
BIG-MOE: BYPASS ISOLATED GATING MOE FOR GENERALIZED MULTIMODAL FACE
ANTI-SPOOFING

Yingjie Ma1,2, Zitong Yu2,3∗, Xun Lin2, Weicheng Xie1,4, Linlin Shen1,3,4∗

1College of Computer Science and Software Engineering, Shenzhen University 2Great Bay University
3National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University

4Guangdong Provincial Key Laboratory of Intelligent Information Processing

ABSTRACT
In the domain of facial recognition security, multimodal Face
Anti-Spoofing (FAS) is essential for countering presentation
attacks. However, existing technologies encounter challenges
due to modality biases and imbalances, as well as domain
shifts. Our research introduces a Mixture of Experts (MoE)
model to address these issues effectively. We identified three
limitations in traditional MoE approaches to multimodal
FAS: (1) Coarse-grained experts’ inability to capture nuanced
spoofing indicators; (2) Gated networks’ susceptibility to
input noise affecting decision-making; (3) MoE’s sensitiv-
ity to prompt tokens leading to overfitting with conventional
learning methods. To mitigate these, we propose the Bypass
Isolated Gating MoE (BIG-MoE) framework, featuring: (1)
Fine-grained experts for enhanced detection of subtle spoof-
ing cues; (2) An isolation gating mechanism to counteract
input noise; (3) A novel differential convolutional prompt by-
pass enriching the gating network with critical local features,
thereby improving perceptual capabilities. Extensive exper-
iments on four benchmark datasets demonstrate significant
generalization performance improvement in multimodal FAS
task. The code is released at https://github.com/murInJ/BIG-
MoE.

Index Terms— Face Anti-Spoofing, Multimodal, Prompt
Learning, Mixture of Experts

1. INTRODUCTION
Face Recognition (FR) technology, celebrated for its effi-
ciency and accuracy in applications such as security surveil-
lance and mobile payments, now confronts escalating security
threats from sophisticated face rendering attacks. Traditional
FR systems struggle to discern these attacks, which include
printed photos, video playback, and 3D masks, underscoring
the urgent need for robust security measures.

To counter these threats, the research community has
turned to Face Anti-Spoofing (FAS) techniques, which differ-
entiate between genuine and spoofed faces [3]. Multimodal
FAS methods [4, 5, 6, 7, 2, 8, 9], integrating information
from RGB images, depth maps, and infrared images, have
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Fig. 1: Existing MoE prompt learning paradigm vs.
Ours. Both (a) conventional MoE prompt learning and (b)
the parameter-efficient expert retrieval [1] approaches input
prompt and feature tokens into the gating network or prod-
uct key gating (PK Gate) network to generate scores for ex-
pert selection and subsequent processing with different gat-
ing mechanisms and types of experts. (c) Our Isolated Gating
Mechanism (IGM) concatenates prompt and feature tokens
for gating network scoring, and then processes feature tokens
exclusively, isolating expert network input to enhance noise
resilience and processing precision.

shown promise in capturing comprehensive physical and be-
havioral facial features [10]. However, the integration of
multimodal data is challenging, often hampered by inter-
modal feature bias and imbalance, and subtle multimodal
spoof clues are easily drowned by domain shifts caused by
sensor/environment discrepancy [11, 12].

The Mixture of Experts (MoE) model, adept at handling
complex data distributions, decomposes a large network into
specialized smaller networks, reducing computational load
through sparse activation and enhancing model generalization
[13, 14, 15, 16]. This architecture excels in multi-task and
multi-modal learning scenarios, especially with high dimen-
sional and heterogeneous data [17]. MoE has also shown ex-
cellent results for sparse representations in FAS tasks [18, 19,
20]. Building on this, our research integrates fine-grained ex-
perts [1] into the MoE framework for multimodal FAS tasks,
improving the capture of detailed data features crucial for
FAS performance [15, 16]. To counteract the vulnerability
to input noise, we propose an Isolation Gating Mechanism,
depicted in Fig. 1, which processes input vectors to robustly
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Fig. 2: BIG-MoE Framework Overview: The diagram succinctly captures the essential process and components of our
approach: (a) Prompt Generation: This step outlines the creation and integration of initial prompts. (b) CPB: Describes the
Convolutional Prompt Bypass, focusing on its enhancement of feature extraction via Central Difference Convolution (CDC)
[2] and multimodal prompt integration. (c) IGMA: Highlights the Isolated Gating Mechanism Adapter’s role in gating and its
interaction with CPB across layers, promoting information exchange for enhanced model performance and robustness.

