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ABSTRACT

Recent CNN generator-based attack approaches can synthe-
size unrestricted and semantically meaningful entities to the
image, which are able to improve the transferability and ro-
bustness. However, such methods attack images by either
synthesizing local adversarial entities, which are only suit-
able for attacking specific contents, or performing global at-
tacks, which are only applicable to a specific image scale.
In this paper, we propose a novel Patch Quilting Generative
Adversarial Networks (PQ-GAN) to learn the first scale-free
CNN generator that can be applied to attack images with ar-
bitrary scales for various computer vision tasks. The princi-
pal investigation on transferability of the generated adversar-
ial examples, robustness to defense frameworks, and visual
quality assessment show that the proposed PQG-based attack
framework outperforms the other nine state-of-the-art adver-
sarial attack approaches when attacking the neural networks
trained on two standard evaluation datasets (i.e., ImageNet
and CityScapes). Our code is made available at https:
//github.com/XiangboGaoBarry/PQAttack.

Index Terms— Generative adversarial attack, Scale-free
generator, Task-generic attack, Adversarial patterns

1. INTRODUCTION

Deep Neural Networks (DNNs) are vulnerable to adversar-
ial examples [1]. To develop strong adversarial defense al-
gorithms [2–4], investigating robust adversarial attack algo-
rithms to disrupt these defenses [5] is also crucial. Traditional
image attack approaches [6–8] focus on generating perturba-
tions at the pixel-level with Lp-norm restrictions, whose at-
tack strengths are not easily transferred to unseen networks
[2]. Subsequently, many studies devote their efforts to formu-
lating methods that deliver more robust attack patterns against
the defense algorithms, including adding noisy perturbation
with weaker restriction [9,10] or even without restriction [11].

The work was supported by the Natural Science Foundation of China
under grants no. 62276170, 82261138629, the Science and Technol-
ogy Project of Guangdong Province under grants no. 2023A1515011549,
2023A1515010688, the Science and Technology Innovation Commission of
Shenzhen under grant no. JCYJ20220531101412030.

Despite that larger perturbation boosts up the transferability
and robustness of attack algorithms, the perturbation is per-
ceptible to human eyes and the adversarial examples are not
photo-realistic enough.

To solve this problem, some studies employ generative
adversarial networks (GAN) [12] to generate semantically
meaningful local entities and synthesize them to the im-
age [5, 13, 14] or to change the texture of a particular area
of the image [15]. Such GAN-style methods can generate
robust and transferable adversarial examples with high image
quality. However, such methods are designed for a specific
task, such as face recognition [13], and vehicle motion pre-
diction [14] (Problem 1). Alternatively, instead of generating
a local entity, others generate adversarial examples in an
end-to-end manner where a global adversarial perturbation
is carefully hidden in the target image [16, 17]. However,
these methods can only generate adversarial examples of one
particular or highly limited scale (Problem 2). The whole
generative network must be re-trained when the target image
scale is changed. Although some works can generate adver-
sarial examples with global semantic patterns without using
GAN [18–20], these methods can only generate a specific at-
tack pattern defined by manually designed math formulations,
which cannot be extended for generic usage.

In this paper, we propose a Patch Quilting Generative Ad-
versarial Network (PQ-GAN) that can synthesize images of
any scale without any distortion or discontinuity. It learns
three cascaded generators that can synthesize photo-realistic,
scale-free patterns to attack target images of any scale on the
whole-image level (globally) (addressing problem 2). Im-
portantly, the synthesized realistic and semantically meaning-
ful pattern ensures the visual quality of the adversarial exam-
ples. Task generic property allows our approach to be applied
to generate various photo-realistic patterns, e.g., rain streaks,
snow flakes, and camera lens dirt, for various computer vision
tasks such as image classification, object detection, instance
segmentation, etc. (addressing problem 1). Moreover, our
approach generates patterns with unrestricted pixel value, en-
suring transferability and robustness.

2985979-8-3503-4485-1/24/$31.00 ©2024 IEEE ICASSP 2024

IC
A

SS
P 

20
24

 - 
20

24
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 A
co

us
tic

s, 
Sp

ee
ch

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g 
(I

C
A

SS
P)

 | 
97

9-
8-

35
03

-4
48

5-
1/

24
/$

31
.0

0 
©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
A

SS
P4

84
85

.2
02

4.
10

44
72

87

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 11,2024 at 23:41:45 UTC from IEEE Xplore.  Restrictions apply. 



