOM neural network techniques to provide
an initial point parameterization [33,34]. Other parameterization
methods have also been reported, such as an approximation with
projected points [26], the multi-particle-based algorithm (PSO)
[16], meshless parameterization [35], and dynamic base surface-
based parameterization [36].
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Fig. 10. Reconstructions of the pisot surface with noisy data points. From left to right, they are four reconstruction surfaces from data points perturbed by 1%, 5%, 10% and
20% normally distributed noises from the points of test problem 4.
Fig. 11. (a) Depicts part of the grids and the projection points. (b) Demonstrates the provided data points for reconstruction and points from the reconstruction surface.
In this section, a method for the initial parameterization
(IPM) of unorganized points from an open single-patch surface is
proposed first. It is divided into the following steps:

1. Projecting the data points onto a 2D base surface and
determining the boundary of the projection points.

2. Solving the Laplacian PDE equation twice with two different
Dirichlet conditions, which are constructed from the boundary
points w.r.t. the u and v directions, respectively. Obtaining the
u-iso curves and v-iso curves by applying the Marching Cube
Algorithm.

3. Intersecting the u, v iso-curves and generating (m+1)×(n+1)
grids, where each set of u-direction grid lines shares the same
u-parameterization {lu0, . . . , lum+1}, and each set ofv-direction
grid lines shares the same v-parameterization {lv0, . . . , lvn+1}.

4. Allocating the projection points to the corresponding grids in
which the points lie and refining the grids until each grid
corresponds to a maximum of one projection point. Renewing
the values of nu, nv and the parameter values of the grid lines.

5. Obtaining the approximate parameter value of each projection
point with that of the corresponding grid, where the parameter
value (ui, vj) of the (i, j) grid is computed as ui =

lui+lui+1−2·lu0
2·(lum+1−lu0)

,

vj =
lvj+lvj+1−2·v0
2·(lvn+1−lv0)

, i = 0, . . . ,m, j = 0, . . . , n.
6. Approximating the initial parameterization with the parameter

values of the projection points.

The preceding three steps are the same as those in [34]. To
execute the approach IPM, it is worth noticing that in the fourth
step, a projection point is assigned to the grid with larger u or v
parameter valueswhen the point lies on the boundary between the
grids. The refining procedure starts from the grid corresponding to
the most points. The points in the grid are first fitted with a linear
function to determine their principal direction; the u-iso or v-iso
line with the larger intersection angle with the principal direction
is then chosen as the new split line. Moreover, the split line is
assumed to be across the barycenter of the projection points,which
can be used to approximately compute the u or v parameter value
of the new grid (split) line. In the fifth step, the parameter values
of the grids are calculated by averaging and normalizing each pair
of consecutive parameter values of the grid lines.

After obtaining the initial parameterization, the proposed
optimizationmethodHOAAI is similarly employedwith the refined
grids corresponding to a set of organizedpoints,with the difference
that grids with no pointsmake no contribution to the update of the
optimization variables.

To test the performance of the HOAAI approach on these
kinds of unorganized points, a example is conducted by applying
the parameterization method IPM. The set of unorganized points
for testing is 1400 randomly chosen points of 1600 organized
(rectangular) points from a (6, 5)-order B-spline surface, where the
four vertexes of the organized points are compulsively chosen.

Our trials show that a set of 41×50 grids separate the projection
points successfully and that it takes 307 s to obtain the initial
parameterization by IPM. An average fitting error RAE of 5.6×10−5
is then obtained after approximately 5.3 min of optimization by
HOAAI, where a (4, 4)-order NURBS surface with 12 × 12 control
points is adopted for the approximation. The numerical results
illustrate that the proposed HOAAI is still effective for surface
reconstruction with such kinds of unorganized points. Some of
these projection points and grids are presented in Fig. 11(a). The
provided points and points from the reconstruction surface are
presented in Fig. 11(b).

