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ABSTRACT

Edges are essential in describing relationships among
nodes. While existing graphs frequently use a single-value
edge to describe association between each pair of node vec-
tors, crucial relationships may be disregarded if they are
not linearly correlated, which may limit graph analysis per-
formance. Although some recent Graph Neural Networks
(GNNs) can process graphs containing multi-dimensional
edge features, they cannot convert single-value edge graphs
to multi-dimensional edge graphs during propagation. This
paper proposes a generic Multi-dimensional Edge Represen-
tation Generation (MERG) layer that can be inserted into any
GNNs for heterogeneous graph analysis. It assigns multi-
dimensional edge features for the input single-value edge
graph, describing multiple task-specific and global context-
aware relationship cues between each connected node pair.
Results on eight graph benchmark datasets demonstrate that
inserting the MERG layer into widely-used GNNs (e.g., Gat-
edGCN and GAT) leads to major performance improvements,
resulting in state-of-the-art (SOTA) results on seven out of
eight evaluated datasets. Our code is publicly available at 1.

Index Terms— Multi-dimensional edge feature, Graph
Neural Networks, Global contextual information

1. INTRODUCTION

Graphs have been widely used to represent various types of
real-world data, such as human face [1], skeleton [2], 3D
point cloud recognition [3], semantic segmentation [4], ac-
tion recognition [5], research collaboration relationships [6],
etc. A typical graph is made up of a set of nodes and edges,
where each edge describes the relationship between a pair of
connected nodes [7], deciding the message passing mecha-
nism between them. However, most existing graph datasets or
approaches only define edges’ presences based on manually-
defined rules (e.g., the euclidean distance between node [8]
and node categories [9]), where the majority of them use sin-

1https://github.com/SSYSteve/
Learning-Graph-Representation-with-Task-specific-Topology-and-Multi-dimensional-Edge-Features

gle value to define the edge presence [2] or strength of as-
sociation between a pair of nodes [10, 11]. Since manually
defined single-value edges can only reflect a specific rela-
tionship between nodes, multiple crucial and task relation-
ship cues would be ignored if each node feature pair are not
linearly correlated, i.e., the message passing mechanism de-
fined by single-value edges could not accurately exchange all
task-related messages among nodes (Problem 1). Specifi-
cally, multiple features (i.e., multi-dimensional edge feature)
are required to accurately describe the relationship between
each pair of nodes and allow multiple task-specific messages
to be exchanged among nodes during the propagation. This
assumption (i.e., the effectiveness of the multi-dimensional
edge feature) has been frequently validated in recent studies
on various graph-related tasks [1, 8, 12, 13, 14, 15].

Although recent advanced GNNs [16, 17, 18, 19] can pro-
cess graphs that contain multi-dimensional edge features, they
are not able to directly encode a single-value edge graph to a
multi-dimensional edge graph (i.e., they can not assign multi-
dimensional edge features to re-define edges of graphs whose
edges are initially represented by a set of single value fea-
tures). This would limit existing GNNs’ performances in an-
alyzing graphs whose edge features are represented by sin-
gle values. In summary, while the multi-dimensional edge
features could more comprehensively and accurately describe
the relationship between each pair of nodes in the graph and
provide superior message passing mechanism during propa-
gation, there is a lack of a effective and generic GNN layer
that can not only assign multi-dimensional edge features to
single-value edge graphs but also be directly inserted into var-
ious GNNs to allow them being trained in an end-to-end man-
ner (Problem 2). Our experiments show that layer with such
properties would consistently enhance GNN performance for
various graph analysis tasks.

In this paper, we propose a generic Multi-dimensional
Edge Representation Generation (MERG) layer that can be
directly inserted into various GNNs, i.e., the MERG layers
could be jointly trained with any GNN in an end-to-end man-
ner. As a result, its weights would be optimized based on
the target, and thus a well-trained MERG layer would learn
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task-specific relationship cues from the input graph to encode
its edge features. More specifically, our MERG layer can as-
sign a multi-dimensional feature to each presented edge for
any input graph regardless of its initial edge feature dimen-
sion (e.g., single-value edge graph), which represents mul-
tiple task-specific relationship cues between the correspond-
ing node pair. Importantly, it takes both the relationship cues
directly reflected by the corresponding node pair as well as
their global contextual information into consideration. This
enforces the learned multi-dimensional edge features to not
only comprehensively represent local relationships between
connected nodes but also have a global context-aware mes-
sage passing mechanism.

