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ABSTRACT

Multimodal Sentiment Analysis is a burgeoning research
area, leveraging various modalities to predict the sentiment
score. Nevertheless, previous studies have disregarded the
impact of noise interference on specific modal sentiments
during video recording, thereby compromising the accu-
racy of sentiment prediction. In this paper, we propose
the Guided Circular Decomposition and Cross-Modal Re-
combination (GCD-CMR) model, which aims to eliminate
contaminated sentiment features in a fine-grained way. To
achieve this, we utilize tailored global information specific
to each modality to guide the circular decomposing pro-
cess in the GCD module, to produce a set of sentiment
prototypes. Subsequently, in the CMR module, we align
cross-modal sentiment prototypes and remove the contami-
nated prototypes for recombination. Experimental results on
two publicly available datasets demonstrate that our model
surpasses state-of-the-art models, confirming the effective-
ness of our proposed method. We release the code at:
https://github.com/nianhua20/GCD-CMR.

Index Terms— multimodal sentiment analysis, modality
decomposition, reduction of contaminated sentiment

1. INTRODUCTION

Multimodal Sentiment Analysis (MSA) is a research hotspot
that integrates heterogeneous modal information to mine and
analyse sentiments and perspectives of individuals in video
[1, 2, 3]. It commonly encompasses multimodal informa-
tion including text, audio and vision. Diverse modalities can
supply abundant information, mutually complementing one
another to enable a more comprehensive and precise sen-
timent analysis. However, as shown in Fig. 1, real-world
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noise in audio

shadow in vision

(a)

(b)

Fig. 1. Examples of disturbances during video recording.
(a) For the audio modality, the speaker’s angry voice with
high-frequency pitch features is interfered with the computer
playing video; (b) For the vision modality, shadows on the eye
area obstruct the identification of eye features, compromising
the analysis of the speaker’s negative sentiment.

video recordings are susceptible to environmental interfer-
ence, which can compromise modal emotional features and
introduce potential inaccuracies in sentiment analysis.

Most prior studies have concentrated on the development
of sophisticated fusion networks for effectively harnessing
diverse modal information, typically classified as early fusion
[4, 5, 2] and late fusion [6, 7, 8]. Nevertheless, these fusion
strategies frequently encounter huge distribution gaps among
various modal representations. To bridge modality gaps, cer-
tain MSA models [9, 10, 11] decouple each modal represen-
tations to modality-invariant and modality-specific features
to extract the consistency and distinctiveness of heteroge-
neous modalities. These methods employ a shared encoder
to project diverse modalities into a modality-irrelevant space,
and the resulting transformed representations are used as
holistic features. However, none of these methods eliminates
perturbed information within each modal commonality.

To this end, we propose Guided Circular Decomposition
and Cross-Modal Recombination (GCD-CMR) network to re-
duce the contamination of modal sentiment features, inspired
by [12, 13] which decouples expression features into a set of
facial latent ones. Our contributions can be summarized as:

• We propose the GCD-CMR model, a robust model that

7910979-8-3503-4485-1/24/$31.00 ©2024 IEEE ICASSP 2024

IC
A

SS
P 

20
24

 - 
20

24
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 A
co

us
tic

s, 
Sp

ee
ch

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g 
(I

C
A

SS
P)

 | 
97

9-
8-

35
03

-4
48

5-
1/

24
/$

31
.0

0 
©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
A

SS
P4

84
85

.2
02

4.
10

44
61

66

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 11,2024 at 23:53:45 UTC from IEEE Xplore.  Restrictions apply. 



Guidelines 

Generation

Minimize MI

Adaptive 

Fusion

Prediction

.

.

.

similarity 

computation

matching

Latent Guidelines Generation
Cross-Modal Recombination 

Feature Extraction

TransformBERT Refine Block ... ...

LSTM Transform Refine Block
... ...

LSTM Transform Refine Block ... ...

Circular Decomposition

Guided Circular Decomposition

“And it was 

really funny.”

𝒁𝒔

ℒ𝑠𝑝𝑐ℒ𝑑𝑖𝑓𝑓

ℒ𝑚𝑖

𝒓𝒕
𝒌

𝒓𝒂
𝒌

𝒓𝒗
𝒌

𝑪𝒎

𝒑𝒂
𝒌

𝒑𝒗
𝒌

𝒑𝒕
𝒌

Prototype  Bank

𝑯𝒈→𝒗
𝒌

𝑯𝒈→𝒂
𝒌

𝑯𝒈→𝒕
𝒌

ෝ𝒚

ℒ𝑡𝑎𝑠𝑘

𝑯𝒕
𝒌

𝑯𝒂
𝒌

𝑯𝒗
𝒌

𝑯𝒎
[𝑲]

𝑯𝒄
[𝑲]

Fig. 2. The overall architecture of proposed GCD-CMR. ⊕ and ⊖ represent concatenation and subtraction operations. The
contaminated sentiment prototypes are highlighted in the red boxes and will be excluded from the feature recombination.

effectively removes contaminated modal features in a
fine-grained manner.

