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Abstract— Cross-database facial expression recognition (CD-
FER) has been widely studied due to its promising applicability
in real-life situations, while the generalization performance is
the main concern in this task. For improving cross-database
generalization, current works frequently resort to masked
autoencoder (MAE) to learn the expression representation in
an unsupervised manner, and disentanglement of expression
and domain features. (i) For MAE, current algorithms mainly
employ random masking, and leverage the reconstruction of
these masked regions to enable networks to learn the expression
representation. However, these masked regions are expression-
irrelevant, can not well reflect the characteristics of expression,
thus are not efficient enough in representation learning. To
this end, we propose an expression-aware masking in MAE
to improve the learning efficiency of expression representation,
by guiding MAE to mask out expression-aware regions during
training. (ii) For disentanglement of expression and domain
features, current algorithms realize it mainly in the deep layers.
However, the coupling of these features in the shallow layers are
rarely concerned, which may largely affect the disentanglement
performance in deep layers. Thus, we propose a progressive
decoupler to disentangle these features block by block, to use
the feature disentanglement in shallow layers to facilitate that
in deep layers. Extensive quantitative and qualitative results on
multiple expression datasets show that our method can largely
outperform the state of the arts in terms of cross-database
generalization performance.

I. INTRODUCTION

Facial expression recognition (FER) has received
widespread attention in recent years due to its important role
in human-computer interaction. However, the performance
of FER in the wild scenarios is sensitive to the factors of
races, genders, illumination, head pose changes, occlusions,
as well as the domain gaps. This domain gap problem can
be mitigated by some existing domain adaptation (DA)
methods, while they require unlabeled testing data during
the training phase. By contrast, domain generalization
(DG) methods received increasing attention since the target
domain dataset is not necessary during training.

However, the limited labeled expression data and its fixed
collection environment pose a bottleneck for expression
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Fig. 1. The motivation of our Expression semantic guidance masking
(ESGM) and Progressive decoupler of expression and domain (PDED).

representation learning. Masked autoencoder (MAE) [11]
adopted an unsupervised paradigm and used an encoder-
decoder architecture for masked feature modeling. It ran-
domly masks out a ratio, e.g. 75% of the patches in the
image and trains an autoencoder to learn how to effectively
reconstruct the masked patches by exploring the correlations
between the unmasked and masked regions of the image.
This approach achieves competitive performances in many
fields [6], [12], [13], for example, MAE-DFER [36] and
Audio-MAE [13] use MAE to explore unlabeled video and
audio datasets, respectively, in a self-supervised manner.

But the above works are all random masking, our insight
is that the reconstruction of MAE is to serve our downstream
cross-domain facial expression recognition, and the informa-
tion density is concentrated at the facial regions relevant to
expressions. As shown in the top of Fig. 1, random masking
could potentially result in masking many facial low relevant
patches while retaining expression-related patches, so there
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is no guarantee that the most informative patches will be
properly focused on. To this end, we propose expression
semantic guidance masking (ESGM), a masking strategy to
ensure that most expression-related patches can be masked.

In addition to the limitation of the labeled data in ex-
pression representation learning, CDFER also suffers from
the entanglement of expression and domain features. For
extracting domain-invariant expression features, existing de-
coupling methods are mainly divided into three categories,
i.e., single decoupling [5], cyclic decoupling [50], and par-
allel decoupling [35]. Single decoupling only decoupled
once, which may result in incomplete decoupling. Cyclic
decoupling decouples the same feature multiple times to
enhance the effect of separating domain and expression
features. Parallel decoupling uses multiple decouplers to
decouple the same feature, but the obtained features may
be redundant. Previous works only performed decoupling on
deep features of a network, as shown in the bottom of Fig. 1,
they produce inappropriate attention in expressions. For the
reasons, they may ignore the entanglement of expression
and domain features in shallow layers, which affect the
decoupling capacity in deep layers. Thereby, we proposed
progressive decoupler of expression and domain (PDED) to
disentangle these features in both shallow and deep layers, so
as to use their disentanglement in shallow layers to facilitate
learning domain-invariant expression features in deep layer.