2. THE PROPOSED APPROACH

Our MERG layer is the first plugin GNN layer that can
convert single-value edge graphs to multi-dimensional edge
graphs, where ’plugin’ denotes that our MERG can be directly
inserted into any GNNs. It consists of three main blocks: a
local relationship modelling block (Sec. 2.1), a global con-
textual relationship modelling (GCRM) block (Sec. 2.2) and
a local-global relationship fusion block (Sec. 2.3).

2.1. Local relationship modelling

Let the input graph have N vertices which are represented
by K-dimensional vectors. To learn a task-specific multi-
dimensional feature for a presented edge êi,j, MERG first ex-
tracts local relationship cues (denoted as ei,j

Local) contained
in corresponding nodes vi and vj. As illustrated in Figure. 1,
we use two learnable matrices (fully connected (FC) layers)
W1, W2 ∈ RK×D to individually project vi and vj into a
D-dimensional space, which are then concatenated as a sin-
gle representation eLat

i,j ∈ R1×2D that contains both nodes’
information. After that, a learnable matrix Wl ∈ R2D×D is
employed to extract task-specific local relationship represen-
tation eLocal

i,j ∈ R1×D from eLat
i,j . This can be formulated as:

eLat
i,j = [FC(vi|W1),FC(vj |W2)]

eLocal
i,j = FC(eLat

i,j |Wl)
(1)

where the weight matrices W1, W2 and Wl are shared for all
edge features’ learning, and FC( |W ) denotes the FC layer
whose projection is decided by the weight matrix W .

2.2. Global contextual relationship modelling

To allow edges forming a global context-aware message pass-
ing mechanism for the graph analysis, the MERG also ex-
tracts the global relationship cues êCtx

i,j between vi and vj,
which are reflected by the global context defined by all node
features, i.e., the influences of vi and vj on the whole graph.

Let V ∈ RN×K denote the matrix that concatenates all
node features of the graph G based on their orders defined

by the adjacency matrix A, where N is the number of nodes
(N rows), and K is the initial dimension of every node fea-
ture. To achieve êCtx

i,j , the MERG first learns a latent global
contextual representation eCtx ∈ RN×N×D from V , which is
formulated as:

eCtx = Ḡ1 ·GT
2

Subject to G1 = FC(V|W3) G2 = FC(V|W4)
(2)

where · denotes the matrix multiplication; W3 ∈ RK×D2

and
W4 ∈ RK×D are also learnable matrices for producing la-
tent global representations G1 ∈ RN×D2

and G2 ∈ RN×D;
and Ḡ1 ∈ RND×D is reshaped from G1. Specifically, the
W4 projects each row vector of V from K dimensions to D
dimensions, encoding a task-specific representation for each
node, which is denoted as G2 ∈ RN×D. The W3 projects
V to a high-dimensional matrix G1 ∈ RN×D2

. Here, the
ith row of G1 has D2 dimensions and is obtained by the
weighted combination of all node features, which aims to
encode ith node’s associations with others. Thus, both la-
tent node features contained in Ḡ1 and node relational la-
tent features contained in G2 are learned in the context of
global representation V . We then conduct matrix multiplica-
tion between Ḡ1 and GT

2 to obtain a global relationship rep-
resentation eCtx ∈ RN×N×D. This matrix can be treated as
containing D latent adjacency matrices of the shape N ×N ,
which summarises the global context aware relationship cues
between each pair of nodes in a D dimensional space.

Building on the learned eCtx, we describe the global
contextual relationship cues between vi and vj (i.e., their
edge feature) using the corresponding vector eCtx

i,j ∈ R1×D

in eCtx. Then, the final global contextual representation
êCtx
i,j ∈ R1×D is obtained by:

êCtx
i,j = FC(eCtx

i,j |W5) for ∀Ai,j = 1 (3)

where W5 ∈ RD×D is also a learnable matrix. In summary,
the GCRM module is learned to generate global context-
aware node relationship matrix êCtx, as each of its vector
is produced to describe the global contextual information
for a corresponding edge (i.e., the vector êCtx

i,j describes the
edge connecting nodes vi and vj). Since the êCtx

i,j is pro-
duced by considering all node features (i.e., the matrix V that
contain all node features), it encodes global context-aware re-
lationship cues between vi and vj, and allows their message
passing mechanism also to be global context-aware.

