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Abstract. Facial expression recognition (FER) has made significant
progress in the past decade, but the inconsistency of distribution be-
tween different datasets greatly limits the generalization performance
of a learned model on unseen datasets. Recent works resort to align-
ing feature distributions between domains to improve the cross-domain
recognition performance. However, current algorithms use one output
each layer for the feature representation, which can not well represent
the complex correlation among multi-scale features. To this end, this
work proposes a parallel convolution to augment the representation abil-
ity of each layer, and introduces an orthogonal regularization to make
each convolution represent independent semantic. With the assistance of
a self-attention mechanism, the proposed algorithm can generate multi-
ple combinations of multi-scale features to allow the network to better
capture the correlation among the outputs of different layers. The pro-
posed algorithm achieves state-of-the-art (SOTA) performances in terms
of the average generalization performance on the task of cross-database
(CD)-FER. Meanwhile, when AFED or RAF-DB is used for the training,
and other four databases, i.e. JAFFE, SFEW, FER2013 and EXPW are
used for testing, the proposed algorithm outperforms the baselines by
the margins of 5.93% and 2.24% in terms of the average accuracy.

Keywords: Domain generalization, Parallel convolution, Facial expres-
sion recognition, Self-attention

1 Introduction

Facial expression recognition (FER) is beneficial to understand human emotions
and behaviors, which is widely applied in emotional computing, fatigue detec-
tion and other fields. Over the last decade, people have proposed deep learning
architectures and collected a large number of datasets, which greatly facilitates
the study of FER. However, people interpret facial expressions differently, their
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annotations to the dataset are inevitably subjective. This leads to a relatively
large domain shift between different datasets, and the difference in the collec-
tion scenes and object styles will also greatly increase this shift gap, which will
greatly impair the performance of the model on unseen datasets.
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Fig. 1. An overview of our algorithm. N denote the number of blocks. Xi denote the
feature maps output by Blocki. PCM denotes the Parallel Convolution Module in Fig. 2
(b). Both MLPglo and MLPloc consist of a fully connected layer.

Recently, many works try to learn domain-invariant features to reduce this
domain shift. Chen et al. [2] argue that some local features in facial expres-
sions are beneficial to Cross-Domain Facial Expression Recognition (CD-FER)
because these local features are easier to transfer across different datasets, can
represent more detailed information that is beneficial to fine-grained adapta-
tion. However, these CD-FER algorithms employ unique output block for the
feature representation of each layer, even the fusion of these outputs is unable
to sufficiently encode the complex correlation among them.

In this work, we introduce a simple yet effective structure that only needs
to use parallel convolution operations from different layers to extract rich hier-
archical information. These features can help improve the generalization perfor-
mance of the network on unseen datasets without affecting the discriminative
performance on the source domain. Compared with other methods with unique
convolution output, the proposed parallel convolution module augment the fea-
ture representation, and better capture the correlation among different scales of
features from various layers, which is critical for the transferability ability of a
recognition network.

Our main contributions are summarized as follows

– We introduce a novel parallel convolution to augment the feature representa-
tion of each layer, and a specific orthogonal loss to enhance the independence
of branches for representing different semantics.
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– We propose a hierarchical feature representation based on the multi-head
self-attention module for cross-database FER, by modeling the complex
correlation of the features from different layers with the combinations of
multiple-scale features.

– By comparing the state of the arts on the task of cross-database FER, our
method achieve state-of-the-art performances in terms of the average gener-
alization performance.

2 Proposed Method

In this section, we introduce the proposed framework in Fig. 1, which mainly
consists of three parts, i.e. a backbone network for representing the global dis-
criminative features, a parallel convolution module in Sec. 2.1 used to extract
features at different levels, and a multi-head self-attention module in Sec. 2.2
used to capture the correlation information between global discriminative and
auxiliary features.

2.1 Parallel Convolution Module (PCM)

While one convolution output can effectively encode the expression hidden se-
mantics with highly nonlinear representation, e.g. local variation of geometry
structure and texture, it may not work well for the representation of the in-
the-wild expression samples, which often include largely occluded or posed faces
[2]. This challenge motivates us to construct multiple convolution outputs to
represent the complex semantics implied in these samples.
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Fig. 2. (a) Original: One feature representation (b) Ours: Parallel Convolution Module
(PCM). M denote the number of Parallel Feature Outputs of each network block.