To address the limitations discussed above, we propose a
novel two-stage framework for cross-domain facial expres-
sion recognition. In the pre-training stage, we employ an
encoder-decoder architecture for self-supervised pre-training.
A novel masking strategy, i.e. expression semantic guidance
masking (ESGM) is designed to enable the model to selec-
tively attend to expression-aware regions during expression
information masking and reconstruction, so as to specifically
learn the expression feature representation. In this way,
we can distill expression-specific patterns from different
unlabeled facial datasets, avoiding over-reliance on the mere
source training dataset.

In addition to the representation of expression sensitive
cues via expression-aware masking and reconstruction, we
take into account the impact of shallow-layer feature entan-
glement on that on deep layer, and propose a progressive
decoupler to separate domain and expression features block
by block. In this way, the network can obtain domain-
invariant expression features at deep blocks via progressive
disentanglement from shallow layers that are more conducive
to CDFER.

The contributions of this paper are summarized as follows
• We propose a novel masking strategy to enable an

encoder-decoder to focus more on facial expression
information for masked modeling, and eventually obtain
an encoder that is aware of expression cues.

• Taking into account the coupling of expression and
domain features in shallow layers will impair their dis-
entanglement in deep layers, we propose a progressive
decoupling module that disentangles domain-invariant
expression features and domain features block by block.

• Our method outperforms the related state of the arts
for the task of cross-database FER in terms of domain
generalization performance.

II. RELATED WORKS

A. Masked Autoencoder

Masked modeling [11] learns robust feature representa-
tions through masking and reconstruction, and has achieved
great success in natural language processing (like BERT [7])
and computer vision. Masked AutoEncoder introduced an
asymmetric encoder-decoder architecture for masked image
modeling, which was inspired by the denoising autoencoder
[39] and image inpainting [32], and was used in the field of
computer vision after the success of BERT, such as image
recognition [19], video recognition [38], and point cloud
[30]. BEiT [2] is one of the pioneering works to apply image
masking and reconstruction for downstream tasks. SemMAE
[19] limits the mask area through attention map. VideoMAE
[38] masks some video clips in the time dimension. These
methods all use random masking, which do not differentiate
the patches according to the characteristics of the considered
task. Latent-OFER [18] used anomaly classification to select
the occluded mask, but lacking a loss to constrain it.

In this work, we propose the expression semantic guidance
masking (ESGM) strategy to replace random masking in
MAE for reconstructing expression-related regions, so as to
obtain an encoder robust to expression representation via a
self-supervised training.

B. Cross-database Facial Expression Recognition (CDFER)

Two categories of algorithms are frequently considered in
cross-database expression recognition, i.e., domain adapta-
tion [22], [25], [41] and domain generalization [14], [29],
[40], [44]. Li et al. [22] propose ECAN to learn domain-
invariant and discriminative feature representations. Xie et
al. [41] propose the AGRA framework, which combines
graph representation propagation with adversarial learning.
However, these domain adaptation methods require unlabeled
data of the target domain.

By contrast, domain generalization does not need tar-
get domain data during training. TDTLN [43] devised the
cross-database-specific discriminative features, and Ji et al.
proposed ICID [14] to learn both intra-category common
features and inter-category discriminative features. Zou et
al. [50] proposed Learn-to-Decompose (LD) modules to re-
construct the transferable expression feature. However, above
works only perform the expression and domain decoupling in
deep layers without considering the entanglement in shallow
layers, which may harm the decoupling capacity in deep
layers. In this work, we propose to decouple expression and
domain features at different network layers via our proposed
progressive disentanglement of these features.

III. METHODOLOGY

In this section, we introduce the main modules of our
proposed framework in Fig. 2, including Expression semantic
guidance masking (ESGM) and Progressive decoupler of



Fig. 2. Our method consists of the modules of Expression semantic guidance masking (ESGM), Progressive Decoupler of expression and domain (PDED).

expression and domain (PDED), corresponding to the pre-
training and fine-tuning stages, respectively. ESGM aims
to train an encoder that has learned the facial expression-
related information from the unlabeled facial image with
the assistance of attention block adaptively in pre-training
stage. In the fine-tuning stage, PDED further decouples the
expression and domain features block by block, and uses
domain-invariant expression features for classification.