• We design a Guided Circular Decomposition (GCD)
module, which can integrate multimodal information
to precisely guide unimodal decomposition to derive a
set of intra-modal sentiment prototypes. To enhance
the robustness of the recombination representation, we
eliminate contaminated prototypes and align the inter-
modal pure prototypes in the Cross-Modal Recombina-
tion (CMR) module.

• Extensive experiments are conducted on public datasets
and the state-of-the-art performances are achieved, val-
idating the effectiveness and superiority of our method.

2. PROPOSED METHOD

The task of MSA is to predict a sentiment intensity score y ∈
R by leveraging multimodal signals, including text (t), audio
(a) and vision (v). To encode each modal features, we utilize
pre-trained BERT and two LSTMs, resulting in the initialized
text features Ht, audio features Ha and visual features Hv ,
with the modality dimensions of dt, da and dv , respectively.
The overview of our method is shown in Fig. 2.

2.1. Guided Circular Decomposition

In this part, we introduce our approach that generates tailored
global cues to guide the decomposition of each modality fea-
ture into a set of sentiment prototypes, which is different from
previous methods that employ a shared encoder for different
modalities to derive a holistic modality-invariant feature.
Circular Decomposition. In order to decompose each modal

feature into a series of sentiment prototype features, we circu-
larly decompose the three modal features for K times. Dur-
ing the k-th iteration, we initially derive intra-modal senti-
ment prototype features p[k]m , which are then subtracted from
the basic features H [k]

m for the subsequent decomposition. In
this procedure, we propose to utilize the global-local guidance
feature denoted as H [k]

g→m for each modality (further detailed
in Eq. (2)) to direct the decomposition and refine the resulting
sentiment prototypes in the Refine block fm(·; θmf ). The k-th
decomposition can be formulated as:

p[k]m = ReLU(WT
mH [k]

m )

r[k]m = fm([H [k]
g→m, p[k]m ]; θmf ) · p[k]m

H [k+1]
m = H [k]

m − r[k]m

(1)

where Wm ∈ Rdm×dm , m ∈ {t, a, v} and ReLU represents
the ReLU activation function. [·, ·] represents the concate-
nation operation on feature dim and θmf are the learnable
parameters of the Fully-Connected (FC) layer fm. 1
Latent Guidelines Generation. When employing multi-
modal information for sentiment analysis, certain sentiment
prototypes influenced by interference become important
within the current modality, but they may be inconsistent
or irrelevant for the overall sentiment representation. To ad-
dress this issue, we design the Guidelines Generation block
to generate global information and guide the decomposition
of each modality in a top-down fashion, which takes the
concatenated features of all three modalities as input and
generates their corresponding guiding features. Specifically,
the k-th decomposition of this block is formulated as:

H [k]
g = E([H

[k]
t , H [k]

a , H [k]
v ]; θE)

H [k]
g→m = Dm(H [k]

c ; θmD )
(2)
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Models CMU-MOSI CMU-MOSEI

Acc7↑ Acc2↑ F1↑ MAE↓ Corr↑ Acc7↑ Acc2↑ F1↑ MAE↓ Corr↑

MISA [9]MM’20 43.5 81.8/83.5 81.7/83.5 0.752 0.784 52.2 81.6/84.3 82.0/84.3 0.550 0.758
MAG-BERT [3]ACL’20 45.1 82.4/84.6 82.2/84.6 0.730 0.789 52.8 81.9/85.1 82.3/85.1 0.558 0.761
Self-MM [14]AAAI’21 45.8 82.7/84.9 82.6/84.8 0.731 0.785 53.0 82.6/85.2 82.8/85.2 0.540 0.763
MMIM [1]EMNLP’21 45.0 83.0/85.1 82.9/85.0 0.738 0.781 53.1 81.9/85.1 82.3/85.0 0.547 0.752
FDMER [10]MM’22 44.1 -/84.6 -/84.7 0.724 0.788 54.1 -/86.1 -/85.8 0.536 0.773
DMD [11]CVPR’23 45.6 -/86.0 -/86.0 - - 54.5 -/86.6 -/86.6 - -
EMT [15]TAC’23 47.4 83.3/85.0 83.2/85.0 0.705 0.798 54.5 83.4/86.0 83.7/86.0 0.527 0.774

GCD-CMR(ours) 47.7 83.8/86.3 83.5/86.1 0.697 0.802 54.8 84.0/86.7 84.3/86.6 0.525 0.772

Table 1. Performances of the state of the arts and ours on CMU-MOSI and CMU-MOSEI. The best results are labeled in bold.

where {θE , θmD} are learnable parameters. The universal en-
coder E(·; θE) is used to learn the shared global-view feature
and the modality-specific decoder Dm(·; θmD ) is used to de-
code the global representation into tailored features for each
modality.