2. METHODOLOGY

2.1. Patch Quilting Generator-based image Attack

Given a target network of generic image analysis task with
model parameters ϕ and a loss function L(ϕ, I, y) used for
model training, where y is the label of the benign image I ,
the goal is to find an adversarial example Iadv that maximizes
L(ϕ, Iadv, y) under the restriction, i.e. Iadv is perceptually
natural. In particular, Fig. 1 illustrates our scale-generic gen-
erative model (whose pre-trained model parameters are rep-
resented as ψ′), namely Patch Quilting Generator (PQG). The
PQG takes a set of latent embeddingsZ initialized with Gaus-
sian distribution of mean 0 and standard deviation 1 as the
input, which controls the characteristic of the pattern and out-
puts a photo-realistic pattern P I . Then, P I is synthesized to
the target image I to produce an adversarial example Iadv that
is perceptually natural. Now the problem is transformed to
find a latent embeddings Z that maximize L(ϕ, Iadv, y) as:

MAXZL(ϕ, Iadv, y)
Subject to Iadv = Syn(I,P I) P I = PQG(Z, ψ′)

(1)

Notice that PQG is a pre-trained model that does not need to
be retrained in this attack stage. We explain the latent embed-
dings Z and how the PQG is designed to be scale-generic in
detail in Sec. 2.2. Syn(⋅) is a customized synthesis function
depending on the target pattern, (i.e. pixel-wise addition, or
depth-aware synthesis [21]).

To achieve the adversarial objective, we simply apply gra-
dient ascent to the loss function, to update the latent embed-
dings Z through an iterative process as:

Z̃t+1 ← Zt + α∇ZtL(ϕ, Iadv, y)
Zt+1 = NORM( ˜Zt+1)

(2)

where t is the time-stamp and α denotes the learning rate.
NORM stands for the normalization of every vector inZ with
mapping NORM(⋅) = (⋅−min)/(max−min). We putZ of the
last iteration into PQG to generate the adversarial example.

2.2. Patch Quilting GAN

2.2.1 Scale-free Image Generation via PQG. The proposed
Patch Quilting Generator (PQG) consists of three cascaded
generators GPAT, GHS, and GVS with the learnable weights
ψPAT, ψHS and ψVS, respectively. Each generator can gen-
erate image patches of the scale h × w. PQG takes three sets
of latent embeddings Z = {ZPAT,ZHS,ZVS} as the input, and
outputs a set of patches with desired attack pattern at the scale
of h × w. These patches can then be combined as a smooth
and photo-realistic global attack pattern P I whose scale can
be customized based on the target image. As shown in Fig. 1,
given a target image I with the scale of H ×W , our PQG

first initializes an attack pattern P raw ∈ RĤ×Ŵ consisting of a
integral number of empty patches of size h ×w as:

Ĥ = Nh × h, Ŵ = Nw ×w (3)

where Nh = ceil(H
h
), Nw = ceil(W

w
) denote the minimum

number of patches that are required to fill up each row and
column, ceil(⋅) means rounding up to an integer. The three
generators then generate a set of attack patches as follows.

Firstly, GPAT takes a set of latent embeddings ZPAT to gen-
erate a set of attack patches PPAT to fill up non-adjacent odd
rows and columns in the P raw. By letting NPAT

h = ceil(Nh

2
)

and NPAT
w = ceil(Nw

2
), this step can be formulated as:

praw
2a−1,2b−1 ∈ PPAT = GPAT(ZPAT, ψPAT)

Subject to ZPAT = {z2a−1,2b−1 ∈ N (0,1)
k
}

a ∈ {1,2,⋯,NPAT
h }, b ∈ {1,2,⋯,N

PAT
w }

(4)

where praw
2a−1,2b−1 denotes the image patch located at the 2a −

1th row and 2b − 1th column, while z2a−1,2b−1 ∈ N (0,1)k de-
notes the latent embedding of dimension k being used to gen-
erate praw

2a−1,2b−1.
Secondly, GHS generates a set of horizontal context-aware

realistic adversarial attack patches PHS, where each patch fills
up a horizontal gap in P raw based on not only ZHS but also its
horizontal neighbors in P raw, which are generated from GPAT.
By letting NHS

h = ceil(Nh

2
) and NHS

w = ceil(Nw

2
) − 1, this

process is formulated as:

praw
2a−1,2b ∈ PHS = GHS(ZHS, p

raw
2a−1,2b±1, ψHS)

Subject to ZHS = {z2a−1,2b ∈ N (0,1)
k
}

a ∈ {1,2,⋯,NHS
h }, b ∈ {1,2,⋯,N

HS
w }

(5)

Notice that praw
2a−1,2b±1 ∈ PPAT.