A. Expression semantic guidance masking (ESGM)

As our motivation stated, random masking does not take
into account the characteristics of face images. Therefore,
we design a novel adaptive masking strategy that allows
us to guide model pre-training under the supervision of
face parsing segmentation, as shown in Fig. 3. Specifically,
following ViT [9], we divide a face image input xf into a
set of several non-overlapping patches and map them into
tokens P as:

P =
[
P (0), P (1), · · · , P (Np−1)

]
, (1)

where Np = (H×W )/(ps×ps) is the number of patches, H ,
W and ps are the height, width and patch size, respectively,
and P ∈ RNp×d. We then use a Transformer encoder
[9] which consists of Multi-head Self-Attention (MSA) and

Fig. 3. Mechanism of the expression semantic guidance masking (ESGM).
“Matmul” operation denotes the matrix multiplication.

Multi-Layer Perception (MLP) with skip connections to get
the mask weight ω.

Firstly, the input P ∈ RNp×d is linearly transformed to
queries Q, keys K, and values V as follows

[Q,K, V ] = P [wq, wk, wv], (2)

where wq, wk ∈ Rd×dk , wv ∈ Rd×dv are learnable variables.
In MSA, self-attention operations are performed several



times in parallel, and linearly embeds their concatenated
outputs. Eventually, the weighting vector ω is obtained by
inputting the features into a pooling layer and several linear
layers as follows

ω = MLP (GAP(A · V )),

with A = Softmax(
Q ·KT

√
dk

),
(3)

where · means matrix multiplication, GAP is the global
average pooling operation,

√
dk is a scaling factor, ω =[

ω(0), ω(1), · · ·ω(Np−1)
]

represents the possibility of the
patch being masked and ω(i) ∈ [0, 1].

Then, we obtain the indexes of these patches according to
their magnitudes. The indexes of the masked patches, i.e.,
idxmask can be represented as

idxmask =
[
idx(0), idx(1), · · · , idx(⌊mr×Np⌋−1)

]
,

with idx = argsort(ω),
(4)

where argsort(ω) means the indexes after ω is sorted in the
descending order. The hyperparameter mr denotes the mask
ratio. In Eq. (4), we aim to select a proportion of dominant
patches determining by the mask ratio of mr, to reflect
expression-aware cues or the domain-irrelevant features.

To make the patches corresponding to our desired masking
targets, we introduce face parsing segmentation Sparsing as
the guidance. Specifically, we empirically select the facial
attributes that are related to expressions into a set as Sexp =
{1 : nose, 2 : eye, 3 : brow, 4 : mouth, 5 : lip, 6 : skin},
then use an indicator map Mexp to represent whether an
image pixel belongs to Sexp, which is formulated as:

Mexp(i, j) =

{
1, Sparsing(i, j) ∈ Sexp

0, otherwise
, (5)

where Spasing(i, j) denotes the pixel value of i-th row and j-
th column in the parsing segmentation map. Then we divided
Mexp into Np patches, i.e.,

[
M(0)

exp,M(1)
exp, . . . ,M(Np−1)

exp

]
.

To enable networks to focus on the patches containing more
expression attributes, we use Mexp to guide the mask weight
ω, and the loss is formulated as:

Lmask =

Np−1∑
k=0

|ω(k) −
ps−1∑
i=0

ps−1∑
j=0

M(k)
exp(i, j)

ps× ps
|, (6)

Since a larger M(k)
exp implies a higher density of

expression-related information, the attention block can pay
attention to the expression-related patches, corresponding
to large value of ω, under the constraint of Lmask. Then
these patches are masked, while the unmasked patches are
input into an asymmetric encoder-decoder for reconstructing
the image. While the encoder only encodes the unmasked
tokens, the decoder decodes both encoded unmasked tokens
and masked tokens, where the mask tokens needed to be
predicted are randomly initialized. In addition, positional
embeddings are added to the unmasked and masked tokens to
let the model capture the spatial context of the masked tokens

in an image. We follow MAE [11] and utilize the MSE loss
Lrec to constrain the reconstruction of the masked tokens as:

Lrec =
∑

i∈idxmask

∥P (i) −Fpt(P
(i), θFpt

)∥22, (7)

where Fpt denotes the entire reconstruction network, θFpt

represents its parameters. The total loss of the pre-training
stage is then formulated as

Lpt = Lrec + λ1Lmask, (8)

where λ1 is a hyperparameter.
For our masking strategy, a few epochs of warming up

training are needed to enable the attention block to focus on
the expression-aware facial patches. That is, this part of the
pre-training requires using datasets of face parsing results
as the supervision cues. After ω has been learned in these
epochs, the trained attention block can mask the expression-
aware patches without the supervision of face parsing data
in the latter epochs of the pre-training. Thus, the encoder
after the entire pre-training could reduce the sensitivity of
the expression representation to a specific domain.

B. Progressive decoupler of expression and domain (PDED)

In addition to the ESGM module that models expression-
aware features, we further disentangle expression and domain
features to adapt to CDFER. However, current works mainly
decouple these features in deep layers, and most of them
neglect the entanglement of these features in the shallow
layers. Thus, we propose progressive decoupler of expression
and domain (PDED) to obtain domain-invariant expression
features during the fine-tuning stage, i.e. this disentanglement
is performed at each block of networks, as shown in Fig. 2.

First, we input the expression image xe (original domain)
or xa (data augmentation e.g. Gaussian blurring for single
source domain or the domains other than the source domain
in multi-source domains) to the Encoder obtained in the
pre-training stage, and get the feature F 0. To obtain domain-
invariant expression features, we then remove domain-related
features at each block as:

F i+1 = F i − F i
d, (9)

where F i+1 is the input of (i+1)-th block, and each domain
feature F i

d is represented with a convolution operator with
the same channels before and after this convolution.

By eliminating the influence of domain features at each
block, we can finally obtain disentangled expression features
and domain features as follows{

Fdom =
∑n

i=1 F
i
d

Fexp = Fn , (10)

Meanwhile, to better extract the domain-invariant expres-
sion feature, we use the expression classification loss as the
supervision, formulated as follows

Lexp = − 1

MS

MS∑
i=1

y(i)e log(Fft(F
(i)
exp, θFft

)), (11)



where MS is the number of samples from the source domain
dataset, F

(i)
exp and y

(i)
e are the expression feature of i-

th training sample and its ground truth label, Fft is the
employed fine-tune network and θFft

denotes its parameters.
In addition, the domain classification loss is also employed,
which is formulated as:

Ldom = − 1

MS

MS∑
i=1

y
(i)
d log(F

(i)
dom)+(1−y

(i)
d ) log(1−F

(i)
dom),

(12)
where F

(i)
dom and y

(i)
d are the domain feature of i-th train-

ing sample and its domain label. Eventually, we train the
classifier based on the loss Lft as follows

Lft = Lexp + λ2Ldom, (13)

where λ2 is a hyperparameter. For clarity, the training
procedure of our algorithm is shown in Algorithm 1.

Algorithm 1 The training procedure of our method.

Input: Samples of unlabeled facial image {x(i)
f }Ni=1, la-

beled expression images and its augmentation images
{x(i)

e , x
(i)
a , y

(i)
e }Mi=1.

Output: Final model parameter θft for the prediction.
1: # Expression semantic guidance masking:
2: while not converged do
3: Input x(i)

f , get token P in Eq. (1), patch weights ω in
Eq. (3) for our masking strategy;

4: Mask the tokens P using index idxmask in Eq. (4);
5: Reconstruct the masked patches and update the

Encoder with loss in Eq. (8).
6: end while
7: # Progressive decoupler of expression and domain:
8: while not converged do
9: Input x(i)

e or x(i)
a to the Encoder, get feature F 0;

10: Decouple the features in each network block in
Eq. (9), get domain feature Fdom and expression
feature Fexp in Eq. (10);

