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• A new hole patching method is proposed to repair the defective model.
• The information on both sides of the boundary around the considered hole is used.
• The points in the hole region are predicted by differential evolution.
• The operations of mesh optimization are used to improve the quality of the mesh.
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a b s t r a c t

In this work, a new hole patching method (namely as, HPDE) is proposed to repair the damaged or ill-
scanned three dimensional objects in real engineering applications. Ourmethod differentiates from other
related algorithms mainly on the following three aspects. Firstly, our algorithm sufficiently utilizes the
point information around the considered hole for each prediction by constructing point correspondences
on both sides of the boundary curve of the hole; secondly, the missing points in the hole region are
predicted by the algorithm of differential evolution (DE), which is used to obtain the topological and
geometrical structures of the mesh in the hole region; thirdly, operations of mesh optimization are
adopted for improving the quality of the obtained triangulationmesh. Numerical results on kinds of holes
with complex shape and large curvature, and a comparison with two recently proposed algorithms verify
the effectiveness of the algorithm, further experiments on the noisy data points illustrate the robustness
of the algorithm against noise.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Methods for constructing a mathematical model from a given
set of three dimensional (3D) points have been applied into a wide
variety of fields, such as engineering design, virtual reality, movie
making and data visualization. Surface reconstruction has drawn
much attention from last decades of years and a lot of methods are
reported [1–4]. It is more often that the provided points are repre-
sented with piecewise triangles (namely as triangulation model),
such as the Marching Cubes method in [5], the crust algorithm
in [6], direct advancing front method and modified decimation
method in [7], and a divide and conquer Delaunay triangulation
in [8].

However, the constructed model may not be directly applica-
ble for the real application. In one case, the provided triangulation
model is damaged or the points in the considered model are ill-
scanned. In another case, the provided 3D points can also be the
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measured parameter values from the simulation experiments, and
it may come up that the data referring the parameter values in the
abnormal conditions is difficult to be obtained by the simulations,
which may be the result from the difficulty of these experiments
or the high cost and time-consuming of the simulation. For these
two cases, there still exist concerned regions (hole regions) where
the point information is unknown and needs to be predicted based
on the constructed model, thus, the hole patching method is re-
sorted to.

In this work, a new hole patching method (HPDE) based on de-
fective triangulation model is devised to patch challenging holes
with large curvature. Based on the boundary points and boundary
directional vectors, the proposed HPDE utilizes algorithms of dif-
ferential evolution (DE) and constrained triangulation sequently to
obtain the topological and geometrical structures of the triangula-
tion mesh in the hole region, which is further resorted to the algo-
rithms of smoothing and mesh optimization to improve the mesh
quality. The proposedHPDE differs from other hole patchingmeth-
ods mainly on the following aspects. (1) The proposed HPDE
combines the frequently used algorithms of DE, constrained trian-
gulation andmesh optimization in the application of hole patching.
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(2) Different fromother algorithms obtaining the topological struc-
ture in advance, our method obtains the topological and geomet-
rical structures of the mesh in the hole region at the same time.
(3) HPDE sufficiently utilizes the directional vectors at each two
corresponding base points on the boundary curve around the con-
sidered hole for the prediction, which is different from other algo-
rithms either using only one side of boundary information or not
using the directional vectors at the boundary points.

This paper is organized as follows. Some related work of hole
patching are introduced in Section 2. Section 3 presents the de-
scription of the classical DE algorithm. The proposed HPDE is de-
scribed in Section 4. Section 5 presents all the numerical results on
some kinds of test models. Finally, some discussions and conclu-
sions are given in Sections 6 and 7, respectively.

2. Related work

Method of hole patching is to fill in a considered region by
expanding the constructed model around the region. For the hole
patching, the surrounding region of the hole region is filled with
the point information of the constructed model, then hole regions
are patched with the methods which are similar to interpolation
by incorporating this information. A few methods referring to the
hole patching have been sprang up in the past few years. Based
on the representation of the constructedmodel, thesemethods are
summarized into mainly two categories, one is volume-based, the
other is surface-based.

Generally, the volume-based methods patch the holes by first
assigning signs to a set of voxels with a signed distance func-
tion, then the point information in hole region is completed in
the volume representation, which is used to approximately obtain
the missing interface of the geometry by some surface-extracting
methods such as the marching cubes method. The model with
holes was converted to the volumetric representation, on which
form the model was naturally repaired by parity count method or
ray stabbing method, then the repaired model was converted back
to a waterproof polygonal model [9]. The surface model was first
converted to the model with volume representation, then a dif-
fusion was employed to extend the surface to form a watertight
model [10]. This method can deal with geometrically and topolog-
ically complex holes. A novel hole-filling algorithm was proposed
for volumetric objects where not only the outer surface of 3D ob-
jects but also the solid volumetric objects were closed filled [11].
Themain disadvantage of these volume-basedmethods is that they
maymiss some important features of the originalmodelwhen con-
verting to and from a volume, although these methods can often
produce a watertight model in a robust way.

The surface-based methods deal with the data points directly
and they often utilize the information in a local region around
the considered hole. For these surface-based methods, the topo-
logical structure of the triangulation mesh in the hole region is
first obtained, then the geometrical structure is obtained by some
other algorithms. The defects and holes were proposed to be re-
paired by a 3D triangulation method which is to minimize the
total sum of edge lengths by dynamic programming [12]. The
constrained triangulation of the unfolded 3D points on a planewas
embedded into the triangular mesh by minimizing an energy sur-
face [13]. The radial basis function interpolator using neighboring
edgeswas employed to fill the holes [14]. The topological structure
of the prediction points in the hole region was obtained by the ad-
vancing front method, and the geometric structure of these points
was determined by solving the Poisson equation [15]. The surface-
based approach and a two-step volume-based method-heat dif-
fusion and the Poisson surface reconstruction were incorporated
to repair holes with geometric and topological complexities [16].
It was proposed that complex polygonal holes were filled in a
piecewise manner so as to obtain the entire hole triangulation
with the piecewise planar triangulation [17]. The patching mesh
in hole region was obtained by iteratively refining and smooth-
ing the preciously optimized mesh according to the lengths of the
adjacent triangles, based on an initial triangulation mesh of the
boundary points of the considered hole region [18,19]. A grey pre-
diction model was proposed to predict and adjust the coordinates
of the newly added points by obtaining two controlled variables—
the normal vector and the included angle size [20], this method
tends to maintain the variation trend of the boundary points by
utilizing the point information adjacent to the prediction points.
While the used point information is only on one side of the bound-
ary, the variation trend from one side to another side in the hole
region cannot be detected, which may result in losing fidelity for
holes where the points vary uniformly from one side to the other.
The hole regions were patched with non-uniform rational B-spline
surface by utilizing several layers of adjacent triangles [21], this
method first obtains several interpolation spline curves using some
adjacent points around the hole region, then some discrete points
in the hole region are extracted from these interpolation curves,
which are used for a B-spline surface interpolation to obtain the ge-
ometrical structure of the triangulation mesh. Because of the char-
acteristic of the B-spline function that the shape taken by the spline
is withminimum elastic energy, the patched surface in the hole re-
gion is apt to be flat which may also result in losing fidelity.

