
Hand-crafted Feature Guided Deep Learning for Facial Expression
Recognition

Guohang Zeng, Jiancan Zhou, Xi Jia, Weicheng Xie and Linlin Shen

School of Computer Science & Software Engineering, Shenzhen University, China

ghzeng.cs@hotmail.com, {2150230421,jiaxi}@email.szu.edu.cn, {wcxie,llshen}@szu.edu.cn

Abstract— A number of facial expression recognition algo-
rithms based on hand-crafted features and deep neutral net-
works have been developed. Motivated by the similarity between
the hand-crafted features and features learned by deep network,
a new feature loss is proposed to embed the information of
hand-crafted features into the training process of network,
which tries to reduce the difference between the two features.
Based on the feature loss, a general framework for embedding
the traditional feature information was developed and tested
using CK+, JAFFE and FER2013 datasets. Experimental results
show that the proposed network achieves much better accuracy
than the original hand-crafted feature and the network without
using our feature loss. When compared with other algorithms
in literature, our network also achieved the best performance
on CK+ dataset, i.e. 97.35% accuracy has been achieved.

I. INTRODUCTION

While hand-crafted features use filters like Gabor, Local

Binary Pattern (LBP) and SIFT (Scale Invariant Feature

Transform) to extract features from images, deep neural

network (DNN) use end-to-end models to automatically

learn filters at different levels for feature extraction. As

the optimization space of DNN can be very large due to

the large number of network parameters, some algorithms

employ local searching strategies to speed up the searching

efficiency.

Tudor Ionescu et al. [1] proposed a local feature learning

approach using neighbors around each testing sample for

facial expression recognition. Jung et al. [2] introduced a

fine-tuning network for expression recognition by integrating

the geometry features into texture feature network and fine-

tuned the last two layers of the network. Sikka et al. [3] used

locality-constrained linear coding and max-pooling strategy

to extract multi-scale dense SIFT feature for expression

recognition. Zadeh et al. [4] constructed a local model with

convolutional experts constraint by incorporating a set of

appearance prototypes of different poses and expressions for

landmark detection. Pan et al. [5] used orthogonal projection

layer to replace a pooling layer by adding an orthogonal

projection constraint on the loss function, so as to reduce

the model size and redundancy of convoluted features. These

algorithms employed a fine-tuning strategy or imposed a con-

straint on the deep network without using the merits of hand-

crafted features. Fusing the deep feature with hand-crafted

features is another approach to improve the performance of

both features.

Qian et al. [6] proposed to fuse the higher-layer feature

of a deep network and the hand-crafted features like PHOG

and LBP-EOH for vehicle classification. Liu et al. [7] con-

catenated hand-crafted HOG and dense SIFT features with

deep CNN feature for expression recognition. Paul et al. [8]

merged the deep features of the top five layers and hand-

crafted quantitative features for survival prediction. Suggu

et al. [9] concatenated several hand-crafted features with the

convolution output before the fully connected (FC) layer

for the network training, while Majtner et al. [10] fused

the discrimination probabilities of the hand-crafted and deep

features after SVM for final recognition.

However, these algorithms directly concatenated two cat-

egories of features without embedding the information of

hand-crafted features into the deep network [11]. Actually,

Khorrami et al. [12] showed that the learned deep features

are analogous to the basic facial action units of expression

faces, and Zeiler and Fergus [13] revealed that the learned

features in the shallow layers of CNN are similar to hand-

crafted features such as Gabor feature [14]. Juefei-Xu et al.

[15] replaced convolution layer with LBP like operator and

largely reduced the model complexity with similar perfor-

mance. More precisely, the hand-crafted and deep features

may be similar and complementary, which motivates us to

boost the performance of deep network by local searching

around the hand-crafted feature. Meanwhile, a few deep

metric learning algorithms have been proposed to embed

constraint information into the loss function of deep networks

to improve the performance, such as the CenterLoss [16],

SphereFace loss [17], adaptive deep metric learning [18].

For the application of facial expression recognition, many

hand-crafted and deep features have been proposed in the

recent decades. Examples are maximum margin projection

[19], radial feature [20], and deep features such as AU

deep network [21], deep neural network (DNN) [22], etc.

However, works fusing the hand-crafted and deep features

for expression recognition have not been widely studied.