11: Update the θft using expression classification loss
Lexp in Eq. (11) and domain classification loss Ldom

in Eq. (12).
12: end while

IV. EXPERIMENTS

A. Experimental Setup

Dataset. We use CelebA [26], FFHQ [16], CASIA-WebFace
[45] and CelebAMask-HQ [17] datasets at pre-training stage
and finetune at the labeled datasets of RAFDB [21] and Af-
fectNet [31]. Ultimately, the proposed approach is evaluated
on six public databases, i.e., RAFDB [21], FER2013+ [3],
SFEW2.0 [8], AffectNet [31], ExpW [48] and JAFFE [28]
with seven expressions, i.e., six basic expressions and neutral.
The size of input images is set as 224×224.
Implementation details. For the pre-training stage, we first
utilize the MAE pretrained on ImageNet-1K as the backbone,
and pre-train the model for 20 epochs on CelebAMask-HQ

[17], aiming to get an attention block with finely annotated
face parsing segmentation. Subsequently, we utilize CelebA
[26], FFHQ [16], CASIA-WebFace [45], which has no
parsing segmentation for pre-training 350 epochs. At the fine-
tuning stage, we conduct the training on the source dataset
and evaluate the performance on other datasets for CDFER.
The networks are optimized via AdamW [27] with the
learning rates of 1.5×10−4 and 1.0×10−4 in the pre-training
and fine-tuning stages, respectively. Weight decay is set to
0.05, momentum is set to 0.9, and used cosine scheduler at
the initial training of the two stages. The hyperparameters
λ1 in Eq. (8) and λ2 in Eq. (13) are both set to 1. All the
experiments are conducted on 4 GPU of NVIDIA 3090 with
24GB memory.

B. Comparison with the state of the arts

1) Performance under single source domain: We first
evaluate the classification performance of our method, per-
form training on the RAFDB or AffectNet, and evaluate the
performance on the remaining five databases and show the
results in Table I.

Compared with ICID [14] designed specifically for cross-
domain FER, Table I shows that our method achieves an
improvement of more than 9.85% in terms of average accu-
racy, and a large margin of 6.17% when AffectNet is used for
the training. Compared with other FER methods, including
ActiveFER [33], MLA [1], etc., that are not specifically
designed for cross-domain FER, our method achieves an
improvement more than 7% on the five target domains in
terms of average accuracy. Compared with other state-of-the-
art (SOTA) DG methods, including PDEN [20], Sequeener
[37], SADA [46], etc., that are not specially designed for
FER, our method consistently outperforms these SOTAs in
all five sets of experiments. For example, when RAFDB
is used as the source database, our method achieves an
improvement of 10.81% over the SADA [46].

For the masking strategy, MARLIN [4] selects expression
patches according to their importance degree, which is simi-
lar to ours. Thus, we replace our ESGM strategy with that in
MARLIN [4] for the ablation study of our masking strategy.
Compared to MARLIN, our method achieved improvements
of 1.05% and 0.31% on the two datasets, respectively,
showing the effectiveness of our ESGM module. It’s worth
noting that our method does not introduce any randomness
in the selection of expression face regions, which thus appear
more robust in real application scenarios.

2) Performance on the testing dataset: To study the
performance of our algorithm on the testing dataset of the
source domain, Table II presents the accuracy of our method
compared with other SOTAs. It shows that that our method
can achieve the best results on the test dataset of RAFDB.
Specifically, our algorithm achieves improvements of 0.94%
over MAE+ResNet18 and 1.66% over EAC [47].

3) Performance under multiple source domains: We fur-
ther evaluate the domain generalization performance of our
method under the setting of multiple source domains, and
show the results in Table III. It shows that our method



TABLE I
THE PERFORMANCE OF OUR ALGORITHM IN THE SCENARIO OF SINGLE-SOURCE DOMAIN GENERALIZATION. THE BEST RESULTS ARE LABELED IN

BOLD. ‘AVG’ DENOTES THE AVERAGE ACCURACY. † MEANS THAT THE CODES ARE REPRODUCED BY US. ‡ MEANS REPLACING THE ESGM WITH

MARLIN [4]’S MASK STRATEGY BASED ON OUR FRAMEWORK.