These reported methods adopt their own strategies to predict
the points in the hole region, and achieve competitive results on
their concerned test models. However, how to sufficiently utilize
the information around the considered hole and how to effectively
handle challenging holes are still hot topics in this field.

3. DE algorithm

As a stochastic algorithm which is first proposed in [22,23], DE
and its variants are frequently adopted in various kinds of real en-
gineering applications [24]. Different from classical gradient-based
optimization algorithms, DE adopts one greedy strategy to pro-
ceed to global optimum from multiple positions of the searching
region based on a random generated population. Without utilizing
the gradient information of the objective function, DE is often the
real alternative for a variety of non-differentiable and non-convex
problems which are difficult for gradient-based algorithms.

Without loss of generality, assume the following minimization
problem is considered:

min
x

f (x) (1)

where x = (x1, . . . , xn), and xj ∈ [lj, uj], j = 1, . . . , n. For stochas-
tic algorithms which are population based, denote population as
X , {X1, . . . ,XN}, where N is the number of individuals. Denote
Xg , {Xg

1, . . . ,X
g
N} as the population at the generation of g .

DE algorithm employs the diversity information implied in
the population to generate the mutation individual, the most fre-
quently used version ofDE algorithm isDE/rand/1/bin, where rand
denotes choosing random vectors for mutation, 1 denotes em-
ploying one difference term for the mutation procedure, and bin
denotes generating a trial individual by accepting the parameter
values from the mutation individual one at a time. This version is
detailed described in Algorithm 1 and our proposed algorithm is
devised based on this version.

There are other mutation and crossover strategies which com-
pose other versions ofDE [24]. In addition to rand/1mutation strat-
egy, best/1 and rand/2 are also frequently used, which are listed as
follows:

1. best/1:

Vi = Xg
∗
+ F · (Xg

r(i)2
− Xg

r(i)3
) (6)
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Algorithm 1 DE algorithm [23]
1: Population initialization: X0

i,j = lj + rand · (uj − lj), i =
1, . . . ,N, j = 1, . . . , n, rand is an uniform random number in
[0, 1] for every {i, j}. g = 0.

2: while the termination condition is not satisfied do
3: for i = 1, . . . ,N do
4: Randomly choose mutually different indexes r1, r2, r3 ,

r (i)
1 , r (i)

2 , r (i)
3 ∈ {1, . . . ,N}, randomly choose rni from {1,

. . . , n}.
5: Mutation: The mutation individual Vi is generated as

Vi = Xg

r(i)1
+ F · (Xg

r(i)2
− Xg

r(i)3
) (2)

where F ∈ [0, 1] is the mutation probability.
6: Crossover: The trial individual Ui is created as

Ui,j =


Vi,j, if (rand ≤ CR) or (j = rni),

Xg
i,j, otherwise (3)

where CR records the crossover probability and rand is a
new generated uniform random number in [0, 1] for every
{i, j}.

7: Selection: The i-th individual Xg+1
i of the generation g+1

is chosen as

Xg+1
i =


Ui, if f (Ui) ≤ f (Xg

i ),

Xg
i , otherwise. (4)

8: Constrain the variables to the given regions

Xg+1
i,j =


min{2 · lj − Xg+1

i,j , uj} if Xg+1
i,j < lj,

max{2 · uj − Xg+1
i,j , lj} if Xg+1

i,j > uj,

Xg+1
i,j otherwise.

(5)

9: Renew the objective function value of each new generated
individual. g ← g + 1.

10: end for
11: end while

2. rand/2:

Vi = Xg

r(i)1
+ F · (Xg

r(i)2
− Xg

r(i)3
)+ F · (Xg

r(i)4
− Xg

r(i)5
) (7)

where Xg
∗ denotes the best individual in the generation g . For the

crossover operator, there is another strategy which is often used
in the literature, namely as exp crossover, which adopts some
consecutive components from the mutation individual with a
predetermined probability. The performance of DE algorithm on
complex problems is sensitive to the parameters F and CR in Al-
gorithm 1, consequently, these parameters are often set to be self-
adaptive. From another aspect to enhance the performance of this
algorithm, gradient-based algorithms are frequently incorporated
into it [25].

For employing DE algorithm, only several terms need to be
concerned and input:

• The objective function f (·).
• The lower and upper bounds {li, ui, i = 1, . . . ,N} of

optimization variables.
• The stopping conditions (maximum iteration generations or

time).
• The parameter values (F , CR,N) of DE algorithm.

4. The proposed method HPDE

In this section, we first generally introduce the proposed HPDE
in Algorithm 2 and then explain the seven steps of this algorithm
concretely in seven sub-sections.
Algorithm 2 The description of the proposed HPDE
1: Step 1: Model the provided points with triangulation and

preprocess.
2: Step 2: Extract the boundary points and triangles, and obtain a

set of dense base points {BP1, . . . , BPn} on the boundary curve.
Segment the base points if necessary.

3: Step 3: Find and modify pairs of correspondence of the base
points.

{· · · ; BPi−1, BPn−i+2; BPi, BPn−i+1; BPi+1, PBn−i; · · ·}

4: for each pair of correspondence points BPi, BPn−i+1 do
5: Step 4: Construct a section plane across the correspondence

points, find their intersection points {BPi, APi, APn−i+1,
BPn−i+1}with the edges of the adjacent triangles.

6: Step 5: Predict the points {PP1, . . . , PPm} between the
correspondence points on the section plane by DE algorithm.

7: end for
8: Step 6: Conduct 2D constrained triangulation on the projec-

tions of the boundary points and all the prediction points on
a rotated 3D plane.

9: Step 7: Smooth and optimize the obtained constrained tri-
angulation.

4.1. Preprocess

This overall algorithm is based on the damaged triangulation
model of a 3D object. When it is provided with a set of 3D points,
triangulation model needs to be constructed in this step. This
step also includes operation of smoothing procedure when the
provided points are noisy. In thiswork, an easy-to-implement form
of smoothing method in [26] is adopted, which is reported to be
able to avoid surface shrinkage by conducting a Gaussian filter step
and an un-shrinking smoothing step consecutively.

4.2. Extract and segment boundary

The boundary curve around a hole is a closed path which is
composed of a set of edges of the adjacent triangles, where there
are at least one edge which does not have adjacent triangles for
these triangles. A hole identification method was proposed in [14]
by studying the torsion of the contour curve, which can distinguish
the natural holes from those man-made holes.

Besides of the boundary curve, a ring of adjacent triangles
around the considered hole are obtained (see Fig. 4), and a set of
dense base points {BP1, . . . , BPn}with the same arc length are also
extracted on the boundary curve. The number of base points n is
a parameter in the algorithm (Assume the boundary points and
triangles are sorted in advance), which is adjusted according to
the average length of the edges of the adjacent triangles, that is,
n = ⌊ BudLen

0.8·EdgeLen⌋, where BudLen is the length of the boundary of the
considered hole, EdgeLen is the average of the edge lengths of the
surrounded triangles, ⌊a⌋ is the floor of the number a.