5.2. Partition-based parameterization

The preceding PDE-based parameterization method is applica-
tive to problems where the boundary curve can be found in ad-
vance; however, it loses the efficiency for semi-closed or closed



1136 W.-C. Xie et al. / Computer-Aided Design 44 (2012) 1127–1140
Fig. 12. (a) Presents the optimized section plane from an initial section plane. (b) Presents the optimized correspondence from an initial correspondence for distorted
surface.
geometries, such as the shell surface in the test problems. In or-
der to test the effect of the proposed HOAAI on unorganized points
from the closed and distorted surface, we further propose a new
methodwhich is partitioning and parameterization (PAP) to obtain
the initial parameterization.

For obtaining the initial parameterization of the points, two
aspects are sequentially considered:

• Partitioning the points. Methods for segmenting the points are
not uniquely determined. In the proposed PAP, the provided
points are partitioned with many specially selected planes,
which are assumed to be those with minimum curve lengths
computed in Eq. (18).
• Parameterizing the partitioned points. After the preceding

processing, the partitioned points can be viewed as from a
semi-closed cylinder-like geometry. A further segmentation
line on the geometry is needed to construct a surface which
is topologically isomorphic to a rectangle. In other words,
for the first point on the present section curve, the optimal
corresponding point needs to be found on the next section
curve, where the optimal correspondence means the minimum
biases between the provided points and an interpolation
surface.

Considering the first aspect, the section curve is the approxi-
mation of Npp projection points {PPi} ({PPi} are the simplification
of {PPi, i = 1, . . . ,Npp} without confusion) with a cubic B-spline
curve, where the projection points are the projections of the Npp
nearest points to the section plane on this plane in the nor-
mal direction. The fitting is executed after reordering the pro-
jection points in anticlockwise sequence which is presented in
Appendix A, where the reordered points are still denoted as {PPi}.
Nv section points {IPi} with uniform parameter values are ob-
tained from the fitting curve. By using the section points, the
length of the section curve is approximated with the term as
follows:

LengthCurve =
Nv−1
i=1

∥IPi+1 − IPi∥2 (18)
and the central point of the section curve is approximated as
follows:

CentralPoint =
1
Nv
·

Nv
i=1

IPi. (19)

The procedure of finding the optimal section plane is to
determine a normal direction. In this work, a probability-based
algorithm-differential evolution (DE, [37]) is adopted to obtain the
optimal normal direction which is presented in procedure I.

Note that the generated section points may not all be on one
side of the last section plane, in which case a slight modification
procedure presented in Appendix B is executed.

Considering the second aspect, we first denote the parame-
terization along each section curve as v-pararameterization and
that along all the section curves as u-pararameterization for con-
venience. After performing the procedure I Nu times, Nu section
planes are obtained, where Nv points {IPi,j, j} ({IPi,j, j} is the abbre-
viation of {IPi,j, j = 1, . . . ,Nv}without confusion) with uniform v
parameter values are obtained from the i-th section curve and they
are stored in anticlockwise order.

The cylinder-like geometry clamped by the i-th and i + 1-th
section curves may be distorted, while the degree of distortion is
reflected in the correspondence of the starting points with v = 0
(see Fig. 12(b)). In the following, the optimal correspondence is
found by minimizing the biases between the clamping provided
points and an interpolated surface. Without loss of generality, it is
assumed that IPi,1 corresponds to v = 0, and the correspondence
of i, i + 1 section curves and that of i + 1, i + 2 section curves
is approximately the same when the section curves are compactly
obtained. Themethod for determining the optimal correspondence
is addressed in procedure II.

In the first step of procedure II, for finding the nearest point to
IPi,1 on the i + 1-th section curve, the distance from Nv points on
the i+ 1-th curve to IPi,1 are computed first, then fine searching is
performed around the nearest point.