Specifically, we introduce a parallel structure in Fig. 2(b) to capture multi-
branch features for each block of the backbone network, which is formulated as
follows

f i
j = ϕ(σ(Norm(Conv(Xi)))) (1)
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where i and j denote the depth of blocks and number of parallel features, respec-
tively. σ and ϕ denote Relu activation function and the adaptive average pooling
layer, respectively. There are two merits to using such a structure. First, parallel
features can be generated by adding only a few network parameters, which does
not sacrifice the training speed of the network; The second is that convolution
can well capture the local information of features, such local information is more
transferable for the task of FER.

In order to reduce the entanglement among the outputs of the parallel convo-
lution, so as to enable each parallel output to learn specific semantic and improve
the generalization ability of the feature representation, we further introduce the
regularization term of orthogonalization as follows

Lort = − 1

B

B∑
i=1

M∑
m=1

M∑
n=1

(f i
m)T f i

n (2)

where f i
m denotes the m-th parallel feature from the i-th block for each sample.

2.2 Multi-Head Self-Attention Module (MSH)

It is revealed in [1] that the features extracted by the network become more
task-specific as the depth of the neural network increases. That is, the shallow
layers often represent some relatively similar features which may have better
transferability, while the deep layers will encode the features for specific tasks.
Based on this, as shown in Fig. 1, we design a cascaded module to leverage
hierarchical features from different depths to help improve its generalization
ability.

Visual transformers (ViT) [3] can well capture global information in images
with global receptive fields, and can build the interaction between global patches
with the self-attention mechanism. Based on this framework, we resort to aggre-
gating the multi-scale features from different network blocks with the parallel
convolution, rather than using the sequence features of split patch embedding in
the original ViT. Specifically, we use the multi-head self-attention module to en-
hance the information representation of parallel features, positional encoding to
assist the learning of positional information between different parallel features,
and a learnable class token to label the specific features.

As shown in Fig. 1, we use a self-attention module to augment the infor-
mation of parallel features. Since the classification token summarizes the global
information of other features, and it does not depend on the input information,
thus can avoid the preference for a certain parallel information and help the
model to improve its generalization performance.

Formally, we first concatenate all features as follows

F = ((f1 ⊕ f2 ⊕ ...fM )⊕ fg ⊕ f c) + fp (3)

where M denotes the number of parallel features for each layer, fg denotes the
global feature and the f c is a learnable classification token. Matrices f i, fg, f c
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are with the dimension of (B,M × D), where B and D denote the batch size
and the feature dimension, respectively. Matrix fp is a learnable embedding with
the dimension of (B, (M +2)×D) for describing the location information of the
features. Then, we use a multi-head attention module to capture the key features,
while integrating information from all features. Specifically, we transformed the
feature F into queries q, keys k and values v as follows

[q, k, v] = F [Wq,Wk,Wv] (4)

To aggregate these features, the attention weights are adjusted as follows

A = ε(
qkT√
d
) (5)

where ε denote the Softmax function, and d denote the dimension of feature.
Finally, the output of self-attention can be obtained as follows

F
′
= Av + F (6)

where v is the value in Eq. (4).

2.3 Joint training loss

Based on the features with the self-attention model, i.e. F
′
in Eq. (6), the clas-

sification probabilities are formulated as follows

ploci,c = ε(MLPloc(F
′

loc)) (7)

pgloi,c = ε(MLPglo(F
′
)) (8)

where F
′

loc is the feature output by the self attention module of f1 ⊕ f2 ⊕ ...fM

in Eq. (3) and is a part of F
′
. Finally, the two classification losses in Fig. 1 are

then formulated as follows

Lloc = − 1

B

B∑
i=1

K∑
c=1

yi,clog(p
loc
i,c ) (9)

Lglo = − 1

B

B∑
i=1

K∑
c=1

yi,clog(p
glo
i,c ) (10)

where K denotes the number of expression classes. ploci,c and pgloi,c are the predicted
probabilities of the c-th class specific to the local and global branches. The total
loss is then formulated as follows