To provide global guidance for the disentanglement spe-
cific to each modality, we propose to minimize the mutual
information (MI) to effectively distinguish among them. Con-
cretely, vCLUB [16] is used to compute the upper bound of
MI, and the following MI minimization regularizer is em-
ployed to decrease correlation among the global-local view
features:

Lmi =

K∑
k=1

∑
(m1,m2)

MIvCLUB(H
[k]
m1

, H [k]
m2

) (3)

where (m1,m2) ∈ {(t, a), (t, v), (a, v)}.
Prototype Bank. After K iterations in Eq. (1), the ba-
sic modality features Hm are circularly decomposed into
different sentiment prototypes and stored in the prototype
bank Bm = {r[1]m , r

[2]
m , ..., r

[K]
m }, m ∈ {t, a, v}. The resid-

ual modality features H
[K]
m exclusively contains the unique

characteristics specific to each modality.
To enhance the discriminative quality of learned senti-

ment prototypes, we define a classifier Cm(·; θmC ), which
takes the prototypes stored in the bank of each modality
Qm =

∑K
k=1 r

[k]
m as input, and the specific loss is defined as:

Lspc =
∑

m∈{t,a,v}

|Cm(Qm; θmC )− y| (4)

where Cm maps Rdm to R1 and θmC is the learnable parame-
ter. In order to achieve a separation of sentiment prototypes
and reduce information redundancy between sentiment proto-
types and modality-specific representation, the orthogonality
constraint is used and formulated as:

Ldiff =
∑

m∈{t,a,v}

||QmH [K]
m ||2F (5)

Here, || · ||2F is the Frobenius norm.

2.2. Cross-Modal Recombination

In addition to reducing the influence of contaminated senti-
ment prototype features to enhance the model’s robustness,
we further resort to the realignment of cross-modal prototypes
to obtain more discriminative fusion features. Since previous
studies [2, 17] have demonstrated the more importance of the
textual modality compared to the other two modalities, we opt
to employ the textual sentiment prototype as an anchor. This
anchor is aligned with the most relevant sentiment prototypes
from the audio bank Ba and the visual bank Bv for recom-
bination. The matching process for each textual sentiment
prototype r

[k]
t in the prototype bank is formulated as:

r[k]n = argmax
r
[i]
n ∈Bn

r
[k]
t · r[i]n

||r[k]t ∥∥r[i]n ||
(6)

where n ∈ {a, v}. Then we concatenate mutually matched
cross-modal prototypes of the k-th textual sentiment proto-
type Z

[k]
c = [r

[k]
t , r

[k]
a , r

[k]
v ] for the fusion representation. The

contaminated prototypes are not matched in this process, and
thus do not participate in the features fusion.
Adaptive Feature fusion. Following [10, 11], we employ a
dynamic fusion strategy, i.e., assigning adaptive weights to
modality-specific representation H

[K]
c = [H

[K]
t , H

[K]
a , H

[K]
v ]

and each sentiment feature Zs = {Z [1]
c , Z

[2]
c , . . . , Z

[K]
c } to

generate the fusion feature, and subsequently pass it through
the FC layer to produce the sentiment prediction ŷ. To train
our model, we utilize L1 loss as the prediction loss, i.e.,

Ltask =
1

N

N∑
j=1

|y(j) − ŷ(j)| (7)

where y(j) represents the label of the j-th sample and N rep-
resents the number of samples in a batch. The overall learning
of our model is performed by minimizing:

L = Ltask + λ1Lmi + λ2Lspc + λ3Ldiff (8)

where λ1, λ2 and λ3 are the trade-off parameters.
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3. EXPERIMENTS

3.1. Experimental Setup

In this paper, we use two of the most commonly used public
datasets for the evaluation, i.e. CMU-MOSI [18] and CMU-
MOSEI [19]. In detail, CMU-MOSI consists of 2,199 opin-
ion segments, with annotations capturing sentiment on a scale
ranging from negative to positive (-3 to 3). CMU-MOSEI
comprises 23,453 annotated video clips from 1,000 speakers,
each with a sentiment score interval of [-3,3].