In the fourth step, rotating the points {IPi+1,j}t (t ≥ 0) po-
sitions corresponds to rotating the initial sequence (1, . . . ,Nv)
of the points to the sequence (t + 1, . . . ,Nv − 1, 1, . . . , t, t + 1)
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Procedure I: Optimizing of the r-th normal vector.
%% Initialization
1: Randomly generating Nd normal vectors {NVi} around the

r − 1-th normal direction Vr−1.
2: Obtaining the central point Cpr as Cpr−1 + ss · Vr−1,

where ss is the predetermined step size.
3: Computing the lengths {Fiti} of the section curves as in

Eq. (18). NumIter = 0.
4: Initializing F = 0.9, CR = 0.03 for DE algorithm.
%% DE optimization
5: For each i ∈ {1, · · · ,Nd},
6: Generating mutually different random numbers r1, r2, r3 in
{1, · · · ,Nd} and random number jd from {1, 2, 3}.

7: For each j ∈ {1, 2, 3}
Tvj =

NVi,j, if rand ≥ CR or j ≠ jd,
NVi1,j + F · (NVi2,j − NVi3,j), otherwise.

8: End for j
9: Computing the length fit of the section curve corresponding

to vector Tv.
10: If fit ≤ Fiti,

NVi ← Tv, Fiti ← fit.
11: End if
12: NumIter ← NumIter + 1.
13: End for i
14: If NumIter ≤ MaxNumIter , goto step 5;

else, goto step 16.
15: End if
%% Output
16: Outputting the normal vector NVi0 corresponds to the

minimum Fiti0 . Renewing the central point according
to Eq. (19).

Procedure II: Determining the optimal correspondence
%% Finding initial correspondence
1: Finding the nearest point to IPi,1 on the i+ 1-th section

curve, then generating another Nv − 1 points with
uniform v parameter values on the fitting curve.
The new section points are still denoted as {IPi+1,j, j},
where the first point corresponds to the nearest point.

2: Corresponding to the point IPi+1,1, renewing the points
{IPi+2,j, j} on the i+ 2-th section curve in a similar way.

%% Optimizing the correspondence
3: For each t ∈ {−MaxPos, · · · ,MaxPos}
4: Rotating the points {IPi+1,j, j} t positions to obtain
{IP (t)

i+1,j, j}, and the points {IPi+2,j, j} 2t positions to
obtain {IP (2t)

i+2,j, j}.
5: Interpolating the points {{IPi,j, j}, {IP

(t)
i+1,j, j}, {IP

(2t)
i+2,j}, j}

with cubic B-spline surface.
6: Obtaining 5× Nv grid points with uniform parameter

values from the interpolated surface.
7: For each provided point that lies in the region clamped by

the i-th and i+ 2-th section curves, finding the
corresponding nearest grid, then approximating the
parameter values of the point as in Eq. (20).

8: Computing the biases Bias(t) between the provided points
and the interpolated surface as in Eq. (21).

9: End for t
%% Output
10: Obtaining the optimal correspondence t0 that corresponds

to the minimum Bias(t0).

because the section points are closed. The case for t < 0 is similarly
considered.
In the seventh step, denoting the distances from the provided
point P (α) (α = 1, . . . ,NP) to the four vertexes of the nearest grid
as {dk, k = 1, . . . , 4}. The parameter values (u(α), v(α)) of the point
P (α) are approximately computed as follows:

(u(α), v(α)) =
1

4
r=1

1
dr

4
k=1

1
dk
· (uk, vk) (20)

where {(uk, vk)} are the parameter values of the four vertexes,
respectively.

In the eighth step, the overall bias between the provided points
and the interpolation surface is computed as follows:

Bias =
1
3
max

α
B(α)
+

2
3

1
NP


α

B(α) (21)

where B(α)
= ∥P(u(α), v(α)) − P (α)

∥2, P(u(α), v(α)) =


i,j Di,j

Ni,3(u(α))Nj,3(v
(α)).

Based on the preceding partitioning and local parameterization
procedures, the overall parameterization method PAP is stated as
follows:

Step 1 . Finding Nu section planes by procedure I, which obtains
Nu section curves, Nu − 1 clamping regions and the
corresponding provided points lie in each region.