L = Lglo + λLloc + γLort (11)

where λ and γ are set as 1 in this work.
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3 Experimental Results

3.1 Implementation Details

We use six mainstream facial expression datasets for the evaluation, follow the
protocol as [2], and use the IResNet50 pretrained on the MS-Celeb-1M [13] as
the backbone. The setting of the parameters specific to the newly added layers
follow the Xavier algorithm [12]. For the parallel convolution in Fig. 2(b), M is
set as 5, the feature dimension of each parallel convolution output, i.e. D, is set
to 16. For global feature representation, i.e. fg in Eq. (3), another convolution
operation and pooling layer are performed to encode a feature vector with the
dimension of N ×D = 64.

Table 1. Comparison of cross-database performances. The results are reproduced by
our implementation with exactly the same source dataset, backbone network and pre-
trained model. The best and 2nd best performances are labeled with bold and underline.
∗ or † denotes the results that are implemented by us or cited from [2].

Method Source set JAFFE SFEW FER2013 EXPW Mean Reference

Baseline∗ RAF 52.58 51.60 57.89 70.09 58.04 -

ICID† [14] RAF 50.57 48.85 53.70 69.54 55.66 Neurocomputing2019

LPL† [15] RAF 53.05 48.85 55.89 66.90 56.17 CVPR2017

FTDNN† [16] RAF 52.11 47.48 55.98 67.72 55.82 SIBGRAPI2017

SAFN† [17] RAF 61.03 52.98 55.64 64.91 58.64 CVPR2019
AGRA∗ [2] RAF 58.68 51.37 57.49 70.73 59.53 TPAMI2021
Ours∗ RAF 59.15 52.75 57.82 71.42 60.28 -

Baseline∗ AFED 57.74 47.25 46.55 49.50 50.26 -

ICID† [14] AFED 57.28 44.27 46.92 52.91 50.34 Neurocomputing2019

LPL† [15] AFED 61.03 49.77 49.54 55.26 53.9 CVPR2017

FTDNN† [16] AFED 57.75 47.25 46.36 52.89 51.06 SIBGRAPI2017

SAFN† [17] AFED 64.79 49.08 48.89 55.69 54.61 CVPR2019
AGRA∗ [2] AFED 65.25 48.16 49.73 51.56 53.67 TPAMI2021
Ours∗ AFED 62.44 52.29 51.43 58.62 56.19 -

3.2 Comparison with the state of the arts

To study the generalization performance of our method on unseen datasets, we
use RAF [7] or AFED [2] as source domain dataset, and JAFFE, SFEW2.0 [4],
FER2013 [5] and EXPW [6] are used as target datasets, while only the source
domain dataset are used for the training. The results are shown in Tab. 1.

Tab. 1 shows that our method achieved the best performances among six
state-of-the-art algorithms in terms of the mean accuracy. For each target dataset,
our algorithm either achieves the best performance, or ranks the 2nd. Meanwhile,
compared with the baseline, the proposed algorithm achieved the improvement
of 2.24% or 5.93% when RAF or AFED is used as source dataset. Specifically,
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our algorithm appears to be more effective than the competitors on the target
datasets with larger number of samples, e.g. FER2013 and EXPW.

3.3 Algorithm analysis

In this section, we first perform ablation study in Tab. 2 to analyze the role
of each module, where we can see from the 1st and 2nd rows that PCM help
the model achieve an improvement of 4.56% over the baseline in terms of the
average generalization performance. It is revealed in the 2nd-4th rows that using
only the self-attention mechanism may affect the generalization ability. It pays
attention to the features that help improve the discrimination performance on
the original domain, while affecting the generalization performance on the target
domain. The learnable classification token with a fixed position can effectively
integrate features between different levels, and it is not biased towards a certain
feature, thus can help the model improve the generalization ability.