Because the following triangulation is conducted on the
projected prediction points on a 3D plane, overlapping or self-
intersection may occur when these prediction points are high
curled, in which case, the points need to be divided and processed
with respect to (w.r.t.) two planes separately. In this step, we judge
whether the boundary points and the following prediction points
need to be segmented, which is stated in the following.

The approximately optimal segmentation of the boundary
base points is determined by a few tries through the principal
component analysis (PCA) method in the following. It is implied
in [1] that the size of the smallest eigenvalue of PCA with a set of
3D points determines the degree of approximation of these points
to a plane, and the smaller the smallest eigenvalue compared to the
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Fig. 1. Illustration of the projection of points on two planes and the constrained triangulation. Fig. (a) depicts the prediction points in the hole. In Fig. (b), these prediction
points are first projected onto two planes α and β , then onto an unique plane α(γ ). Result of 2D constrained triangulation on the rotated plane α is shown in Fig. (c). The
local triangulation is applied to the initial prediction points in (d).
largest eigenvalue, the more approximated to a plane these points
are. Thus, the larger of the two smallest eigenvalues through the
PCA method is minimized to obtain the optimal segmentation by
the following optimization problem.

min
1≤i<j≤n

max{λ3,PS1 , λ3,PS2}, (8)

where PS1 = {BPj, . . . , BPn, BP1, . . . , BPi−1}, PS2 = {BPi, . . . ,
BPj−1}, λ3,PS1 , λ3,PS2 are the smallest eigenvalues of the two
segmented sets of points PS1, PS2, respectively, by PCA method.
When the dihedral angle of these two fitting planes is smaller than
a critical angle Ac (Ac = π/2 is chosen for all the test problems
which is discussed in Section 4.8), the boundary base points are
segmented, otherwise, the boundary points remain intact. The
boundary of the provided points in Fig. 1(a) is segmented, which
determines two planes α and β in Fig. 1(b).

4.3. Find the correspondences

The prediction of the proposed HPDE is conducted between
each pair of base points, the correspondences of all the base
points on the boundary are found and modified in this step. If the
boundary base points are segmented, the correspondences of the
indexes of the base points are mandatorily determined as follows:

{. . . , (i0 − 1, j0 + 1), (i0, j0), (i0 + 1, j0 − 1), . . .} (9)

where i0, j0 are the optimal segmentation points obtained by
solving the problem in Eq. (8), all the indexes are incremented and
decremented modulo n.

When the base points need not to be segmented, to obtain good
correspondences, the sum of all the clamping distances between
the corresponding points should be minimized to reduce the un-
certainty in the hole region and to sufficiently utilize the adjacent
information around the hole. The minimization of the clamping
distances is approximated by optimizing the problem in Eq. (10)
w.r.t. a starting position sp ∈ {1, . . . , n/2}.

min
sp

Dist =
n/2
i=1

∥BPSeq(i) − BPSeq(n−i+1)∥,

Seq = {sp, . . . , n, 1, . . . , sp− 1},

(10)

where ∥ · ∥ is the Euclidean norm which is the form of the norm in
the following text unless explicitly stated otherwise, Seq(i) is the
ith element of Seq.
The preceding obtained correspondences need to be slightly
modified to exclude the case that the intersection angle of the
boundary and the line linking two corresponding points is close to
zero. The modification is conducted by directly skipping the base
points which render the intersection angle being smaller than a
critical angle Ic (Ic is set to be π/15 in this work which is discussed
in Section 4.8). In Fig. 2(a), the vector BPn−i+1BPi intersects the
vector QtQt+1 with a small angle, the point BPi is modified to that
in Fig. 2(b).

4.4. Construct section planes

In this step, a section plane is constructed for each pair of cor-
responding points, where the section plane is assumed to cross
the line linking two corresponding points and only the normal
direction of the plane needs to be determined. Denote three
adjacent pairs of corresponding base points as {BPi−1, BPn−i+2;
BPi, BPn−i+1; BPi+1, BPn−i} (where the base points {BP1, . . . , BPn}
have been sorted such that the first point is on the position of the
optimal starting point sp∗ in Eq. (10) and the rotated point set is still
denoted as {BP1, . . . , BPn}), the normal direction Nv of the section
plane across the points BPi, BPn−i+1 is computed as in Eq. (11) (see
Fig. 2(c)).

Nv = lv × n,

lv = BPi − BPn−i+1,

n = lv ×

BPi−1 + BPn−i+2

2
−

BPi+1 + BPn−i
2


,

(11)

where lv × n is the outer product of the vectors lv and n.
Another two intersection points (besides of the points BPi,

BPn−i+1) of the constructed section plane and the adjacent ring
triangles are found, which are denoted as APi, APn−i+1.

4.5. Predict the points

By using the four intersection points {BPi, APi, APn−i+1, BPn−i+1}
on the edges of the boundary ring triangles, several points are
predicted on the section plane in this step. The prediction points
are deemed to be appropriate if the following conditions are
satisfied:
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Fig. 2. Modification of the correspondence and derivation of the normal direction. In (a), the vector QtQt+1 intersects the vector BPn−i+1BPi with a small angle. The point BPi
and the following points have been moved to new positions in (b). Fig. (c) depicts the procedure of obtaining the normal direction.
a b

Fig. 3. Two cases of the prediction of two points on a rotated 3D section plane.
• The distances between each two consecutive points should be
equal.
• The intersection angles of each pair of consecutive connection

lines of the prediction points should be equal.

The following illustration is concentrated on obtaining the pre-
diction points to satisfy the preceding conditions asmuch as possi-
ble. Denote two correspondence points as {P1, P2} , {BPi, BPn−i+1},
and two endpoint tangent vectors as {TV1, TV2} , {P1 − APi,
APn−i+1 − P2} (see Fig. 3), where {APi, APn−i+1} are another two
intersection points of the ith section plane and the adjacent trian-
gles besides of two base points {BPi, BPn−i+1}. Linearly rotating the
section plane along with P1, P2, TV1, TV2 to a 3D plane parallel to
xy-plane, the rotated points and vectors are still denoted as P1, P2
and TV1, TV2. The two vectors TV1, TV2 determine two circular arcs
Larc,Uarc whose tangent vectors at the points P1, P2 are TV1, TV2,
respectively.