In this work, a new deep network based on hand-crafted

feature guidance is proposed for the expression recognition,

which consists of the HoloNet network with feature loss

(HNwFL) for feature learning and fusion network for recog-

nition. In HNwFL, the hand-crafted feature information is

embedded into the Hololet network by imposing a new loss

metric into the loss function. The motivation of the new loss

is to use a hand-crafted feature to guide the network learning
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and reduce the optimization space during the early training,

and add human prior knowledge into the learning of DNN

features. In fusion network, the learned feature and the hand-

crafted feature are input into a fusion network for the final

recognition.

This work makes the following contributions.

• A novel loss metric, namely feature loss, is proposed to

provide complementary information for the deep feature

during network early training;

• A deep metric learning based framework is proposed to

embed the guidance of hand-crafted features into deep

networks to improve recognition performance;

• The proposed algorithm achieves competitive perfor-

mance on two public expression databases compared

with the hand-crafted approach, the deep network with-

out the proposed loss and the state-of-the-art algorithms.

This paper is structured as follows. Section II gives a

description about the proposed algorithm step by step. The

experimental results of the proposed algorithm on public

databases are presented in Section III. Finally, discussions

and conclusions are addressed in Section IV.

II. THE PROPOSED ALGORITHM

In this section, the proposed feature loss, the deep net-

work structure, the network training and fusion network for

recognition are introduced.

A. The Feature Loss

In the proposed network, besides of SoftMax loss and

the Center loss [16], a new metric, namely feature loss is

proposed to measure the network performance, which is

presented in Fig. 1. To benefit the presentation of these

losses, the entire network in Fig. 1 is divided into two sub-

networks, abbreviated as MI and MII, whose loss criterions

are recorded with CI and CII, respectively.

Fig. 1: The proposed network based on SoftMax, center and

feature losses. #feature and #classes denote the feature di-

mension and the number of expression classes, respectively.

Different from the other two losses, the proposed feature

loss embeds the information of hand-crafted features for

local searching. To study their differences, these three loss

Fig. 2: HoloNet network [26] with adaptive fully connected

layer. Co, FC denote the convolution and FC layers. CoCRe
denotes the convolution followed by the spatial batch nor-

malization and CReLU. AddCo or AddIden denotes the

convolution or identity mapping used in the i-th residual

block (ResBi).

functions are formulated as follows⎧⎪⎪⎨
⎪⎪⎩

LS = −∑
i log

e
WT

yi
xi+byi

∑
j e

WT
j

xi+bj
,

LC = 1
2

∑
i ||xi − cyi ||,

LF = 1
2

∑
i ||xi − ||xi||2 · gi||.

(1)

where LS , LC , LF are the SoftMax, center and feature

guided losses, respectively; W , b are the weight matrix and

the bias terms of MII; xi is the MI output of the i-th sample

and yi is its expression label, cyi is the center vector of

the MI outputs with respect to (w.r.t.) the yi-th class, gi is

the normalization of the hand-crafted feature fi of the i-th
sample, and can be formulated as follows

gi =
fi
||fi||2 . (2)

Since Gabor features have been widely used in expres-

sion recognition and achieved good performance, the hand-

crafted feature of Gabor Surface Feature (GSF) [23], [24]

is employed in this work. More precisely, the feature of the

i-th expression sample is first represented as

foi = (pfp1 , · · · , pfpn), (3)

where n is the number of face patches, pfpj is the GSF

representation of the j-th patch. Each patch feature pfpk
is

further reduced to six dimensions using principal components

analysis (PCA) and linear discriminant analysis (LDA) [25].

Consequently, the hand-crafted feature of the i-th sample is

presented as follows

fi = PLDA(PPCA(foi)). (4)

where PPCA, PLDA are the projection matrixes of PCA and

LDA, respectively. For boosting the GSF feature extraction,

randomly selected 30 augmented expression samples from

the training dataset for each person ID are used for the
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projection matrix computation.

B. Network Structure

The proposed feature loss LF is further employed in the

HoloNet network [26], thereafter abbreviated as HNwFL, i.e.

HoloNet network with feature loss, for expression recogni-

tion. HoloNet [26] achieves the best recognition rate on the

2016 EmotiW challenge [27], which mainly contains three

blocks, i.e. the phase-convolution, the phase-residual and

the inception-residual blocks. In the proposed algorithm, the

HoloNet (the last FC layer was removed) is used as network

MI in Fig. 1, and is presented in Fig. 2.