Source Dataset Method SFEW2.0 FER2013+ ExpW AffectNet JAFFE Avg

RAFDB

Baseline(ResNet18) 45.18 60.23 50.93 41.63 50.70 49.73
Baseline(MAE+ResNet18) 49.08 57.21 49.25 44.26 49.77 49.91

LPL(CVPR’17) [23] 46.79 61.01 51.40 43.89 56.81 51.98
ICID(Neuroc.’19) [14] 48.39 62.19 55.08 37.51 51.17 50.87
PDEN(CVPR’21) [20] 41.28 52.02 35.33 38.43 53.52 44.12
SNR(TMM’22) [15] 34.86 42.53 36.88 27.49 37.09 35.77

Sequeener(NeurIPS’22) [37] 37.06 43.22 47.62 24.97 47.09 39.99
EAC(ECCV’22) [47] 45.64 58.35 56.80 42.05 51.32 50.83
MLA(ICMR’23)† [1] 51.38 61.28 56.19 44.49 54.46 53.56

ActiveFER(ACII’23) [33] 43.12 57.54 44.46 44.06 50.00 47.82
SADA(AAAI’23) [46] 49.40 59.86 51.58 39.11 49.60 49.91

MARLIN(CVPR’23)‡ [4] 55.28 73.01 63.28 52.10 54.70 59.67
Ours 57.57 72.85 63.75 53.69 55.75 60.72

Method SFEW2.0 RAFDB FER2013+ ExpW JAFFE Avg

AffectNet

Baseline(ResNet18) 50.29 70.41 67.47 59.28 57.28 60.95
Baseline(MAE+ResNet18) 54.13 75.13 70.65 60.74 53.52 62.83

LPL(CVPR’17) [23] 51.75 72.13 68.59 60.43 58.22 62.22
ICID(Neuroc.’19) [14] 50.64 69.33 69.46 59.83 53.52 60.56
PDEN(CVPR’21) [20] 48.39 66.85 70.05 59.35 57.80 60.49
SNR(TMM’22) [15] 47.25 69.46 67.73 58.85 51.17 58.89

Sequeener(NeurIPS’22) [37] 52.35 72.42 70.46 61.13 58.22 62.92
EAC(ECCV’22) [47] 47.02 69.81 67.95 59.65 53.95 59.68
MLA(ICMR’23)† [1] 50.23 70.70 66.62 58.37 60.44 61.27

ActiveFER(ACII’23) [33] 47.94 66.56 61.94 54.53 51.32 56.46
SADA(AAAI’23) [46] 50.69 75.06 68.07 59.72 59.62 62.63

MARLIN(CVPR’23)‡ [4] 54.88 80.37 74.95 63.19 58.09 66.42
Ours 55.05 80.93 75.11 64.83 57.75 66.73

TABLE II
THE PERFORMANCE OF DIFFERENT ALGORITHMS ON THE TESTSET OF

RAFDB. THE TRAINING SET IS RAFDB. THE BEST RESULT IS LABELED

IN BOLD.

Method Acc
ResNet18 85.50
Vit-base 87.22

MAE+ResNet18 91.07
DACL(WACV’21) [10] 87.78
APViT(TAFFC’22) [42] 91.98

EAC(ECCV’22) [47] 90.35
Ours 92.01

achieves an improvement of 7.51% over the related variant,
i.e., ResNet18+MAE. Compared with other SOTA methods,
our method achieves the best result in terms of average
accuracy. Specifically, our method outperforms the SOTA
method of SADA [46] by a margin of 7.73% in this multi-
source domain scenario.

C. Ablation study

1) Ablation study on the proposed two modules: To study
the performances of the proposed modules of ESGM, PDED,
an ablation study is introduced in Table IV, where the
RAFDB dataset is used as the source domain.

Compared with the baseline (first row of Table IV), replac-
ing the random masking strategy with our ESGM (second
row of Table IV) improves the average accuracy by 8.67%.
Besides, the model with the module of PDED (third row of
Table IV) gains improvements of 2.28%. When both ESGM

TABLE III
THE PERFORMANCE OF OUR ALGORITHM IN THE SCENARIO OF

MULTI-SOURCE DOMAIN GENERALIZATION. THE BEST RESULTS ARE

LABELED IN BOLD. THE SOURCE DATASETS ARE RAFDB AND SFEW.