To obtain prediction points with uniform distances, the first
coordinate (x-coordinate) values are computed by averaging two
sets of x-coordinate values of m points with uniform distances on
the two arcs Larc,Uarc . That is,

PPi,1 =
1
2
(PL

i,1 + PU
i,1), i = 1, . . . ,m (12)

where {PL
i , P

U
i , i = 1, . . . ,m} are two sets of points on the

arcs Larc,Uarc , respectively, {PL
i,1, P

U
i,1} are the corresponding x-

coordinate values. These points satisfy the following conditions∥P
U
i − PU

i−1∥ = ∥P
U
i+1 − PU

i ∥,

∥PL
i − PL

i−1∥ = ∥P
L
i+1 − PL

i ∥, i = 1, . . . ,m
PL
0 = P1, PL

m+1 = P2; PU
0 = P1, PU

m+1 = P2.
(13)

To obtain prediction points with uniform intersection angles,
the second coordinate (y-coordinate) values {PPi,2, i = 1, . . . ,m}
are determined by optimizing the following optimization problem

minmax
{PPi,2,i=1,...,m}

∆αi = min f ({PPi,2}),

subject to li = Li,2 ≤ PPi,2 ≤ Ui,2 = ui, i = 1, . . . ,m (14)

where ∆αi = ⟨PPi − PPi−1, PPi+1 − PPi⟩ is the angle of the vectors
PPi − PPi−1, PPi+1 − PPi (We denote PP0 = P1, PPm = P2), Li,Ui are
the intersection points of the line x = PPi,1 and the arcs Larc,Uarc ,
respectively (see Fig. 3). The number of prediction points m is
carefully chosen such that the distances between the prediction
points are approximately equal to the average length of the edges
of the corresponding adjacent triangles, which is computed as
follows:

m =


Len
MaxLen

·M

+ 1,

M =

MaxLen
EdgeLen


+ 1

(15)

where Len is the length of the considered two correspondence base
points, MaxLen is the maximum of all the lengths, EdgeLen is the
average of the edge lengths of the surrounded triangles.

The optimization problem defined in Eq. (14) is directly solved
by the DE algorithm described in Algorithm 1. Fig. 3(a) presents
m = 2 prediction points {PP1, PP2} in the clamping interval of the
points P1, P2 on a 3D planewhen the two endpoint vectors TV1, TV2
have opposite directions. Fig. 4(a) demonstrates these prediction
points {PP1, PP2} in the original 3D space. Figs. 3(b) and 4(b) show
the prediction results in the case that the two endpoint vectors
TV1, TV2 have the same direction.

4.6. Triangulate the predicted points

In this step, the 2D constrained triangulation method [27] is
conducted on the projections of the boundary points and the
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Fig. 4. Two cases of the prediction of two points in original 3D space.
prediction points. When the base points are segmented which
is determined in the second step, the prediction points and the
base points are projected onto two adjoining planes, which are
then unfolded to an unique plane in 3D. The prediction points in
Fig. 1(a) are projected onto two planes α and β in Fig. 1(b), which
are unfolded onto an unique plane α. When the boundary points
are not divided, all the points are directly projected to the fitting
plane determined by the PCA method. The plane α along with the
corresponding projected points are further rotated onto a plane
parallel to the xy-plane in 3D space (see Fig. 1(c)). Finally, the
constrained triangulation method in 2D space is conducted on all
the projection points, the obtained topology of the triangulation
mesh is applied to the original 3D prediction points (see Fig. 1(d)).

4.7. Smooth and optimize the local mesh

The last step of the method is to smooth and optimize the
obtained triangulation of the predicted points and the bound-
ary points. The obtained triangulation is always smoothed for
NumSmooth = 60 times for all the test problems in this work. All
the smoothed predicted points are denoted as {SPi, i = 1, . . . ,N}.

To further improve the triangulation mesh, mesh optimization
methods [28,29] including triangle simplification and edge swap-
ping are employed. The simplification operation is to decimate the
points being too close to other points, the swapping operation is to
decrease those long and narrow triangles.

In Fig. 5, from (a) to (b), the triangles including both points P1
and P2 are decimated, the new generated point P0 adopts the mid-
point of P1 and P2 as 1

2 (P1 + P2), and the decimation procedure is
performed on all the edgeswith lengths being less than a predeter-
mined length. Fig. 5(c) and (d) illustrate the swapping procedure
of the local mesh, this operation is executed as long as the mini-
mum of all the angles included in triangles△P1Q1Q2 and△P2Q1Q2
is smaller than that in triangles△P1P2Q1 and△P1P2Q2.

4.8. Execute the algorithm

The time complexity of the algorithm HPDE from step 2 to
step 7 are O(n2), O(n2), O(n), O(n · M · NumIter · NumPop), O(n ·
M · log(n · M)), n · M · (NumSimplify + NumSwap), respectively,
where n is the number of base points on boundary curve, M is the
maximum number of prediction points in the clamping region of
each two corresponding points,NumIter,NumPop are the numbers
of iteration and population in the employed DE optimization
which are set to be constants, and NumSimplify,NumSwap are the
numbers of operations of simplification and swapping in step 7.
Thus, the overall time complexity of the proposed HPDE is O{n ·M ·
[NumIter ·NumPop+log(n·M)+NumSimplify+NumSwap]+n2

}. In
our trials, NumSimplify and NumSwap are usually the rates of the
number of all prediction points and the DE optimization always
obtains a convergence solution after only several iterations, that
is, NumSimplify = O(M ·n) = NumSwap and NumIter,NumPop are
small constants. Consequently, the approximate time complexity
of the proposed HPDE on one hole is O(n2

·M2).
To avoid searching in the entire points and triangles when
finding the holes and adjacent points and triangles, a special data
structure is employed to alleviate the burden of the time cost. Each
coordinate is partitioned into many small equidistant intervals
according to the minimum andmaximum values of the coordinate
of all the provided points, then the equidistant interval that the
coordinate of each point lies in is stored. Based on the stored
information, the searching of the adjacent triangles is confined in a
small regionwhich is composed of a small proportion of points and
triangles, because the points lie in a local region of the considered
point share the adjacent coordinate intervals.

To speed up the optimization of DE algorithm, the initial
population for optimizing the problem (14) is carefully chosen.
The N individuals of the initial population are randomly initialized
around the vector (y1, . . . , ym) calculated in the following

yi = Li,2 + (Ui,2 − Li,2) ·
i

m+ 1
, i = 1, . . . ,m (16)

where Li,2 is the second coordinate value of the intersection point
Li (see Fig. 3).

In executing the mesh optimization in Section 4.7, the adjacent
points, edges and triangles are stored and renewed in each
operation, which is adopted as the data structure of the proposed
HPDE. The following economical form is adopted for selecting
edges to decimate.

1. Sort the lengths of all the edges in ascending order, the sorted
edges are {e1, . . . , eR}. Id = 1. NS = ∅.

2. While the length of the shortest edge is smaller than a rate of
the average length of the edges in the adjacent triangles around
the hole.
If NS is empty
Choose the edge eId for decimation.
Else
Choose the shortest edge et in the union set of eId and NS for
decimation.
End if
Renew the adjacent information around the decimated edge
and find the shortest edge es in the renewed edges. NS ←
NS − et ,NS ← NS


es. Id← Id+ 1;

3. End while iteration.

The selection of the edges for swapping is similar. An intermediate
variable Rate = 1− NumSimplify

M·n/2 is employed to denote the rate of the
retained triangles after decimation.