In HoloNet, the phase-convolution block with modified

Concatenated Rectified Linear Unit (CReLU) is proposed

to maintain the positive and negative phase information

after convolution. The phase-residual blocks are proposed

to obtain a relatively high accuracy for high depth network

structure. The inception-residual block with multiple sizes

of convolution kernels is proposed to construct multi-scale

features.

In order to compute the proposed feature loss LF in

equation (1), the number of output neurons in the last FC

layer of MI is set the same as the dimension of the hand-

crafted feature fi in equation (4).

C. Network Training

With the proposed feature loss, the final loss of the

proposed network is formulated as follows

minL = LS + λCLC + λFLF . (5)

where λC , λF are the regularization parameters, which are

decreased with fixed decaying factors as the network training

proceeds.

The minimization of the loss function in equation (5) is

formulated as a fitting form. To backward the entire network

optimization, the forwarding and backwarding operations of

each model (MI or MII) and criterion (CI or CII) are used.

While only SoftMax loss is considered for CII, all the losses

are included for CI. The model forwarding gives the output

for each layer; then the criterion forwarding computes the

final loss function based on the network output; the criterion

backwarding obtains the derivatives of the loss function w.r.t.

the network output; finally, the model backwarding computes

the derivatives of the loss function w.r.t. the network input

and the network weight parameters.

For the network optimization, the gradient of L w.r.t. each

variable is obtained as follows
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂W = ∂LS

∂W ,⎧⎪⎨
⎪⎩

∂L
∂xi

= ∂LS

∂xi
+ λC

∂LC

∂xi
+ λF

∂LF

∂xi
,

∂LC

∂xi
= xi − cyi ,

∂LF

∂xi
= xi − ||xi||2 · gi,⎧⎪⎨

⎪⎩

∂L
∂cj

= λC

∑
i γi,j

∂LC

∂cj
,

∂LC

∂cj
= cj − xi,

γi,j =
δ(yi=j)

1+
∑

k(yk=j) ,
∂L
∂� = Σi

∂L
∂xi

∂xi

∂� .

(6)

where γi,j is the regularization term suggested in the work

[16], δ(·) is the Dirac delta function, and � is the network

parameters of MI. Since Cross-Entropy function is employed

for the SoftMax loss LS , the partial derivatives ∂LS

∂xi
, ∂LS

∂W
are automatically obtained by the network backward of MII.

With the obtained gradients in equation (6), the network

parameters are iteratively updated with optimization of S-

tochastic Gradient Descent (SGD) as follows
⎧⎨
⎩

ct+1
j = ctj − α ∂L

∂cj
,

W t+1 = W t − μt
2

∂L
∂W t ,

�t+1 = �t − μt
1

∂L
∂�t ,

(7)

where α is the learning rate of the centers {cj}, μt
1, μt

2 are

the learning rates w.r.t. MI, MII, respectively. The proposed

network is not sensitive to the bias parameters {bj}, thus,

these parameters are always set to zero for simplification.

For the database with unbalanced proportions, weight

balancing strategy is employed, i.e. the weight of each class

is inversely proportional to the number of samples as follows

wi =
1/#Si∑
i 1/#Si

. (8)

where #Si denotes the number of expression samples of the

i-th class. The SoftMax loss function in equation (1) is then

formulated as follows

LS = −
∑
i

wyi log
eW

T
yi

xi+byi

∑
j e

WT
j xi+bj

. (9)

In this way, the recognition rates of all the classes with

different sample sizes are balanced.

For small sample data, data augmentation strategy is

employed to increase training samples and decrease the

influence of face misalignment. The database is augmented

by first flipping the faces, and capturing 3× 3× 3 different

face regions with the corresponding binary masks for each

expression image. The final expression label is predicted by

probability voting, i.e. the label corresponding to the largest

cumulative probability is selected as the predicted expression

label.

For clarity, the entire optimization framework of the pro-

posed HNwFL is illustrated in Algorithm 1.

D. Fusion Network for Classification

After feature learning with the proposed network shown

in Fig. 1, the concatenation of MI output and the hand-

crafted feature is further input into a fusion network for

recognition, which is shown in Fig. 3. The fusion network

and criterion are abbreviated as MIII and CIII, whose

parameter optimization is similar to that of parameter W
in the network MII. Compared with MIII, MI+MII+MIII
used the information of a hand-crafted feature to guide the

network learning; compared with MI+MII, MI+MII+MIII
added a fine tuning network of the fused feature to boost the

discrimination ability. The entire optimization framework of

the fusion network is illustrated in Algorithm 2.
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Algorithm 1 The training of HNwFL.