2.3. Fusion of local and global representations

Subsequently, we combine: (i) local relationship representa-
tion eLocal

i,j ; (ii) global contextual relationship representation
êCtx
i,j ; and (iii) the initial input edge feature, as the final multi-

dimensional edge representation êi,j to describe task-specific
and global context-aware relationships between vi and vj:

êi,j = ReLU(BN(eLocal
i,j ⊕ êCtx

i,j ⊕ FC(ei,j|W0))) (4)
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Fig. 1. Illustration of the proposed MERG layer, which can be directly inserted into any GNN. MERG can produce a graph that
has multi-dimensional edge features from the input graph with either single-value edges or multi-dimensional edges.

where ⊕ denotes the element-wise sum; BN represents the
batch normalization; ReLU is the rectified linear activation
function. The W0 is a identity mapping matrix when ei,j ∈
R1×D and is a learnable vector of the shape 1 × D when
ei,j ∈ R1×1. Subsequently, êi,j ∈ R1×D can be explicitly
represented as êi,j = [ei,j(1), ei,j(2), · · · , ei,j(D)].

This way, the proposed MERG addresses Problem 1 by
replacing the single-value edge features with task-specific
and global context-aware multi-dimensional edge features for
the target input graph, i.e., the relationship between a pair
of nodes are described by multiple relationship cues and the
message exchanging among nodes are controlled by these
multi-dimensional edges during the propagation. In short,
our MERG re-formulates the message learned from adjacent
nodes during the propagation as:

mN (vi) =M(∥Nj=1 f(vj, êi,j))

=M(∥Nj=1 f([vj(1), vj(2), · · · , vj(K)],

[ei,j(1), ei,j(2), · · · , ei,j(D)]))

(5)

where the impact of adjacent nodes is controlled by multi-
ple (D) edge attributes rather than a single value, i.e., richer
and more crucial messages from adjacent nodes can be used
for each node’s updating. Meanwhile, the Problem 2 is also
addressed as the multi-dimensional edge representation eli,j
can be learned based on only node features, regardless of the
initial edge feature el−1

i,j ’s dimensionality of the input graph.
More importantly, although the number of nodes N

and graph topology A could be different for heterogeneous
graphs, all learnable matrices/vectors (W1,W2,W3,W4,W5

and Wl) in the MERG are independent of both N and A. As
a result, the MERG can be directly inserted into GNNs for
heterogeneous graph analysis.

3. EXPERIMENTS

Datasets: Eight graph datasets introduced by [8] are em-
ployed in this paper, which cover graph-level (MNIST, CI-
FAR10, PROTEINS, ENZYMES), node-level (PATTERN,
CLUSTER) and link-level (TSP, COLLAB) analysis. The
details and metrics of these datasets can be found in [8].
Implementation details: We employ the same data splits,
optimizer and training settings provided in [8] for all exper-
iments. We use Adam optimizer with a learning rate de-
cay strategy to train all our models. We use GAT and Gat-
edGCN with 4 GNN layers for experiments on MNIST, CI-
FAR10, PROTEINS and ENZYMES, and 16 GNN layers for
experiments on PATTERN, CLUSTER and TSP datasets. The
GatedGCN and GAT used for experiments on the COLLAB
dataset contain 3 layers.

3.1. Results and discussion

Comparison with state-of-the-art models: We first com-
pare the proposed approach with existing GNN models in Ta-
ble 1, where our MERG is inserted into two state-of-the-art
GNNs (GatedGCN and GAT). It can be observed that both
MERG-GatedGCN and MERG-GAT models show clear ad-
vantages over the corresponding GatedGCN and GAT on all
eight datasets, with average 3.09% and 5.63% improvements,
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Task Graph classification Node classification Link prediction
Dataset MNIST CIFAR10 PROTEINS ENZYMES PATTERN CLUSTER TSP COLLAB

Model Test Acc(%) Test Acc(%) Test F1 Test Hits

GCN⋆ [8] 90.71 56.34 76.10 65.83 71.89 68.50 63.10 50.42
R-GCN⋆ [8] 92.49 57.28 - - 72.67 69.34 - -
GIN⋆ [8] 96.49 55.26 74.12 65.33 85.59 64.72 66.00 41.73
GAT⋆ [8] 95.54 64.22 76.28 68.50 78.27 70.59 67.10 51.50
GatedGCN⋆ [8] 97.34 67.31 76.36 65.68 86.51 76.08 80.80 52.64
PNA [20] 97.69 70.35 - - 86.57 - - -
GNAS-MP [21] 98.01 70.10 - - 86.85 74.77 74.20 -
EGT [22] 97.72 67.00 - - 86.83 77.91 81.00 -
DGN [23] - 72.84 - - 86.68 - - -
ARGNP [24] - 73.90 - - - 77.35 82.10 -
SAT [25] - - - - 86.84 77.86 - -