Finally, GVS generates a set of vertical context-aware re-
alistic adversarial attack patches PVS, targeting filling up the
rest of regions (all vertical gaps) in P raw. Specifically, each
patch generated by GVS fills up a gap based on not only ZVS
but also its vertical neighbors in P raw. By letting NVS

h =
ceil(Nh

2
) − 1 and NVS

w = Nw, this step is formulated as:

praw
2a,b ∈ PVS = GVS(ZVS, p

raw
2a±1,b, ψVS)

Subject to ZVS = {z2a,b ∈ N (0,1)
k
}

a ∈ {1,2,⋯,NVS
h }, b ∈ {1,2,⋯,N

VS
w }

(6)

Notice that praw
2a±1,b ∈ PPAT⋃PHS.

Consequently, a global pattern P̂ raw is obtained by filling
all patches of the P raw, where attack patches produced by
three generators are concatenated. We then remove the extra
pixels of the P̂ raw ∈ RĤ×Ŵ to make it have the same size
H ×W to the target image I , which is denoted as the final
P I . In summary, the PQG can not only synthesize global
image attack patterns of any required scale without requiring
re-training networks but also allow the final produced pattern
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Ground Truth Pattern

Patch Quilting Generator (PQG）
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Random 
Crop

Random 
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+=Patch Quilting GAN 
(PQGAN)

Inference Only

Train & Inference

Fig. 1. Illustration of the Patch Quilting Attack pipeline (Top)
and the training strategy of the Patch Quilting Generator (Bot-
tom).

to be smooth, continuous, and semantically meaningful.

2.2.2 PQ-GAN Optimization: To learn three generators of
the POG, we propose a GAN-style training strategy (called
PQ-GAN). To produce a globally smooth and continuous at-
tack pattern, we propose a Intra-Patch Smoothness Loss
to ensure each generated attack patch is smooth and photo-
realistic, and a Inter-Patch Smoothness Loss to enforce the
smoothness between neighboring patches.

Intra-Patch Smoothness Loss: As displayed at the
bottom of the Fig. 1, we collect all the patches Pintra =
PPAT⋃PHS⋃PVS generated by the generators of POG, treat-
ing them as negative samples, while a set of positive samples
P̃intra = {p̃mintra∣ m = 1,2,⋯,Mintra} are obtained by randomly
cropping a set of ground truth patches of size h × w from
the a ground truth Pattern P̃ , where Mintra equals the number
of patches in Pintra. All negative and positive samples are
then fed into a discriminator D to calculate the generator and
discriminator losses, respectively, based on the standard for-
mulation of the Wasserstein GAN with gradient penalty [22].
This process is formulated as:

Lintra =LGPAT(Pintra, ψPAT) +LGHS(Pintra, ψHS) +LGVS(Pintra, ψVS)+

LD(Pintra, ψD) +LD(P̃intra, ψD) (7)

whereLGPAT(Pintra, ψPAT),LGHS(Pintra, ψHS), andLGVS(Pintra, ψVS)
denote the generator losses specific to the patches PPAT, PHS,
and PVS, respectively. LD(Pintra, ψD) denotes the discrimina-
tor loss of negative samples Pintra, and LD(P̃intra, ψD) denotes
the discriminator loss of positive samples P̃intra.

Inter-Patch Smoothness Loss: To ensure the smooth-
ness and continuity among neighboring patches, we addi-
tionally randomly crop Minter patches Pinter = {pminter∣ m =
1,2,⋯,Minter} of size h × w from the generated attack pat-
tern P̂ raw and treat them as negative samples, where Minter is
a hyper-parameter. To balance between the positive and neg-
ative samples, we then randomly crop the same number of
patches P̃inter = {p̃minter∣ m = 1,2,⋯,Minter} from the ground

truth pattern P̃ , and feed P inter and P̃ inter into D to compute
the loss as:

Linter = LD(Pinter, ψD) +LD(P̃inter, ψD) (8)

where LD(Pinter, ψD) and LD(P̃inter, ψD) denote the discrim-
inator losses specific to the negative samples P inter and posi-
tive samples P̃inter, respectively. For the details of these losses,
please refer to Arjovsky et al. [22].