1: Set the weights of each class with equation (8).

2: Obtain GSF features {fi} of all the samples by equation

(4).

3: Set the parameters λC=1e-4, λF =1e-4, MaxIter = 2e2.

4: Initialize the network parameters � of MI, the weight

vector W and cj of MII.

5: for s = 0, · · · ,MaxIter do
6: Perform MI forward to obtain the output xi.

7: Perform MII forward to obtain the output zi.
8: Perform CII forward to obtain the loss LS using

zi.
9: Perform CII backward to obtain the gradient ∂LS

∂zi
.

10: Perform MII backward to compute the gradient
∂LS

∂xi
.

11: Perform SGD in equation (7) to renew W .

12: Store the L2 norm of xi as ||xi||2.

13: Perform CI forward to obtain the entire loss function

L as in equation (5).

14: Perform CI backward to obtain ∂L
∂xi

as in equation (6)

using ||xi||2.

15: Perform MI backward to compute the gradients ∂L
∂�

of model MI.

16: Perform SGD in equation (7) to renew �.

17: Renew centers cj using the gradient ∂L
∂cj

in equation

(6).

18: end for
19: Output the GSF-guided feature {xi} of MI output.

Fig. 3: The fusion network.

III. EXPERIMENTAL RESULTS

We perform the experiments using four-kernel Nvidia

TITAN GPU Card, Torch platform and LUA language [28].

The parameter settings of HNwFL and the fusion network

are presented in Table I.

The proposed algorithm is tested on the expression

databases of the Extended Cohn-Kanade Dataset (CK+) [29],

JAFFE [30] and FER2013 database [31], whose examples are

presented in Fig. 4. The JAFFE database [30] consists of 213

expression images of 10 Japanese female models, which can

be categorized to six basic and the neutral expressions, i.e.

Algorithm 2 The training of the fusion network.

1: Set the weights of each class with equation (8).

2: Concatenate GSF features {gi} with MI output {xi} to

form the input of the network MIII.

3: Initialize the weight vector W of MIII, MaxIter =
1e2.

4: for s = 0, · · · ,MaxIter do
5: Perform MIII forward to obtain the output zi.
6: Perform CIII forward to obtain the loss LS using zi.
7: Perform CIII backward to obtain the gradient ∂LS

∂zi
.

8: Perform MIII backward to renew the gradients ∂LS

∂W .

9: Perform SGD to renew the parameters W .

10: end for
11: Output the final recognition labels with the maximum

response.

TABLE I: The parameter setting of HNwFL and the fusion

network.

Model Parameter Name Parameter Value

HNwFL

α 1e-2
μt
1 = μt

2 1e-2
Learning rate 5e-3

Batch size 100
Momentum 0.8

L2 regularization coefficient 1e-4
λC and λF decaying factor 0.8

Image size 128x128
Fusion
Network

Learning rate 1e-1
Learning decaying factor 1e-3

angry (An), disgust (Di), fear (Fe), happy (Ha), sad (Sa) and

surprise (Su). The CK+ database consists of 593 expression

sequences from 123 subjects, where 327 sequences are

labeled with one of seven expressions (angry, disgust, fear,

happy, sad, surprise and contempt). Each sequence contains

a set of captured frames when the subject changes his ex-

pression, 1033 expression images, i.e., the neutral and three

non-neutral images sampled from each expression sequence

are used for testing. The FER2013 database [31] consists

of 35887 grayscale face images with size 48x48, which

are collected from the internet and used for a challenge.

The faces were labeled with one of seven categories. The

training set consists of 28,709 examples, while the validation

and testing sets consist of 3,589 samples individually. Five

landmark points were located with [32] for face alignment.

For the following experiment, the person-independent s-

trategy with ten-fold setting is employed for testing and

comparison. More precisely, the considered database is di-

vided into ten groups with approximately equal number of
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Fig. 4: Examples of three expression databases.

person IDs. While nine of them were used for training,

the remaining group was used for testing. The process

was randomly repeated ten times and the average accuracy

is recorded as the final result. For the batch-based SGD

optimization, the training samples are randomly perturbed.

For PCA in the GSF construction (4), the feature vectors

with the accumulative contribution rate of 0.99 are used.