In HPDE, several sets of parameters are introduced, which are
the parameters N, F , CR in DE algorithm, two critical angles Ac, Ic
for modifying projection and correspondence, two numbers m,M
for determining the number of prediction points, and two variables
NumSmooth, Rate for improving the obtained triangulation. In all
the tests, the adopted setting N = 3 · m, F = 0.8, CR = 0.05
works well for all the test models that DE obtains a convergence
solution fast because the initial population is carefully chosen. The
parameter Ac is for determining whether the hole region needs
to be segmented before processing, the segmentation procedure
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c d

Fig. 5. The operations of triangle simplification and edge swapping.
is adopted to avoid the case that the hole with high curvature is
projected onto a plane yielding a wrong topology structure. The
setting of the parameter Ac in the region [π/4, π/2] achieves this
purpose in all our trials. The parameter Ic is brought in modifying
the correspondences of the base points, which is for avoiding the
case that two intersection points of the section plane and the
adjacent triangles on one side of the boundary are not inside the
same triangle yielding wrong prediction. An angle in the region
[π/30, π/10] is proposed for the setting of this parameter. The
parameters n,M,NumSimplify are automatically determined by
the lengths of edges around the considered hole. The effect of
the parameter NumSmooth on the performance of the algorithm is
studied in Section 5.

5. Numerical results

5.1. Test problems and criteria

5.1.1. Test problems and aspects for comparison
The overall algorithm is realized by the popular software MAT-

LAB of version 2009b on a PC with a core processor operating at
2.8 GHZ with 4 GB of RAM. To check the effectiveness of the pro-
posed method, several different kinds of holes are chosen for the
numerical test, which are mainly divided into two categories—
natural holes and manual holes. The natural holes are extracted
from the Stanford bunny model, while the manual holes are de-
rived from the models of an unitary sphere, the elephant, the gar-
goyle [30] and an unitary cube, which are divided into the kinds of
large holes, irregular holes, fringe holes, holes on complex model
and holes with high curvature or characteristic line. The num-
bers of points and triangles in these models are demonstrated in
Table 1.

To test the performance of the method, mainly two aspects—
the prediction error and runtime (RT) with unit in second (s) are
considered. The prediction errors are computed w.r.t. the patching
of manual holes, which includes the maximum prediction error
(MPE) and the average prediction error (APE). These errors are
Fig. 6. Hole patching of two large holes on the sphere model.

computed as follows:
MPE =

1
Mx

max
1≤i≤N

Ei

APE =
1

K ·Mx


1≤i≤K

Ei

Mx = max
1≤i≤K ,1≤j≤3

|SPi,j|

(17)

where K is the number of overall prediction points, Ei is the dis-
tance of the ith smoothed predicted point SPi to the abandoned
hole triangles, which is the distance of the point SPi to the nearest
projection point on the piecewise surface composed by the hole tri-
angles. The results about the prediction errors, runtime and some
information about the intermediate parameters and the holes are
demonstrated in Table 1. The performance of these hole patching
are demonstrated in Figs. 6–15.

A further comparison of ourmethod and two recently proposed
algorithms [20,21] (we code their algorithms) on holes of the
sphere, elephant and horn is conducted, the numerical results of
the comparison are presented in Table 2 and the performance
of these algorithms on one sphere hole are depicted in Fig. 16.
Besides of the comparison with recently proposed algorithms,
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Table 1
Some information about the model, the holes and the results of hole filling. The abbreviations NP, NOT are the numbers of points and the overall triangles of the considered
model, NHT is the number of the abandoned triangles in the hole region. RT is the abbreviation of the runtime, which is recorded in the unit of second (s). MPE and APE are
the maximum and average prediction errors, respectively. The variables M and n are the maximum number of prediction points in each pair of corresponding points and
the number of base points, respectively. Rate is the rate of the retained triangles after decimation.

Model Statement NP NOT NHT MPE APE RT(s) M n Rate

Sphere 2 large holes 1600 3040 1210 1.77E−02 7.35E−03 9.3 10, 7 106, 124 0.73, 0.77
Bunny 4 natural holes 35947 71892 – – – 21.8 8, 8, 7, 8 178, 166, 182, 156 0.81, 0.67, 0.69, 0.58
Elephant 1 4 fringe holes 24955 49914 878 8.10E−03 3.01E−03 17.1 9, 8, 9, 7 88, 92, 98, 84 0.67, 0.65, 0.72, 0.60
Elephant 2 4 irregular holes 24955 49914 740 1.01E−02 3.23E−03 15.8 6, 5, 6, 5 142, 138, 150, 146 0.65, 0.66, 0.72, 0.54
Gargoyle 6 holes on complex model 25038 50084 385 8.87E−04 2.98E−04 20.0 8, 8, 7, 6, 7, 7 136, 122, 128, 130,

126, 122
0.88, 0.81, 0.72, 0.66,
0.73, 0.68

Horn 1 hole with high curvature 232 476 43 7.80E−02 3.72E−02 3.6 6 56 0.48
Cube 3 holes with characteristic 1744 5820 1058 1.12E−02 6.37E−03 12.1 14, 14, 8 82, 84, 146 0.62, 0.59, 0.69
Fig. 7. Hole detection and patching for the bunny model. The left depicts the boundaries of all the holes, the right presents the results about hole patching.
Fig. 8. Patching results of the fringe holes on the elephant model.
Fig. 9. Patching results of irregular holes on the elephant model.
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Fig. 10. Results of hole patching for the holes on the gargoyle model.

another two softwares MeshLab and ReMESH are chosen for the
comparison. The patching results on one hole of the sphere model
are demonstrated in Fig. 17.

5.1.2. Holes with characteristic lines
Furthermore, holes with characteristic lines are patched with

the proposed HPDE, the results are demonstrated in Fig. 15. Two
models are chosen for this test, one is an unitary cube, the other
is an inclined prism generated by translating the up face of the
unitary cube a distance of 0.25 in the x axis direction. The manual
holes always contain a border line of the considered models.

5.1.3. Robustness and sensitivity
To test the robustness of the method against noise, noises of

uniform distribution [−σ , σ ] with different intensities are added
into the original data points, where σ is a scale factor that reflects
the intensity of the noise, we consider the values of 1%, 3% and 5%
in our trials. The perturbed points are first triangulated by the crust
algorithm in [6], then the proposed HPDE is employed to patch the
abandoned hole region after which the adjacent points around the
hole are smoothed by the approach described in the first step of
the proposed HPDE. Results of HPDE w.r.t. the holes on the noisy
sphere models are depicted in Fig. 18.

To test the sensitive of the smoothing operation to the proposed
HPDE, the effect of the parameterNumSimplify on the performance
of the HPDE is studied in this part. Although the parameters
M, n are automatically determined by the average length of the
edges around the hole, these parameters determine the number
of overall prediction pointsM ·n/2which consequently determine
the accuracy and the time complexity of the prediction. The effect
of the numberM ·n/2 on the prediction accuracy is also studied, the
results of the means and the variances (DE algorithm is stochastic-
based) of the prediction accuracy are presented in Fig. 19.