Step 2 . For each set of three consecutive planes, finding the op-
timal correspondence of the points with v = 0 by pro-
cedure II. Computing the approximate parameter values of
each point and the index of the corresponding nearest grid.
The final grid points are still denoted as {IPi,j, i = 1, . . . , 2 ·
Nu − 1, j = 1, . . . ,Nv}, where the points corresponding
to v = 0 have been placed at the first place of each set of
section points.

Step 3 . Partitioning the grids and parameterizing the grids with
the method which is stated in the fourth and fifth steps of
IPM in Section 5.1 with a difference that each grid is parti-
tioned at most once and only themost representative point
is retained.

Step 4 . Approximating the parameterization of the provided
points with those of the grids where the points lie.

Heuristic search: in the proposed PAP, some operations are
based on the adjacent points of a considered point, while the
usual handling needs to search the whole of the provided points
to determine the adjacent points. In this work, to accelerate
the searching procedure, the information on relative size of
each coordinate of the provided points is first stored. In other
words, each coordinate is partitioned into many small equidistant
intervals according to the minimum and maximum values of the
coordinate of all the provided points. Then the equidistant interval
that the coordinate of each point lies in is stored. Based on the
stored information, the adjacent points of a considered point are
found in a time complexity of O(p)where p is the number of points
for searching, because the points lying in a local region of the
considered point share the adjacent coordinate intervals.

For applying the proposed PAP to the surface reconstruction
with the optimization HOAAI, two sets of scattered points (15,629
and 14,384 points) are randomly and compactly generated from
shell and crescent surfaces, respectively. Numbers of 100 and 64
section planes are found for the points from shell and crescent
surfaces, and 80 points are obtained on each section plane.

Numerical experiments show that the DE algorithm performs
robustly on the problems. The proposed optimization method
HOAAI still obtains a small fitting error 10−4 for unorganizedpoints
from a closed and distorted surface. It can be seen from Table 5 that
most of the computational times are consumed in the procedure
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Table 5
Numerical results of initial parameterization PAP and HOAAI optimization for two sets of scattered points.

Examples Time of finding section planes
(m)

Time of finding correspondence
(m)

Time of optimization by PCGAGD
(m)

Overall time
(m)

Fitting error
(RAE)

Shell surface 13.2 1.5 9.7 24.4 3.8× 10−4

Crescent surface 8.7 0.9 6.3 15.9 1.1× 10−4
Fig. 13. Surface reconstruction of crescent surface from the initial parameterization to the final optimized surface.
Fig. 14. Surface reconstruction of crescent surface from the initial parameterization to the final optimized surface.
for finding section planes, because the stochastic algorithm (DE) is
employed.

Fig. 12(a) presents the optimization from an initial section
curve to a section curve with smaller length. Fig. 12(b) addresses
the optimization of the correspondence of three layers of section
points. Figs. 13 and 14 present the initial parameterization and
HOAAI optimization on two sets of scattered points from shell and
crescent surfaces.

6. Discussions and future work

In this paper, we present a new method for the reconstruction
of 3D surfaces based on non-uniform rational B-splines. Although
an easily implemented optimization scheme is proposed and
proven efficient for all the test problems considered here,
possible modifications exist that can boost the accuracy of the
approximation through the following aspects. (i) The knot vectors
can be viewed as the optimization variables for some generations,
where the derivatives of the fitting error w.r.t. the knot vector are
calculated via a forward difference approximation rather than by
differentiating both sides of Eq. (2). (ii) All the variables can be
divided into several groups according to their ranges or the sizes
of their absolute derivatives; these variables are then optimized
group by group in several phases [9].