A. Performance Evaluation

To test the performance of the proposed loss function, the

network in Fig. 1 is trained with different loss functions,

i.e. the SoftMax, the center loss, the proposed feature loss

and their different combinations, then the learned features are

input into the fusion network for recognition. The recognition

rates for different loss functions are presented in Table

II. Table II shows that both center and feature losses are

beneficial to the recognition rate and the fused loss metric

achieves the best performance, i.e. the combination of three

losses achieves improvements of 4.82%, 5.64% and 4.16%

on CK+, JAFFE and FER2013 databases, respectively, over

the SoftMax loss. Meanwhile, the loss with GSF feature

guidance performs better than the center loss. Fig. 5 also

shows the variation of overall accuracy of the proposed

algorithm with different λC and λF , for JAFFE database.

We also compared the proposed algorithm with GSF and

HoloNet with SoftMax loss in Table III, where the ten-

fold and mean performance of these algorithms on the CK+

and JAFFE databases are listed. Table III shows that the

recognition rate is improved for most folds of both CK+ and

JAFFE databases. Meanwhile, the mean recognition rates of

the proposed algorithm are 7.25% and 4.85% higher than

that of GSF and HoloNet on CK+ database.

To evaluate the overall performance, the confusion ma-

trixes of the proposed algorithm on the databases CK+ and

JAFFE are presented in Tables IV and V. Tables IV and

V show that the expressions ’angry’, ’disgust’, ’fear’, ’sad’

are relatively more difficult than the other three expressions.

1e 3
1e 4

1e 5

1e 3
1e 4

1e 5

0.8

0.81

0.82

0.83

0.84

λC

λF
0.8

0.81

0.82

0.83

0.84

Fig. 5: The average recognition rates of the proposed algo-

rithm on the JAFFE database with different λC and λF .

For the CK+ database, the expression ’angry’ and ’sad’ are

easy to be confused with the ’neutral’ expression; while for

the JAFFE database, ’disgust’ and ’fear’, ’disgust’ and ’sad’,

’fear’ and ’sad’ are easy to be confused.

TABLE IV: Confusion matrix (%) of the proposed algorithm

on CK+ database.

Exp. Ne An Di Fe Ha Sa Su
Ne 98.11 0.94 0 0 0 0.94 0
An 6.66 86.66 4.44 0 0 2.22 0
Di 0 0 100 0 0 0 0
Fe 0 0 0 100 0 0 0
Ha 0 0 0 0 100 0 0
Sa 7.14 0 0 0 0 92.85 0
Su 1.20 0 0 0 0 0 98.79

TABLE V: Confusion matrix (%) of the proposed algorithm

on JAFFE database.

Exp. Ne An Di Fe Ha Sa Su
Ne 86.66 0 0 3.33 3.33 0 6.66
An 0 93.33 6.66 0 0 0 0
Di 0 0 79.31 10.34 0 10.34 0
Fe 0 0 9.37 78.12 0 12.5 0
Ha 9.67 0 0 0 80.64 0 9.67
Sa 0 3.22 3.22 9.67 3.22 80.64 0
Su 10 0 0 0 3.33 0 86.66

To study the effects of HNwFL (MI+MII) and the fusion

(MIII) network on the final expression recognition, different

network structures are tested on the three databases and

the results are presented in Table VI. When only MIII is

employed, the GSF is set as the input of the network for

recognition. It can be seen from Table VI that both HNwFL
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TABLE II: The performance of different losses.

Database

Parameter setting and the average recognition rates (%).
λC=0, λF =0 λC=1e-4, λF =0 λC=0, λF =1e-4 λC=1e-4, λF =1e-4

SoftMax SoftMax+Center Loss SoftMax+Feature Loss SoftMax+ Center Loss+ Feature Loss
CK+ 92.53 93.73 94.94 97.35

JAFFE 77.93 79.81 82.16 83.57
FER2013 57.70 59.04 60.66 61.86

TABLE III: The ten-fold and mean recognition rates of GSF, HoloNet with SoftMax and the proposed algorithm on the

databases of CK+ and JAFFE.

Database Method
Recognition rates of ten folds and mean (%).