5.2. Illustrations of the results

5.2.1. Results of an overall comparison
Results in Figs. 6–13 illustrate that the proposed HPDE achieves

reasonable results for natural holes, large holes, fringe holes,
irregular holes and holes on the complex model. Results of the
prediction error and the runtime in Table 1 provide further
proof of the statement, where the maximum prediction errors for
these kinds of holes do not exceed 1.77E−02, while the average
prediction errors reach 10−3 or 10−4 for all the test problems. The
runtime for the patching is maintained at reasonable level which
is approximately 4 s for each manual hole, which increases to
5 s for each natural holes because the searching of the adjacent
triangles and points consumes more time than the former. The
Fig. 11. Patching results on some of the holes of the gargoyle model from different views.
Fig. 12. Patching results of some of the fringe holes on the elephant model from different views.
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Fig. 13. Patching results of some of the irregular holes on the elephant model from different views.
Fig. 14. The patching result of HPDE on the hole with high curvature. The left corresponds to the intact horn on the gargoyle model. The right demonstrates the patching
result of one horn on the model.
a b c

Fig. 15. The patching result of HPDE on the hole with characteristic line. The left corresponds to the patching result of a hole on the cube without smoothing the obtained
triangulation. The center corresponds to the result of HPDE on the hole, where the smoothing operator is employed and the base points are segmented. The right corresponds
to the patching result of a hole on an inclined cube, where the base points are not segmented.
Table 2
The comparison of the prediction error (APE) and the runtime (RT) of three algorithms on four test models.

Algorithm Sphere Elephant 1 Elephant 2 Horn
APE RT APE RT APE RT APE RT

GREY 6.53E−02 2.3 8.76E−03 4.2 3.08E−03 3.9 1.08E−02 1.8
NURBS 8.72E−02 2.7 7.55E−03 6.1 2.94E−03 5.8 6.53E−02 2.1
HPDE 7.35E−03 9.3 3.01E−03 17.1 3.23E−03 15.8 3.72E−02 3.6
holes on the sphere model and the fringe of the elephant model
are demonstrated with large curvatures, the proposed HPDE still
achieves sound performance in Figs. 6, 8 and 12 and the average
prediction errors also achieve 10−3 or 10−4. Thus, the proposed
HPDE is applicable for patching the holes with large curvature.

5.2.2. Results of high curvature and characteristic lines
FromFig. 3, it canbe seen that the predictionpoints are bounded

by the circular arcs determined by the two endpoint vectors.
Because of the limitation of this prediction strategy, the proposed
HPDE is not suitable to patch holes with very high curvaturewhere
the points exceed the bounded region of these circular arcs. The
patching result of a hole with high curvature in Fig. 14 illustrates
the statement, where the tip of the damaged horn on the gargoyle
model is not finely recovered.

Referring to the holes with characteristic lines, an average
prediction error of 6.37E−03 is achieved for the patching results
in three different situations shown in Fig. 15. Correspond to
Fig. 15(a)–(c), the average prediction errors on the holes of a cube
and an inclined prism are 4.02E−03, 6.16E−03 and 8.93E−03 by



W.-C. Xie, X.-F. Zou / Computer-Aided Design 45 (2013) 1651–1664 1661
a b c

Fig. 16. The patching results of three algorithms on one hole of the sphere model, (a), (b) and (c) correspond to results of algorithms HPDE, NURBS and GREY, respectively.
a b c

Fig. 17. The patching results of three algorithms on one hole of the spheremodel, (a), (b) and (c) correspond to results of algorithmHPDE, and the algorithms in the softwares
MeshLab and ReMESH, respectively.
Fig. 18. Hole patching of the holes on the noisy sphere model. From left to right, figures correspond to the performance w.r.t. the intensities of noises of 1%, 3% and 5%,
respectively.
the algorithms of HPDE without smoothing operator, HPDE and
HPDE, respectively. For patching this kind of holes, the smoothing
operator and the operation of segmenting the base points are
critical.

For analyzing the function of the smoothing operator, it can
be seen from Fig. 15(a) and (b) that the smoothing operator is
not beneficial to patch this kind of holes, because the smoothing
procedure polishes the characteristic line on the border line of a
cube. In other words, the smoothing operator determines that the
intersection angles between the prediction points in the hole are
uniform and the patching surface is smooth. Thus, this operator
is impossible to detect the characteristic lines in the hole which
are often with sharp lines or cusp. To analyze the function of
the segmentation procedure on the prediction, the differences
between Fig. 15(b) and (c) are considered. Notice that the base
points in Fig. 15(c) are not segmented because the dihedral angle
of the two faces where the hole lies on is larger than 1

2π (Ac =
1
2π is adopted in HPDE), while the base points are segmented in
Fig. 15(b). It is shown in Fig. 15(b) and (c) that segmenting the base
points is beneficial to patch holes containing characteristic lines. By
segmenting the base points, the overall prediction is divided into
several parts, and the patching surface needed to predict in each
part shares more characteristics with the respectively adjacent
points and triangles, which yieldsmore accurate prediction results
in whole. However, the characteristic in the hole is still not finely
recovered because of the smoothing operation (see Fig. 15(b)).

5.2.3. Comparison with methods of state of the art
The results of the comparison in Table 2 illustrate that our algo-

rithm achieves competitive APE on the considered test problems
of sphere and elephant1 although more runtime are needed. Con-
cretely, for relatively flat holes (such as the holes on elephant2),
the proposed HPDE reaches a prediction accuracy similar to the
accuracies obtained by the other two algorithms. For holes with
very high curvature (such as the hole on the horn model), HPDE



1662 W.-C. Xie, X.-F. Zou / Computer-Aided Design 45 (2013) 1651–1664
Fig. 19. The results of prediction error (APE) when the number of prediction pointsM · n/2 and the number of smoothing operation NumSmooth vary.
achieves a prediction accuracy between the other two algorithms.
While for holes with large curvature (such as the holes on the
sphere and elephant1), HPDE obtains the highest prediction ac-
curacies compared with the other two algorithms. Notice that the
method [21] with non-uniform rational B-spline (NURBS) surface
is apt to obtain a flat surface in the hole region because of the char-
acteristic of spline interpolation as illustrated in Section 2, this al-
gorithm obtains the best accuracy for relatively flat holes. While
the algorithm [20] with grey prediction (GREY) is apt to maintain
the boundary because the point information only on one side of
the boundary is used in each point prediction, thus, this algorithm
achieves the least prediction errors for holes with very high cur-
vature. The proposed HPDE utilizes the point information on both
sides of the boundary by constructing point correspondences, and
the prediction points in the hole region are bounded between two
circular arcs, therefore, it achieves the least prediction errors for
those holes with moderately large curvature and balances the pre-
diction results between holes with small and high curvatures.

Before comparing the time complexities of the three algorithms,
assume the number of prediction points is Np. The algorithm
NURBS contains a local triangulation (with time complexity O(Np ·

log(Np))) and an operation of solvingO(Np) sets of linear equations
(O(Np · Nctl), Nctl is the time complexity of NURBS interpolation for
obtaining the control points by solving a set of linear equations).
Algorithm GREY contains a local triangulation and an operation of
solvingO(Np) sets of linear equations (O(Np·Ncoeff ),Ncoeff is the time
complexity of grey model for obtaining two coefficients by solving
a set of linear equations).While for the proposedHPDE, besides of a
constrained triangulation, it contains the DE optimization which is
based on multi individuals and multi generations (O(Np ·NumIter ·
NumPop), refer to Section 4.8), and it includes a procedure of mesh
optimization (O(N2

p )). Comparedwith HPDE, the dimensions of the
linear equations in the other two algorithms are relatively small,
that is, Nctl(or Ncoeff ) < NumIter · NumPop. Moreover, although
an economical form for selecting edges to decimate is adopted
(O(N2

p ) = ε ·N2
p , where ε is a small number), the procedure ofmesh

optimization is also time-consuming when Np is a large number.
Thus, the proposedHPDEneedsmore runtime on the test problems
than the other two algorithms.