Method FER2013+ ExpW AffectNet JAFFE Avg
Baseline (ResNet18) 62.46 52.92 41.23 53.87 52.97

Baseline (MAE+ResNet18) 60.19 51.79 45.74 56.34 53.52
MixStyle(ICLR’21) [49] 64.05 52.40 47.00 51.64 53.77
PDEN(CVPR’21) [20] 54.10 50.45 42.67 51.95 49.79

Sequeener(NeurIPS’22) [37] 55.54 50.28 46.86 50.85 48.88
MLA(ICMR’23)† [1] 63.18 52.24 46.72 54.15 54.07
SADA(AAAI’23) [46] 62.72 51.86 45.68 52.95 53.30

Ours 68.15 62.42 53.91 59.62 61.03

and PDED are used, the accuracy is further improved to
60.72%. These results are probably due to that our ESGM
achieves expression representation less sensitive to domain,
and our PDED module enables the model to obtain more
domain-invariant expression features conducive to CDFER.

2) Ablation study of the proposed decoupling strategy: To
study the performance of the proposed decoupling strategy
in PDED, we compare its performance with those of the
baseline (without our PDED) and the other decoupling
variants, as shown in Table V.

Table V shows that our PDED achieves a performance
2.14% higher than the baseline. In comparison with single
decoupling, parallel decoupling and cyclic decoupling, our
progressive decoupler outperforms them by the margins
of 2.05%, 1.33% and 1.87%, respectively. The possible
reason is that single decoupling does not fully decouple
deep features. By contrast, cyclic decoupling contains more



TABLE IV
ABLATION STUDY OF THE PROPOSED MODULES OF ESGM AND PDED.

Source Dataset ESGM PDED SFEW2.0 FER2013+ ExpW AffectNet JAFFE Avg

RAFDB

49.08 57.21 49.25 44.26 49.77 49.91
" 54.36 70.46 61.46 52.40 54.21 58.58

" 53.67 58.59 49.90 44.31 54.46 52.19
" " 57.57 72.85 63.75 53.69 55.75 60.72

TABLE V
PERFORMANCES OF OUR DECOUPLING AND OTHER DECOUPLING METHOD. RAFDB IS USED FOR TRAINING. SINGLE DECOUPLING MEANS

DECOUPLEING ONCE, PARALLEL DECOUPLING MEANS USING 4 PARALLEL DEOUCPERS TO DECOUPLE THE FEATURE, AND CYCLIC DECOUPLING

MEANS TO DECOUPLE THE FEATURE FOR FOUR TIMES.

Method SFEW2.0 FER2013+ ExpW AffectNet JAFFE Avg
Without decoupling (baseline) 54.36 70.46 61.46 52.40 54.21 58.58

Single decoupling [5] 54.26 70.70 61.75 51.74 54.89 58.67
Parallel decoupling [35] 56.65 71.08 62.24 51.91 55.08 59.39
Cyclic decoupling [50] 55.14 70.62 61.89 52.28 54.31 58.85

Ours 57.57 72.85 63.75 53.69 55.75 60.72

Fig. 4. The attention map of our ESGM result. The top row is the original
images and the bottom row is the attention map A in Eq. (3) mapping to
the original images. The regions with warmer color of the heatmap indicate
the more attention by the attention block.

decoupling times, while the performance of this decoupling
on the same feature is limited. By resorting to the parallel
multi-branch decoupling, parallel decoupling outperforms the
baseline by a margin of 0.81%, while it contains large
redundancy among different branches, whose performance
is still 1.33% lower than our PDED.

D. Algorithm Analysis

1) Representation visualization: For the attention map
visualization, we use FFHQ as testset, and Fig. 4 shows
that our attention map accurately focuses on expression-
related areas, such as eyes, mouth, etc., allowing the network
to reconstruct expression-aware areas and learn domain-
invariant expression information.