MERG-GAT 98.20 71.66 82.10(+5.74) 75.30(+6.80) 81.30 74.89 81.20 53.24
MERG-GatedGCN 98.50(+0.49) 74.75(+0.85) 81.25 70.33 86.71(-0.14) 78.64(+0.73) 83.60(+1.50) 53.70(+1.06)

Table 1. Comparison with the SOTA GNNs on benchmarking results across six medium-scale graph classification and node/link
prediction datasets [8], and on TU benchmarking [26] results across two graph classification datasets. ⋆ indicates the results
are reported in [8]. The MERG-GatedGCN / MERG-GAT represents that GatedGCN or GAT model contains our MERG layer.
The numbers in brackets represent the improvements over previous SOTA systems.

respectively. This indicates that the MERG layer is effective
in encoding task-specific graph edge representations, but also
can be applied to different GNNs. More importantly, graphs
processed by our MERG-GatedGCN achieved the SOTA re-
sults on five out of eight datasets, while MERG-GAT outper-
formed previous SOTA approaches on PROTEINS and EN-
ZYMES datasets with more than 5.7% and 6.8% absolute im-
provements, respectively. Our MERG also produced promis-
ing performance on the PATTERN dataset, with only 0.14%
lower accuracy than the SOTA. The primary factor contribut-
ing to clear improvements brought by our MERG is that it en-
ables the learning of global context-aware multi-dimensional
edge features, which are generated through deep-trained lay-
ers that are optimized for the target task, which offer a task-
specific message passing mechanism for updating node fea-
tures, thereby facilitating the extraction of superior represen-
tations for downstream tasks.

Ablation studies: Our MERG represent each edge by en-
coding both local relationship feature and global contextual
feature. Table 2 investigates their contributions by using:
(i) the local relationship feature alone; (ii) the global con-
textual feature alone; and (iii) the local and global features
together. In comparison to graphs with original manually-
defined single-value edges, individually learning local rela-
tionship features or global contextual features for each edge
leads to a more informative graph for all tasks. This finding
reveals that global contextual cues contribute more to graph
representation than local relationship features, i.e., using only
deep-learned global contextual cues as edge representations
results in clear improvements over the original single-value
edge graph across all datasets. Importantly, our MERG com-
bines the advantages of both local and global relationship
cues, where complementary task-specific cues encoded by
the MERG suggest that the combination of local and global

Table 2. Results achieved for different edge feature settings
on six graph datasets. The numbers in brackets represent the
improvements over the original GAT/GatedGCN model.

Baseline Local Global Global + Local

Architecture Gated-GCN
CIFAR10 67.31 68.89(+1.58) 73.02(+5.71) 74.75(+7.44)
MNIST 97.34 97.55(+0.21) 98.18(+0.84) 98.50(+1.16)
CLUSTER 76.08 76.34(+0.26) 77.83(+0.81) 78.64(+2.56)
PATTERN 86.51 86.61(+0.10) 86.46(-0.05) 86.71(+0.20)
TSP 80.80 80.92(+0.12) 82.40(+1.60) 83.60(+2.80)
COLLAB 52.60 53.70(+1.10) - -

Architecture GAT
CIFAR10 64.22 67.7(+3.48) 70.82(+6.60) 71.66(+7.44)
MNIST 95.54 96.15(+0.61) 97.89(+2.35) 98.20(+2.66)
CLUSTER 70.59 73.23(+2.64) 73.82(+3.23) 74.89(+4.30)
PATTERN 78.27 78.53(+0.26) 81.18(+2.91) 81.30+(3.03)
TSP 67.10 72.60(+5.50) 80.30(+13.20) 81.20(+14.10)
COLLAB 51.50 53.24(+1.74) - -

relationship features achieves better performances than using
either of these alone, regardless of the employed GNN.

4. CONCLUSION

This paper proposes a plugin MERG layer that can produce
graphs with multi-dimensional edge features from single-
value edge input graph. Results show that it can learn task-
specific and complementary cues for each presented edge
from local relationship between nodes and global contexts,
clearly enhancing performances of different GNNs on various
graph datasets. The main limitation is that it has relatively
high computational complexity when processing graphs hav-
ing a large number of high-dimensional vertices, which will
be addressed in the future work.
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