It can be seen from Table 2 that the proposed HPDE consumes
more time than another two considered algorithms on the test
problems. Coincide with the above analysis of the time complexi-
ties, the runtime costs aremostly concentrated on theDEoptimiza-
tion and the mesh optimization in the executions of HPDE, which
account for proportions of 43% and 38% of the overall time costs on
average.

Considering the comparison of the results of the proposedHPDE
and two softwares, the hole patching algorithms (abbreviated as
LMesh and RMesh, respectively) adopted in the softwares ofMesh-
Lab and ReMesh come from [18] (without mesh refinement and
fairing) and [19], respectively. It can be seen from Fig. 17 that the
algorithm LMeshwithoutmesh refinement and fairing patches the
holes with a triangulation of a flat plane. The algorithm RMesh
patches the holes with a local triangulation matching the bound-
ary of the considered hole, while the sizes of the triangles are not
uniform enough and parts of the patching triangulation are not
smoothed. It is demonstrated in Fig. 17 that the proposed HPDE
achieves competitive result on this hole compared with the patch-
ing results obtained by these two softwares.

5.2.4. Results of robustness and sensitivity
Further experimental results about the patching of the holes

on noisy model show that the average prediction errors w.r.t. the
three abandoned holes are 0.016, 0.039 and 0.056, respectively,
which increase with an approximate quantity of 0.01 compared
with the intensities of the corresponding added noises. Incorpo-
rated with the performance of the hole patching in Fig. 18, it is
concluded that HPDE is robust against the low-intensity of noise.

It is shown in Fig. 19 that APE varies in the region of [7.0E−03,
9.0E−03] when M · n/2 varies in the region of [350, 650], which
illustrates that initially selected number of prediction points M ·
n/2 does not significantly affect the APE on the sphere hole. Thus,
appropriate values of the parametersM, n can be flexibly selected
to comprehensively consider of the accuracy, the runtime and the
consistence of the edges in and around the hole region. Considering
of the parameter NumSimplify, the prediction error varies in the
region of [7.0E−03, 8.4E−03] when NumSimplify varies in the
region of [40, 75], thus, the prediction accuracy is not significantly
affected by the small perturbation of the parameter NumSimplify,
which implies HPDE is not sensitive to the parameterNumSimplify.

6. Discussion

Anewhole patching algorithm is proposed in thiswork, to cover
the shortages of the previously related algorithms, the proposed
algorithm predicts the points in holes by utilizing the point corre-
spondences of two layers of base points around the holes, and it
obtains uniformly distributed points in the hole by solving an opti-
mization problem and employing a mesh simplification. Although
good performance of our algorithm is achieved on kinds of holes of
the considered models, some more work needs to be continued to
further improve the proposed algorithm.

First, the proposed HPDE for hole filling is mainly concentrated
on those topologically simple and geometrically complex holes,
the prediction strategy needs to be modified for those more
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Fig. 20. Two kinds of unusual holes. The left hole is surrounded by not complete adjacent ring triangles. The right hole contains some fragmental information in the center.
topologically complex holes. Meanwhile, because the topology of
the prediction points is obtained by the constrained triangulation
on a rotated 3D plane, more intermediate 3D planes are needed
for the projection of the predicted points when the holes are more
complex, an efficient and automatic method to construct these
planes needs to be proposed.

Second, the proposed HPDE is suitable to patch holes with large
curvature,while it yields inaccurate results for holeswith very high
curvature because the prediction points are bounded between two
circular arcs, for the latter kind of holes, the restricted arcs need to
be modified correspondingly.

Third, another aspect to improve HPDE is to detect and utilize
some feature lines around the considered hole region for the pre-
diction, and the strategies for selecting the points with uniform
distances and rotational angles in the hole region need to be cor-
respondingly modified according to these feature lines. Moreover,
the smoothing operator in the proposed HPDE should be adopted
selectively, and the base points can be segmented into more parts
and projected to more planes to maintain these characteristics.

Fourth, although competitive prediction accuracies of the pro-
posed HPDE on the test problems are confirmed in Section 5,
comparisons of time complexities and numerical results in Sec-
tion 5.2.3 demonstrate that the proposed HPDE consumes more
time than another two considered algorithms on the test prob-
lems, several measures will be considered to decrease the time
cost. From one aspect, the number of iteration NumIter in DE algo-
rithm can be reduced by adopting more powerful DE version [25],
from another aspect, the number of prediction points in the hole
region can be decreased or the number of decimated triangles will
be reduced.

Finally, in the practical application, it may exist some more un-
usual holes, such as shown in Fig. 20. To deal with these cases
with the proposed HPDE, some preprocessing operations (similar
as in [20]) corresponding to the first case in Fig. 20 are needed
and the prediction strategies corresponding to the second case in
Fig. 20 should be slightly modified to make use of the fragmental
information in the hole.

7. Conclusion

In this work, a new hole patching method HPDE is proposed,
which completes the defective triangulation model with set by set
prediction points through DE algorithm. Different from other hole
patching methods, the proposed HPDE utilizes the point informa-
tion on both sides of the boundary in each prediction, and it obtains
the topological and geometrical structures of the patching mesh in
the hole region at the same time, then two approaches of mesh op-
timization are resorted to improve the quality of local mesh by the
locally constrained triangulation. Numerical results on triangula-
tion models with different kinds of holes show the effectiveness of
HPDE and that the proposedHPDE is suitable for patching the holes
with large curvature. The results of the comparison of HPDE and
another two related algorithms demonstrate that HPDE is rather
competitive on the considered test models.

Because of the good performance of the proposed HPDE on the
considered test models, we expect to apply the method into more
fields and more actual problems. Our future work will also con-
centrate on alleviating and eliminating the defects of the proposed
method stated in the discussion section.

Acknowledgments

The authors thank the anonymous reviewers for their helpful
comments and suggestions. The authors also thank Prof. Jun Zou of
the Department of Mathematics of the Chinese University of Hong
Kong for his useful discussions and suggestions. This work was
supported by the Major Research Plan, National Natural Science
Foundation of China (Grant No. 91230118), the National Natural
Science Foundation of China (Grant No. 61173060) and the Key
Program of National Natural Science Foundation of China under
Grant No. 51039005.

References

[1] Hoppe H, DeRose T, Duchamp T, McDonald J, Stuetzle W. Surface reconstruc-
tion from unorganized points. In: Proceedings of the 19th annual confer-
ence on computer graphics and interactive techniques. Chicago (USA); 1992.
p. 71–8.

[2] Krause FL, Fischer A, Gross N, Barhak J. Reconstruction of freeform objectswith
arbitrary topology using neural networks and subdivision techniques. CIRP
Annals-Manufacturing Technology 2003;52(1):125–8.

[3] Zhao HK, Osher S, Fedkiw R. Fast surface reconstruction using the level set
method. In: IEEE workshop on variational and level set methods in computer
vision. Vancouver (Canada) 2001. p. 194–201.