understand feature relationships without direct fitting.
Furthermore, we explore the integration of prompt learn-

ing [21] within the MoE model. To maximize prompt learn-
ing’s benefits while avoiding feature confusion, we introduce
a Convolutional Prompt Bypass (CPB) that interacts with the
gated network to capture local deception features without di-
rect feature propagation. Our contributions are threefold:

• We proposed the BIG-MoE, a novel multimodal FAS
architecture that pioneers the application of MoE with
fine-grained experts. This pioneering approach allows
for more effective extraction of subtle cues and integra-
tion of multimodal features.

• The BIG-MoE framework features an Isolated Gating
Mechanism to shield the model against input noise and
includes a convolutional prompt bypass, which fortifies
the gating network with essential cues, thereby enhanc-
ing the model’s robustness against overfitting and noise.

• Extensive experiments demonstrate the reliability and
superior performance of BIG-MoE for generalized
multimodal FAS.

2. METHODOLOGY
As shown in Fig. 2, our proposed Bypass Isolated Gating
MoE (BIG-MoE) framework is fundamentally composed of a
pre-trained Vision Transformer (ViT), coupled with a sophis-
ticated prompt generation module, the Convolutional Prompt
Bypass (CPB), and the Isolated Gating Mechanism Adapter
(IGMA). Input data is transformed into visual prompt tokens
by the prompt generation module, which are then enhanced by
the CPB module. Concurrently, the input is processed through
the ViT Encoder and IGMA, with the latter leveraging the

CPB’s visual prompts to augment gating perception. The ag-
gregated outputs from both modules are fed into a classifier,
and the predictions are refined by cross-entropy loss during
backpropagation.

2.1. Isolated Gating Mechanism Adapter
Traditional MoE architectures are constrained by routing
overhead in fine-grained expert partitioning. The PEER [1]
architecture, however, employs the Product Key Retrieval
(PKR) technique to efficiently identify and retrieve top-k ex-
perts from a large pool for a d-dimensional input vector x,
using low-dimensional sub-keys to construct a key set and
inner product calculations, thus reducing computational load
while preserving accuracy. The gating network, parameter-
ized by Θ, refines the expert outputs, incorporating a noise
term Rnoise, to yield the final gating decision G(x; Θ).

The sensitivity of the gating network to input noise es-
calates with an increasing number of fine-grained experts,
which, despite the introduction of training noise, fails to op-
timize performance or fully exploit multimodal processing.
We attribute this to the gating network’s constrained feature
perception due to low-dimensional sub-keys, impacting noise
robustness. To address this, we introduce an IGM that distin-
guishes the expert-processed vector xe from the gating vec-
tor xg , enabling a more nuanced nonlinear transformation to
reduce noise impact and enhance system performance effi-
ciently. This refined process is formalized as follows:

FMoE(x; Θ, {Wi}Ni=1) =

N∑
i=1

G(x; Θ)iFi(x;Wi) (1)

G(x; Θ) = softmax(TopK(fg(PKR(x; Θ) +Rnoise, k)))i
(2)



Table 1: Cross-dataset testing results under the fixed-modal scenarios (Protocol 1) among CASIA-CeFA (C) [22], PADISI (P)
[23], CASIA-SURF (S) [24], and WMCA (W) [25]. DG, MM, and FM are short for domain-generalized, multi-modal, and
flexible-modal, respectively. Best results are marked in bold.