Then, the final loss for training PQ-GAN is obtained by
combining Inter- and intra-Patch Smoothness losses as:

LPQGAN = Lintra +Linter (9)

The combined loss would enforce three generators to be
jointly learned for generating a smooth and continuous global
attack pattern of any scale.

3. EXPERIMENTS AND RESULTS

Experimental setup: The image classification experiments
are conducted on 5,000 randomly selected images from the
validation set of the ImageNet, while the object detection and
instance segmentation experiments are conducted on the en-
tire validation set of the CityScapes dataset. Classification ac-
curacy and mean average precision (mAP) are the main eval-
uation metrics, while lower classification accuracy or mAP
indicates better attack performance.
Results of Cross-model Transferability. In our experiment,
two classifiers including ResNet-18 and VGG-19 are em-
ployed. We additionally compare our method with two unre-
stricted local attack methods, i.e. ColorFool [18] and Shadow
Attack [5], as well as two unrestricted global attack methods:
Adversarial Vignetting Attack (AVA) [20] and Adversarial
Haze [19]. As shown in Table 1, when our approach attacks
ResNet-18 with the Rain Drops attack pattern and transfers
to VGG-19, the classification accuracy is largely decreased
from 68.3% to 49.1%, while the second best decreases the
corresponding performance to 54.5%.

We also evaluate the cross-model transferability on the
Object Detection and Instance Segmentation tasks. For ob-
ject detection, we use Faster-RCNN [23] as the target net-
work and transfer the adversarial examples to YOLOv3 [24]
and Deformable DETR [25]. For Instance Segmentation, we
choose Mask-RCNN [26] as the target network and transfer
the adversarial examples to PointRend [27] and SOLO [28].
Tab. 2 shows that our method results in a larger decrease in
mAP compared to other methods while maintaining its attack
strength on unknown networks.
Results of Robustness. To evaluate the robustness of our
method against defense models, three denoise-based defense
algorithms, i.e. JPEG Compression, High-Frequency Sup-
pression [2], HGD [3], and two additional generation-based
defense algorithms, i.e. Ape-GAN [32], Defense-GAN [33]
are used for the evaluation. Tab. 3 reports the experimen-
tal results on: attacking image classification. It shows that
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Table 1. The classification accuracy of two well-trained mod-
els on both clean and adversarial examples, with ∗ indicating
the result of the white box attack. The “ATK Region” column
indicates the area of the image that is attacked.

Model ATK Region Methods ResNet-18 VGG-19
None 67.3 68.3

Local Shadow ATK [5] 16.7∗(50.6↓) 56.4 (11.9↓)
ColorFool [18] 9.3∗(58.0↓) 55.2 (13.1↓)

Global

IadvHaze [19] 21.4∗(55.9↓) 54.5 (13.8↓)
ResNet-18 RA-AVA [20] 4.2∗(63.1↓) 55.5 (12.8↓)

Rain Streaks (Ours) 3.6∗(63.7↓) 52.2 (16.1↓)
Lens Dirt (Ours) 4.3∗(63.0↓) 50.0 (18.3↓)

Snow Flakes (Ours) 2.5∗(64.8↓) 51.0 (17.3↓)
Rain Drops (Ours) 2.1∗(65.2↓) 49.1 (19.2↓)

Local Shadow ATK [5] 54.6 (12.7↓) 14.8∗(53.5↓)
ColorFool [18] 53.4 (13.9↓) 10.1∗ (58.2↓)

Global

IadvHaze [19] 55.1 (12.2↓) 25.1∗ (43.2↓)
VGG-19 RA-AVA [20] 51.3 (16.0↓) 5.1∗ (63.2↓)

Rain Streaks (Ours) 50.5 (16.8↓) 3.4∗ (64.9↓)
Lens Dirt (Ours) 49.5 (17.8↓) 4.3∗ (64.0↓)