[4] Xie WC, Zou XF, Yang JD, Yang JB. Iteration and optimization scheme for
the reconstruction of 3D surfaces based on non-uniform rational B-splines.
Computer-Aided Design 2012;44(11):1127–40.

[5] Lorensen WE, Cline HE. Marching cubes: a high resolution 3D surface
construction algorithm. In: Proceedings of the 14th annual conference
on computer graphics and interactive techniques, California (USA); 1987.
p. 163–9.

[6] Amenta N, Bern M, Kamvysselis M. A new Voronoi-based surface reconstruc-
tion algorithm. In: Proceedings of the 25th annual conference on computer
graphics and interactive techniques. Orlando (USA); 1998. p. 415–21.

[7] Ito Y, Corey ShumP, Shih AM, Soni BK, Nakahashi K. Robust generation of high-
quality unstructured meshes on realistic biomedical geometry. International
Journal for Numerical Methods in Engineering 2006;65(6):943–73.

[8] Lo SH, Cignoni P, Montani C, Scopigno R. DeWall: a fast divide and conquer
Delaunay triangulation algorithm in Ed . Computer-Aided Design 1998;30(5):
333–41.

[9] Nooruddin FS, Turk G. Simplification and repair of polygonal models using
volumetric techniques. IEEE Transactions on Visualization and Computer
Graphics 2003;9(2):191–205.

[10] Davis J, Marschner SR, Garr M, Levoy M. Filling holes in complex surfaces
using volumetric diffusion. In: Proceedings of 3DPVT. Padova (Italy); 2002.
p. 428–41.

http://refhub.elsevier.com/S0010-4485(13)00143-7/sbref2
http://refhub.elsevier.com/S0010-4485(13)00143-7/sbref4
http://refhub.elsevier.com/S0010-4485(13)00143-7/sbref7
http://refhub.elsevier.com/S0010-4485(13)00143-7/sbref8
http://refhub.elsevier.com/S0010-4485(13)00143-7/sbref9


1664 W.-C. Xie, X.-F. Zou / Computer-Aided Design 45 (2013) 1651–1664
[11] Janaszewski M, Couprie M, Babout L. Hole filling in 3D volumetric objects.
Pattern Recognition 2010;43(10):3548–59.

[12] Barequet G, Sharir M. Filling gaps in the boundary of a polyhedron. Computer
Aided Geometric Design 1995;12(2):207–29.

[13] Brunton A, Wuhrer S, Shu C, Bose P, Demaine ED. Filling holes in triangular
meshes by curve unfolding. In: IEEE international conference on shape
modeling and applications. Beijing (China); 2009. p. 66–72.

[14] Branch J, Prieto F, Boulanger P. A hole-filling algorithm for triangular meshes
using local Radial Basis Function. In: Proceedings of IMR. Birmingham (USA);
2006. p. 411–31.

[15] Zhao W, Gao S, Lin H. A robust hole-filling algorithm for triangular mesh. The
Visual Computer 2007;23(12):987–97.

[16] Kumar A, Shih AM. Hybrid approach for repair of geometry with complex
topology. In: Proceedings of the 20th international meshing roundtable. Paris
(France); 2012. p. 387–403.

[17] Jun Y. A piecewise hole filling algorithm in reverse engineering. Computer-
Aided Design 2005;37(2):263–70.

[18] Liepa P. Filling holes inmeshes. In: Proceedings of the 2003 Eurographics/ACM
SIGGRAPH symposium on geometry processing. Aachen (Germany); 2003.

[19] AtteneM, Falcidieno B. ReMESH: an interactive environment to edit and repair
trianglemeshes. In: Proceedings of the IEEE international conference on shape
modeling and applications. Matsushima (Japan); 2006. p. 41.

[20] Wang LC, Hung YC. Hole filling of triangular mesh segments using systematic
grey prediction. Computer-Aided Design 2012;44(12):1182–9.
[21] Kumar A, Ito Y, Yu TY, Ross DH, Shih AM. A novel hole patching algorithm for
discrete geometry using non-uniform rational B-spline. International Journal
for Numerical Methods in Engineering 2011;87(13):1254–77.

[22] Storn R, Price K. Differential evolution—a simple and efficient adaptive scheme
for global optimization over continuous spaces. In: Technical report TR-95-
012, International Computer Science Institute. Berkeley; 1995.

[23] Storn R, Price K. Differential evolution—a simple and efficient heuristic for
global optimization over continuous spaces. Journal of Global Optimization
1997;11(4):341–59.

[24] Das S, Suganthan PN. Differential evolution: a survey of the state-of-the-art.
IEEE Transaction on Evolutionary Computation 2011;15(1):4–31.

[25] Xie WC, Yu W, Zou XF. Diversity-maintained differential evolution embedded
with gradient-based local search. Soft Computing 2012;
http://link.springer.com/article/10.1007%2Fs00500-012-0962-x.

[26] Taubin G. A signal processing approach to fair surface design. In: Proceedings
of the 22nd annual conference on computer graphics and interactive
techniques. Los Angeles (USA); 1995. p. 351–358.

[27] Paul Chew L. Constrained Delaunay triangulations. Algorithmica 1989;4(1):
97–108.

[28] Hoppe H, DeRose T, Duchamp T, McDonald J, Stuetzle W. Mesh optimization.
In: Proceedings of SIGGRAPH 93; 1993. p. 19–26.

[29] Kobbelt L, Campagna S, Seidel HP. A general framework for mesh decimation.
In: Proceedings of graphics interface; 1998. p. 43–50.

[30] Available from: http://shapes.aim-at-shape.net/viewmodels.php.

http://refhub.elsevier.com/S0010-4485(13)00143-7/sbref11
http://refhub.elsevier.com/S0010-4485(13)00143-7/sbref12
http://refhub.elsevier.com/S0010-4485(13)00143-7/sbref15
http://refhub.elsevier.com/S0010-4485(13)00143-7/sbref17
http://refhub.elsevier.com/S0010-4485(13)00143-7/sbref20
http://refhub.elsevier.com/S0010-4485(13)00143-7/sbref21
http://refhub.elsevier.com/S0010-4485(13)00143-7/sbref23
http://refhub.elsevier.com/S0010-4485(13)00143-7/sbref24
http://link.springer.com/article/10.1007%2Fs00500-012-0962-x
http://refhub.elsevier.com/S0010-4485(13)00143-7/sbref27
http://shapes.aim-at-shape.net/viewmodels.php

	A triangulation-based hole patching method using differential evolution
	Introduction
	Related work
	DE algorithm
	The proposed method HPDE
	Preprocess
	Extract and segment boundary
	Find the correspondences
	Construct section planes
	Predict the points
	Triangulate the predicted points
	Smooth and optimize the local mesh
	Execute the algorithm

	Numerical results
	Test problems and criteria
	Test problems and aspects for comparison
	Holes with characteristic lines
	Robustness and sensitivity

	Illustrations of the results
	Results of an overall comparison
	Results of high curvature and characteristic lines
	Comparison with methods of state of the art
	Results of robustness and sensitivity


	Discussion
	Conclusion
	Acknowledgments
	References