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Mean

CK+
GSF 92.5 90.2 92.7 92.8 93.2 92.8 90.9 86.1 86.3 82.9 90.1

HoloNet with SoftMax 95.0 95.1 92.7 97.6 95.5 95.2 93.2 86.1 86.3 87.8 92.5
The proposed network
(λC=1e-4, λF =1e-4)

97.5 100.0 97.6 100 97.7 100.0 100.0 91.7 90.9 97.6 97.35

JAFFE
GSF 81.0 81.0 68.2 76.2 61.9 81.8 100.0 57.1 95.2 72.7 77.5

HoloNet with SoftMax 90.5 95.2 81.8 76.2 66.7 72.7 90.5 57.1 90.5 59.1 77.9
The proposed network
(λC=1e-4, λF =1e-4)

95.2 100.0 81.8 76.2 95.2 68.2 100.0 57.1 95.2 68.2 83.6

TABLE VI: The effects of the HNwFL and fusion network.

Database
Different network structures

and the average recognition rates (%).
MI+MII MIII MI+MII+MIII

CK+ 96.63 92.05 97.35
JAFFE 83.10 78.87 83.57

FER2013 61.3 58.85 61.86

and the fusion network are beneficial to the recognition rate

improvement and HNwFL works much better when all three

networks are used.

Considering the runtime cost, the proposed algorithm

requires an additional feature extraction process, in addition

to the DNN learning. However, the runtime cost of the hand-

crafted feature extraction is negligible compared with DNN

learning. In the testing stage, the runtime cost of the proposed

algorithm includes an additional matrix multiplication with

the stored projection matrix for GSF feature extraction in

equation (4).

B. Comparison with Other Algorithms

To evaluate the performance of the proposed algorithm

with other algorithms, Table VII,VIII list the recognition

rates of the proposed and state-of-the-art algorithms on the

JAFFE and CK+ databases. One can observe from Table

VII that the proposed algorithm ranks the 2nd among the

considered algorithms, which justifies its competitive per-

formance. For the CK+ database, it was reported in [39]

that peak-piloted DNN achieves a recognition rate of 99.3%.

However, both the peak and non-peak (neutral) expressions

were needed. Compared with the fine-tuning method [2],

the proposed approach did not use any geometry feature or

temporal video information. However, Table VIII shows that

the proposed algorithm achieves the best recognition rate of

97.35% on the database under the same setting.

TABLE VII: Comparison of different algorithms on JAFFE

database.

Algorithm Subjects Protocol
Recog.
rate (%)

Subclass Discriminant [33] 10 10-fold 49.47
KCCA [34] 10 10-fold 77.05

Weighted LDA [35] 10 10-fold 58.53
Information Projection [36] 10 5-fold 83.18

Classifier Selection [37] 10 10-fold 85.92
Ours 10 10-fold 83.57

TABLE VIII: Comparison of different algorithms on CK+

database.

Algorithm Subjects Protocol
Recog.
rate (%)

Margin Projection [19] 100 5-fold 89.2
Radial Feature [20] 94 10-fold 91.51
AU Network [21] 118 10-fold 92.05

DNN [22] 106 5-fold 93.2
Patch Weighting [38] 106 10-fold 94.09

Fine Tuning [2] 106 10-fold 97.25
Peak-Piloted DNN [39] 106 10-fold 97.3

Ours 106 10-fold 97.35
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IV. CONCLUSIONS AND FUTURE WORKS

This work proposed a general framework for embedding

a hand-crafted feature into a deep network for feature learn-

ing. The proposed framework learns a deep feature with

the guidance of a hand-crafted feature using deep metric

learning. The feature is then integrated with the hand-crafted

feature using a fusion network for the final recognition.

The experimental results on CK+, JAFFE and FER2013

databases show that the proposed algorithm achieved better

performance than the original hand-crafted feature and the

feature learned without using the proposed feature loss.

Better performance than state-of-the-art approaches has also

been observed.

However, there is large room for further improvement.

First, more effective hand-crafted features, such as dense

SIFT [1] with bag of words will be embedded into more

network layers to test the performance of hand-crafted fea-

ture guidance. Second, the proposed feature learning will

be applied to other applications like face recognition. Third,

consider the limitation of the employed network and hand-

crafted feature, more effective network and hand-crafted

feature for the databases in the wild, such as FER2013 will be

investigated in our future work. Lastly, the proposed algorith-

m will employ larger database to train network parameters

with better generalization ability.

V. ACKNOWLEDGMENTS

The work was supported by Natural Science Foundation

of China under grands no. 61602315 and 61672357, the

Science and Technology Innovation Commission of Shen-

zhen under grant no. JCYJ20170302153827712, the Tencent

“Rhinoceros Birds”-Scientific Research Foundation for Y-

oung Teachers of Shenzhen University, the School Startup

Fund of Shenzhen University under grands no. 2018063.