This study also contains some limitations. First, we primarily
studied the reconstruction problems that require good smooth-
ness, such as our real-measured data from the Pumped Storage
Power Station in China.When a reconstruction problemwith dense
sample data does not require smoothness or requires only piece-
wise smoothness, the piecewise linear approximation with a sub-
division surface proposed in [5,28] and other Refs. [4,29,30] can
be used to expand our proposed method to solve a broader selec-
tion of problems. Second, although we introduced two approaches
for applying the proposed HOAAI to the reconstruction of un-
organized points in Section 5, the first approach is mainly ap-
plicable to the cases with boundary determined. The employed
section planes which are a form of segmenting the point set in the
second approach determine the restricted applicability of the pa-
rameterization method for general complex multi-patch surfaces.
Therefore, our future work will combine the related studies in the
literature on surface reconstruction for unorganized points, such
as [32,33,35], to design a good initial parameterization for unor-
ganized points. Third, the ability of the proposedmethod to recon-
struct genus non-zero surfaces is limited, althoughourmethodwas
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Fig. A.1. (a) Depicts the reordering procedure of scattered points. (b) Presents the modified section points for some intersecting section points.
proven effective on test problem 4, which is a genus-one surface.
An effective parameterization method for these challenging prob-
lems will be worth exploring.

In addition to the possible measures for improvement and the
research interests described above, a great deal of work remains to
be done. On the onehand,we expect a good theoretical explanation
for the effectiveness of our proposed method. On the other hand,
our approach is very robust and can be applied to a variety of
practical reconstructions; therefore, more real-world models are
expected to be reconstructed using ourmethod,whichwill provide
valuable feedback toward further improvement.

7. Conclusions

In this paper, we have proposed a new method to derive all
the parameters for NURBS surface approximation: the weight
coefficients, the parameterization of the data points and the knot
vectors. The first two sets of parameters are optimized by the
projected LM and GD or CG and GD algorithms, while the last set
of parameters, the knot vectors, are computed according to the
calculated point parameterizations using iterations. Our approach
has shown good performance in numerical experiments on six
test problems, including a complicated curve, twisted and singular
surfaces, real-measured data points with noise and three sets of
unorganized points. Comparisons with other published methods
demonstrate that our approach is competitive w.r.t. both accuracy
and runtime cost.
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Appendix A. Reordering scattered points

The reordering method is based on a set of partitioned grids
constructed by the scattered points which lie on a plane in 3D
space. The procedure which is depicted in Appendix Fig. A.1(a) is
divided into the following steps:

1. Finding two principal directions e1, e2 of the scattered points
and the normal vector e3 of the fitting plane by principal
component analysis (PCA) [38,39]. Determining the numbers
of grids in directions e1, e2 according to the corresponding
eigenvalues of the vectors.

2. Finding four boundary lines which compactly cover the
provided points, and they are parallel to e1 or e2.

3. Searching the grids which are adjacent to the four boundary
lines in a predetermined direction (clockwise or anticlockwise).
The order of the points is approximated with the order of the
grids where the points lie.

Appendix B. Modifying the section planes

The employed modifying procedure is illustrated with several
sets of section points in Appendix Fig. A.1(b) and addressed as
follows:

1. For the i-th section plane (i = 2, . . . ,Nu−1), checkingwhether
it intersects with the i − 1-th section plane by observing
whether the i-th section points all lie on the same side of the
i− 1-th section plane.

2. If intersection is found, finding the smallest index k ∈ [i+1,Nu]
such that the k-th section plane does not intersectwith the i−2-
th section plane.

3. For the t-th section plane (t = i− 1, . . . , k− 1), obtaining the
approximated section points {TPt,j, j = 1, . . . ,Nv} as follows:

TPt,j = IPi−2,j +
t − i+ 2
k− i+ 2

(IPk,j − IPi−2,j).
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4. Determining the normal direction of the section points {TPt,j, j}
by PCA where the normal direction is the eigenvector with the
minimal eigenvalue. Generating new section points according
to the new computed normal direction. Renewing the normal
direction and the section points of the t-th plane.

Appendix C. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.cad.2012.05.004.
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