Table 2. The results of ablation study. CLS-token denotes a learnable embedding for
integrating information of different features in Eq. (3). OrtLoss is the regularization
loss in Eq. (2)

Backbone PCM MSH CLS-token OrtLoss JAFFE SFEW FER2013 EXPW Mean

IResNet50 % % % % 57.74 47.25 46.55 49.50 50.26

IResNet50 ! % % % 63.84 48.16 49.73 57.66 54.84

IResNet50 ! ! % % 56.80 47.25 49.93 56.75 52.68

IResNet50 ! ! ! % 61.97 47.93 52.38 60.29 55.64

IResNet50 ! ! ! ! 62.44 52.29 51.43 58.62 56.19

Table 3. Parameter sensitivity analysis for the parallel convolution based on the train-
ing of AFED. 1* denotes one parallel branch with the feature dimension being the
dimension sum of features from the five parallel branches.

Backbone M JAFFE SFEW FER2013 EXPW Mean

IResNet50 1 61.03 47.70 49.59 57.13 53.86
IResNet50 3 62.91 47.47 48.98 56.83 54.04
IResNet50 5 61.97 47.93 52.38 60.29 55.64
IResNet50 7 59.15 47.70 50.34 56.70 53.47
IResNet50 1∗ 60.56 45.87 49.23 55.40 52.76

In order to give insight into the features learned by our method during the
training process. We visualize how the features of different domains evolve as
training progresses. Specifically, we simultaneously input samples from different
domains into the network to obtain features, use t-SNE to project them into the
2D space, and present the results in Fig. 3. It shows that the baseline model
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can separate the source samples, while it can not well distinguish the data of
the target domain. As shown in the bottom row of Fig. 3, our algorithm obtain
features that are still separable in the feature space. More importantly, sam-
ples from different domains are more concentrated compared with the baseline,
which means that the learned features can be made have similar distributions
in different domains, by better learning the complex correlation among features
from different layers, thereby yielding more powerful generalization ability.
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Fig. 3. Illustration of the feature distributions learned by IResNet (upper, baseline)
and our algorithm (lower) at epochs of 1, 21 and 51 in the 1st-3rd columns, respectively.
’o’ denotes the sample from the source domain (RAF-DB), ’x’ denotes the sample from
the target domain (SFEW2.0). Different colors represent different labels.

We also study the performance sensitivity against the number of Parallel
Convolution branches, i.e. M in Fig. 2, the results are shown in Tab. 3. Tab. 3
shows that the setting of M = 5 achieves the best average performance. While
too few parallel outputs can not sufficiently capture the rich hierarchical in-
formation among different layers, too many outputs increase the possibility of
feature entanglement, which may decrease the cross-database generalization per-
formance. To study whether the improvement is resulted from the dimensional
ascension by the parallel convolution, we evaluate the performance of a specific
setting, i.e. the feature dimension is set as the same as that of the proposed con-
volution, in the last row of Tab. 3. These results show that the improvements
are not resulted from the mere dimensional ascension.

In order to give insight into the working mechanism of the proposed parallel
convolution, we visualize the heatmaps output by the parallel convolution in
Fig. 4, where the heatmaps with the similar semantics are gathered in the same
column with an alignment. Fig. 4 shows that the heatmaps in the same column
appear with the similar semantic, while the outputs of different parallel branches
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shows with diverse and independent semantics. When the parallel convolution
is performed, semantic alignment is actually not employed. In this case, the
random combinations of independent semantics can thus enhance the feature
representation ability for in-the-wild circumstances with complex semantics.

Original Parallel 1 Parallel 2 Parallel 3 Parallel 4 Parallel 5

Fig. 4. Visualization of heatmaps from the outputs of parallel convolution branches.

4 Conclusion

In this work, we introduce a parallel convolution to augment the feature rep-
resentation ability for in-the-wild expressions with complex semantics, and an
additional regularization loss to let each branch independently respond to a
semantic. Based on multiple combinations of the outputs from the parallel con-
volution, a self attention is followed to encode the correlations among multiple
layers. Experimental results on cross-database FER show that our algorithm
can better capture the complex correlations among multiple layers, and largely
outperforms the state of the arts in terms of the cross-domain generalization per-
formance. In our future work, we will give insight into the working mechanism
of the parallel convolution for the generalization ability improvement. Other
paradigms in addition to ViT will be investigated to test the generality of the
proposed parallel convolution and the specific regularization loss.
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