REFERENCES

[1] R. T. Ionescu, M. Popescu, and C. Grozea, “Local learning to improve
bag of visual words model for facial expression recognition,” in
Workshop on Challenges in Representation Learning, International
Conference on Machine Learning, 2013.

[2] H. Jung, S. Lee, J. Yim, S. Park, and J. Kim, “Joint fine-tuning
in deep neural networks for facial expression recognition,” in IEEE
International Conference on Computer Vision, 2016, pp. 2983-2991.

[3] K. Sikka, T. Wu, J. Susskind, and M. Bartlett, “Exploring bag of words
architectures in the facial expression domain,” in European Conference
on Computer Vision: Workshops and Demonstrations, 2012, pp. 250-
259.

[4] A. Zadeh, T. Baltrusaitis, and L. P. Morency, “Convolutional experts
constrained local model for facial landmark detection,” in Computer
Vision and Pattern Recognition Workshop (CVPRW), 2017, pp. 2051-
2059.

[5] H. Pan and H. Jiang, “Learning convolutional neural networks using
hybrid orthogonal projection and estimation,” in arXiv:1606.05929v4,
2016.

[6] H. Qian, Y. Zhang, and C. Liu, “Vehicle classification based on the
fusion of deep network features and traditional features,” in Seventh
International Conference on Advanced Computational Intelligence,
2015, pp. 257-262.

[7] M. Liu, R. Wang, S. Li, S. Shan, Z. Huang, and X. Chen, “Com-
bining multiple kernel methods on Riemannian manifold for emotion
recognition in the wild,” in International Conference on Multimodal
Interaction, 2014, pp. 494-501.

[8] R. Paul, S. H. Hawkins, L. O. Hall, D. B. Goldgof, and R. J. Gillies,
“Combining deep neural network and traditional image features to
improve survival prediction accuracy for lung cancer patients from
diagnostic CT,” in IEEE International Conference on Systems, Man,
and Cybernetics, 2016, pp. 2570-2575.

[9] S. P. Suggu, K. N. Goutham, M. K. Chinnakotla, and M. Shrivastava,
“Hand in glove: deep feature fusion network architectures for answer
quality prediction in community question answering,” in International
Conference on Computational Linguistics (COLING), 2016, pp. 1429-
1440.

[10] T. Majtner, S. Yildirim-Yayilgan, and J. Y. Hardeberg, “Combining
deep learning and hand-crafted features for skin lesion classification,”
in International Conference on Image Processing Theory Tools and
Applications (IPTA), 2016, pp. 1-6.

[11] O. Araque, I. Corcuera-Platas, J. F. Snchez-Rada, and C. A. Iglesias,
“Enhancing deep learning sentiment analysis with ensemble tech-
niques in social applications,” Expert Systems with Applications, vol.
77, no. C, pp. 236-246, 2017.

[12] P. Khorrami, T. L. Paine, and T. S. Huang, “Do deep neural networks
learn facial action units when doing expression recognition?,” in IEEE
International Conference on Computer Vision Workshop, 2015, pp. 19-
27.

[13] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in European Conference on Computer Vision, ECCV,
2014, pp. 818-833.

[14] L. L. Shen and L. Bai, “Gabor feature based face recognition using
kernel methods,” in IEEE International Conference on Automatic Face
and Gesture Recognition, 2004, pp. 170-176.

[15] F. Juefei-Xu, V. N. Boddeti, and M. Savvides, “Local binary convolu-
tional neural networks,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2017.

[16] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A discriminative feature
learning approach for deep face recognition,” in European Conference
on Computer Vision, 2016, pp. 499-515.

[17] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “SphereFace: deep
hypersphere embedding for face recognition,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017, pp. 212-220.

[18] X. Liu, B. V. K. V. Kumar, J. You, and P. Jia, “Adaptive deep metric
learning for identity-aware facial expression recognition,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR 2017)
Workshop, 2017, pp. 522-531.

[19] S. Nikitidis, A. Tefas, and I. Pitas, “Maximum margin projection
subspace learning for visual data analysis,” IEEE Transactions on
Image Processing, vol. 23, no. 10, pp. 4413-4425, 2014.

[20] W. Gu, C. Xiang, Y. V. Venkatesh, D. Huang, and H. Lin, “Facial
expression recognition using radial encoding of local Gabor features
and classifier synthesis,” Pattern Recognition, vol. 45, no. 1, pp. 80-91,
2012.