Snow Flakes (Ours) 49.3 (18.0↓) 2.1∗(66.2↓)
Rain Drops (Ours) 49.8 (17.5↓) 2.7∗ (65.6↓)

Table 2. The mAP values of cross-model transferability on
the object detection and instance segmentation tasks. The
white box attack results are marked with ∗. Left: Object De-
tection; Right: Instance Segmentation

Methods mAP %↓ mAP %↓
FR-RCNN YOLO DETR Mk-RCNN PtRend SOLO

clean 40.3 32.8 46.6 36.4 37.1 34.9

DPatch 8.8∗ 12.3 20.2 - - -
AdvPatch 5.5∗ 12.5 15.4 - - -

UAP 12.1∗ 11.5 13.5 6.3∗ 9.7 8.5

Rain Streaks 4.2∗ 7.8 9.2 2.1∗ 7.8 7.3
Lens Dirt 5.3∗ 10.2 12.4 3.0∗ 10.1 9.4

Snow Flakes 4.9∗ 8.3 9.7 2.4∗ 7.5 8.3
Rain Drops 5.8∗ 7.7 11.0 2.5∗ 8.5 8.8

Table 3. Classification accuracy results on adversarial exam-
ples generated by attack methods under defense algorithms.

Attack
Defense NONE JPEG HFC HGD APE DEF-GAN

IadvHaze [19] 21.4 45.5 46.3 35.7 41.4 35.7
RA-AVA [20] 4.2 40.2 41.6 43.9 48.9 42.2
ColorFool [18] 9.3 10.4 11.9 12.4 25.1 40.1

Shadow [5] 16.7 18.1 18.5 21.0 22.7 33.4

Rain Streaks 3.6 12.1 11.5 13.2 15.9 26.5
Lens Dirt 4.3 10.3 12.8 12.2 21.9 28.0

Snow Flakes 2.5 9.9 13.3 12.5 14.5 23.4
Rain Drops 2.3 9.7 10.7 12.1 13.6 25.8

the denoise-based defense algorithms are not effective against
our unrestricted attacks. For example, our adversarial exam-
ples with raindrop patterns can reduce the classification accu-
racy by 8.4%, compared to the SOTA Shadow [5] under JPEG
Compression.
Quantitative Evaluation of Image Quality. We employ
three reference-free image quality assessment metrics: NIQE
[29], BRISQUE [30], and PIQE [31] to quantify the image
quality. We compare the average scores of the adversarial ex-
amples generated by different attack methods in Tab. 4. Tab. 4

Table 4. Classification accuracy of three non-reference im-
age quality assessment metrics NIQE [29], BRISQUE [30],
and PIQE [31] being evaluated on the adversarial examples
generated by eight attack approaches, where the pre-selected
5,000 images from the ImageNet dataset are used.

ATK BRISQUE ↓ NIQE ↓ PIQE ↓

Clean 22.4207 3.6792 32.1288

IadvHaze [19] 41.6842 12.7820 72.2287
RA-AVA [20] 33.2389 9.3145 32.8531
ColorFool [18] 29.4896 5.1896 31.3078

Shadow [5] 30.7310 5.1603 30.9756

RS (Ours) 30.3656 5.6763 30.5022
LD (Ours) 27.3893 6.2135 31.8128
SF (Ours) 32.6419 4.8950 33.2251
RD (Ours) 31.2009 6.5481 32.9371

green mamba

white heron

chameleon chameleon

white stork wheaten terrier

Clean Rain Drops Snow Flakes

Fig. 2. The generated adversarial examples for the images in
the ImageNet dataset, where the prediction label is displayed
in the bottom right corner of each image.

demonstrates that the adversarial examples produced by our
approach have the best image quality among all adversarial
examples in terms of the employed three metrics.
Visual Evaluation of Image Quality. Fig. 2 provides a
visualization of the adversarial examples generated by our
method. Our PQG guarantees the photo-realistic quality of
the generated patterns, while the PQAttack pipeline endows
them with attack strength. These results demonstrate that our
adversarial examples preserve a high level of photorealism,
making them indistinguishable from the human eye.

4. CONCLUSION

This paper proposed a novel adversarial image attack ap-
proach, which can train a generator to produce photo-realistic
and task-generic patterns to attack images of different scales.
Results demonstrate that our PQG outperforms state-of-the-
art methods in misleading both white-box and black-box
computer vision models.
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