We evaluate the performance of our algorithm on the
tasks of classification and regression. For classification,
we use Acc7 (%), Acc2 (%) and F1 scores (%) in nega-
tive/positive (zero excluded) and negative/non-negative (zero
included) settings. For regression, we report Mean Absolute
Error (MAE) and Pearson correlation (Corr). For the bench-
marks of MOSI and MOSEI, we employ the Adam optimizer
with initial learning rates of 5e-5 and 5e-6, respectively. The
trade-off parameters λ1, λ2, and λ3 are set as {0.01,0.1,0.1}
and {0.02,0.01,0.1}, respectively. We set the number of de-
composing cycles, i.e. K as 5 and 3, respectively. All the
experiments are conducted on four Nvidia Tesla P100 GPUs,
using the PyTorch framework.

3.2. Experimental Results and Analysis

Comparison with the state of the arts. As presented in Ta-
ble 1, our proposed model, GCD-CMR, consistently achieves
superior performance across the majority of the evaluation
metrics. In comparison to feature disentanglement models [9,
10, 11], our GCD-CMR model outperforms them across all
metrics and surpasses the best-performing model, i.e. DMD
by margins of 2.1% in terms of Acc7 and 0.3% in terms of
Acc2 on CMU-MOSI. This can be attributed to the capability
of our model to eliminate the perturbed sentiment features.
Compared to the recent EMT [15], which focuses on modal
features disturbed by the environment, our model achieves
improvements of 1.3% and 0.7% in terms of Acc2, and 1.1%
and 0.6% in terms of F1 score on CMU-MOSI and CMU-
MOSEI, respectively.
Visualization. To assess the robustness of our model, we ap-
plied T-SNE [20] to visualize the distributions of multimodal
features in Fig. 3. It shows that our GCD-CMR model can
achieve clearer boundaries and better separation compared
with the benchmark in both the cases of original features and
those with Gaussian noise inserted into the visual modality.
Ablation study. To study the performance of each module,
we conduct an ablation study in Table 2. From the results,
we can conclude that all the designed losses contribute to im-
proving the model. In particular, the proposed Lmi shows
significant improvements, demonstrating the necessity of spe-
cialized global features tailored to each modality. Further-
more, after removing the guidelines generation module, Acc2
decreases from 86.7 to 85.0, and F1 decreases from 86.6 to

Description Acc7↑ Acc2↑ F1↑ MAE↓ Corr↑

W/O Lmi 53.9 82.6/85.9 83.0/85.8 0.531 0.753
W/O Lspc 54.5 82.7/86.5 83.1/86.5 0.528 0.731
W/O Ldiff 54.4 82.9/86.1 83.2/86.1 0.528 0.771
W/O Guidelines 53.9 80.7/85.0 81.4/85.1 0.533 0.769
W/O Recombination 54.4 82.3/85.8 82.7/85.8 0.532 0.772

GCD-CMR(ours) 54.8 84.0/86.7 84.3/86.6 0.525 0.772

Table 2. Ablation study of GCD-CMR on CMU-MOSEI.
’W/O’ represents removing the mentioned component.

(a) Orignal (b) Learned by GCD-CMR

(c) Orignal, visual modality with
20% Gaussian noise

(d) Learned by GCD-CMR, visual
modality with 20% Gaussian noise

Fig. 3. T-SNE visualization of multimodal representation on
the testing set of CMU-MOSI.

85.1, highlighting the importance of global information for
refining sentiment prototypes. Additionally, we verify the ef-
fects of recombining pure sentiment prototypes. The results
demonstrate that directly combining all sentiment prototypes
to produce the final fused feature shows to be mediocre, lead-
ing to a decrease in Acc2 and F1 by approximately 1%.

4. CONCLUSION

In this paper, to mitigate the impact of noise on modality
features during video recording, we introduce a novel frame-
work, i.e. Guided Circular Decomposition and Cross-Modal
Recombination. Specifically, we leverage global information
to create local guidance features for modality-specific senti-
ment prototypes within the Guided Circular Decomposition
module. Additionally, we preserve the pure sentiment proto-
types and recombine them with the most relevant prototypes
from different modalities in the Cross-Modal Recombination
module. This process has been shown to be helpful to produce
robust fusion representation by the extensive experiments on
two datasets, and the comparison between seven state-of-the-
arts published in the past three years and ours in terms of five
metrics verifies the effectiveness of our entire framework.
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