[21] M. Liu, S. Li, S. Shan, and X. Chen, “AU-aware deep networks for
facial expression recognition,” in IEEE International Conference and
Workshops on Automatic Face and Gesture Recognition, 2013, pp. 1-6.

[22] A. Mollahosseini, D. Chan, and M. H. Mahoor, “Going deeper in facial
expression recognition using deep neural networks,” in IEEE Winter
Conference on Applications of Computer Vision (WACV), 2016, pp.
1-10.

[23] L. Shen and L. Bai, “A review on Gabor wavelets for face recognition,”
Pattern Analysis & Applications, vol. 9, no. 2-3, pp. 273-292, 2006.

429

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 13,2021 at 09:05:56 UTC from IEEE Xplore.  Restrictions apply. 



[24] K. Yan, Y. Chen, and D. Zhang, “Gabor surface feature for face
recognition,” in Proceedings of First Asian Conference on Pattern
Recognition, 2011, pp. 288-292.

[25] M. J. Lyons, J. Budynek, and S. Akamatsu, “Automatic classification
of single facial images,” IEEE Transactions on Pattern Analysis &
Machine Intelligence, vol. 21, no. 12, pp. 1357-1362, 1999.

[26] A. Yao, D. Cai, P. Hu, S. Wang, L. Sha, and Y. Chen, “HoloNet:
towards robust emotion recognition in the wild,” in ACM International
Conference on Multimodal Interaction, 2016, pp. 472-478.

[27] A. Dhall, J. Joshi, K. Sikka, R. Goecke, and N. Sebe, “The more
the merrier: Analysing the affect of a group of people in images,”
in IEEE International Conference and Workshops on Automatic Face
and Gesture Recognition, 2015, pp. 1-8.

[28] R. Collobert, ”Torch Tutorial,” Institut Dalle Molle d’Intelligence
Artificielle Perceptive Institute, 2002.

[29] T. Kanade, Y. Tian, and J. F. Cohn, “Comprehensive database for facial
expression analysis,” in IEEE International Conference on Automatic
Face and Gesture Recognition, 2000, pp. 46.

[30] M. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba, “Coding facial
expressions with Gabor wavelets,” in IEEE International Conference
on Automatic Face & Gesture Recognition, 1998, pp. 200.

[31] I. J. Goodfellow, D. Erhan, P. L. Carrier, A. Courville, M. Mirza, and
B. Hamner, et al., “Challenges in representation learning: A report
on three machine learning contests,” in International Conference on
Neural Information Processing, 2013, pp. 117-124.

[32] Y. Sun, X. Wang, and X. Tang, “Deep convolutional network cascade
for facial point detection,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2013, pp. 3476-3483.

[33] M. Zhu and A. M. Martinez, “Subclass discriminant analysis,” IEEE
Transactions on Pattern Analysis & Machine Intelligence, vol. 28, no.
8, pp. 1274-1286, 2006.

[34] W. Zheng, X. Zhou, C. Zou, and L. Zhao, “Facial expression recog-
nition using kernel canonical correlation analysis (KCCA),” IEEE
Transactions on Neural Networks, vol. 17, no. 1, pp. 233, 2006.

[35] M. Kyperountas, A. Tefas, and I. Pitas, “Weighted Piecewise LDA for
Solving the Small Sample Size Problem in Face Verification,” IEEE
Transactions on Neural Networks, vol. 18, no. 2, pp. 506-519, 2007.

[36] H. Wang, S. Chen, Z. Hu, and W. Zheng, “Locality-preserved maxi-
mum information projection.,” IEEE Transactions on Neural Network-
s, vol. 19, no. 4, pp. 571-585, 2008.

[37] M. Kyperountas, A. Tefas, and I. Pitas, “Salient feature and reliable
classifier selection for facial expression classification,” Pattern Recog-
nition, vol. 43, no. 3, pp. 972-986, 2010.

[38] W. Xie, L. Shen, M. Yang, and Z. Lai, “Active AU based patch
weighting for facial expression recognition,” Sensors, vol. 17, no. 2,
pp. 275, 2017.

[39] X. Zhao, X. Liang, L. Liu, T. Li, Y. Han, N. Vasconcelos, and S.
Yan, “Peak-piloted deep network for facial expression recognition,” in
European Conference on Computer Vision, 2016, pp. 425-442.

430

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 13,2021 at 09:05:56 UTC from IEEE Xplore.  Restrictions apply. 