To shed light on the capacity of our ESGM in recon-
structing expression cues, we visualize the reconstructed
expression images by random masking and our masking
strategy in Fig. 5. To make the comparison of reconstruction
visualization fair, we made the model trained with random
masking adopt the same masking patches as our ESGM.

Fig. 5 shows that the restoration of expression details with
random masking (MAE) is not clear enough, i.e. some blur-
ring and distortion are produced in the reconstructed images,
which may be because it can not mask expression-related
regions. By contrast, our expression-aware masking produces
much better reconstructed expressions, where blurring on the

Fig. 5. The reconstruction visualization with random masking (MAE) and
our ESGM. The 3rd column visualizes the results of the model trained with
random masking, while the 4th column visualizes the results of the model
trained with our strategy.

key expression-relevant regions is much reduced.
2) Decoupling Analysis: To study the performance of

progressive decoupling for progressive separation of expres-
sion and domain features, we visualize the domain features
F

(k)
d extracted from each block of the ResNet via the t-

SNE algorithm in Fig. 6, where the 2D distribution of
features specific to the testing samples from RAFDB [21]
and SFEW [8] is presented. It shows that the features in
the shallow layers still appear intersecting parts between
different domains, which are separated even further in the
deeper block layer.

To further study the differences of the feature maps at



Fig. 6. The feature representation of examples from different datasets (RAFDB and SFEW) using the t-SNE algorithm. (a), (b), (c), (d) show the domain
features separated from the four blocks of ResNet by decoupling, the features from the two domains gradually separate from each other. Green dots
represent the domain features from RAFDB, while brown dots represent the domain features from SFEW.

Fig. 7. The heatmap visualization of our progressive decoupling against
the single decoupling by grad-cam [34]. The regions in red boxes indicate
where our decoupling strategy outperforms the baseline in representing the
expression-aware cues, while the regions in blue boxes indicate where the
baseline decoupling focuses on the expression-insensitive regions.

different network blocks with single decoupling and our
progressive decoupling, we use grad-cam [34] to visualize
the heatmaps at different blocks by the two decoupling
strategies in Fig. 7. It shows that our method not only reduces
attention to expression-sensitive regions (blue boxes), but
also increases attention to relevant regions (red boxes),
compared to single decoupling. Meanwhile, our method
can successfully pay attention to expression-related areas in
shallow features.

3) Hyperparameter analysis: We present the sensitivity
of our algorithm against mask ratio mr in Fig. 8. As the
mask ratio increases, the average accuracy increases from
56.54% to the best of 60.72% and then decreases. These
results show that an appropriate mask ratio is required to
trade off the performances of reconstruction and expression
representation. It is worth noting that the introduced masking
and reconstruction in the pre-training stage are mainly used
to recover expression information, thus, a mask ratio of 0.75
frequently used in existing works [11], [19], [24] is not used.

Fig. 5 shows that almost all expression cues has been
masked with a mask ratio of 0.2. When the mask ratio is
small, the network cannot learn a lot of expression-related

Fig. 8. The performance sensitivity against the mask ratio mr in Eq. (4).
The model is trained on RAFDB, and tested on the other five datasets.

knowledge. When the mask ratio is too high, the network
pays too much attention to the other parts, thereby reducing
the learning intensity of the expression-aware parts.

V. CONCLUSIONS AND DISCUSSIONS

To address the problems of low-efficiency representation
learning, as well as entangled expression and domain features
in cross-database facial expression recognition (CDFER), we
propose expression-aware masking and progressive decou-
pler. Specifically, to make networks focus on expression
cues during face masking and reconstruction, we propose
an expression-aware masking strategy to occlude expression
regions dynamically for representation learning. Meanwhile,
to obtain domain-invariant expression features, we propose
a progressive decoupler to separate domain and expres-
sion features by simultaneously taking into account the
disentanglement performance in shallow layers. Extensive
experiments on six public databases demonstrate that our
approach outperforms state-of-the-art methods for CDFER
in terms of generalization performance. Ablation studies and
visualization results show the usefulness of each module. In
our future work, expression-aware masking can be jointly
learned with an AU recognition model, and specific masking
strategies can be devised for different expression categories
to further obtain a pre-trained encoder that is more robust to
domain variation.
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