Method Type CPS→W CPW→S CSW→P PSW→C
HTER(%)↓ AUC(%)↑ HTER(%)↓ AUC(%)↑ HTER(%)↓ AUC(%)↑ HTER(%)↓ AUC(%)↑

SSDG [26] (ECCV2022) DG 26.09 82.03 28.50 75.91 41.82 60.56 40.48 62.31
SSAN [27] (CVPR2022) DG 17.73 91.69 27.94 79.04 34.49 68.85 36.43 69.29
IADG [28] (CVPR2023) DG 27.02 86.50 23.04 83.11 32.06 73.83 39.24 63.68
ViTAF [29] (ECCV2022) DG 20.58 85.82 29.16 77.80 30.75 73.03 39.75 63.44

MM-CDCN [2] (CVPR2020) MM 38.92 65.39 42.93 59.79 41.38 61.51 48.14 53.71
CMFL [4] (CVPR2021) MM 18.22 88.82 31.20 75.66 26.68 80.85 36.93 66.82

ViT+AMA [9] (IJCV2024) FM 17.56 88.74 27.50 80.00 21.18 85.51 47.48 55.56
VP-FAS [8] (arXiv 2023) FM 16.26 91.22 24.42 81.07 21.76 85.46 39.35 66.55
MMDG [12] (CVPR2024) MM 12.79 93.83 15.32 92.86 18.95 88.64 29.93 76.52

ViT [30] Baseline 20.88 84.77 44.05 57.94 33.58 71.80 42.15 56.45
BIG-MoE Ours 17.4 90.87 10.96 94.35 19.62 84.72 7.71 97.72

Table 2: Cross-dataset testing results under the limited source
domain scenarios (Protocol 3) among CeFA-CeFA (C) [22],
PADISI USC (P) [23], CASIA-SURF (S) [24], and WMCA
(W) [25]. Best results are marked in bold.

Method CW→PS PS→CW
HTER(%)↓ AUC(%)↑ HTER(%)↓ AUC(%)↑

SSDG [26] (ECCV2022) 25.34 80.17 46.98 54.29
SSAN [27] (CVPR2022) 26.55 80.06 39.10 67.19
IADG [28] (CVPR2023) 22.82 83.85 39.70 63.46
ViTAF [29] (ECCV2022) 29.64 77.36 39.93 61.31

MM-CDCN [2] (CVPR2020) 29.28 76.88 47.00 51.94
CMFL [4] (CVPR2021) 31.86 72.75 39.43 63.17

ViT+AMA [9] (IJCV2024) 29.25 76.89 38.06 67.64
VP-FAS [8] (arXiv 2023) 25.90 81.79 44.37 60.83
MMDG [12] (CVPR2024) 20.12 88.24 36.60 70.35

ViT [30] (Baseline) 42.66 57.80 42.75 60.41
BIG-MoE (Ours) 22.35 83.50 14.11 95.13

F (x; Θ) = f(fe(x;We),W ) (3)

The refined formulation shows that the input vector x is
processed by fg for gating and retrieval, followed by further
processing of fe based on gating results to produce the final
output F (x; Θ). This approach integrates fine-grained experts
with IGM, resulting in the IGMA, as illustrated in Fig. 2(c).

2.2. Convolutional Prompt Bypass
Previous research has shown that routing selection in MoE
models is sensitive to prompt tokens [16], which can intro-
duce noise and limit the effectiveness of Prompt Learning
when applied to MoE. To address this, we developed the
CPB for the IGMA, utilizing Central Difference Convolution
(CDC) [2] to enhance the extraction of local spoofing cues.

The CPB process initiates by concatenating multimodal
inputs along the channel dimension to create clue prompts Pc.
A 30% probability masks entire modal images, setting them
to zero, which is integrated into the prompts Pm as supple-
mental data. Static task-related prompts Pt are concurrently
acquired. These prompts are merged to form a comprehensive
input prompt P . Each layer’s prompt Pi is combined with the
perceptive vector xg , forming an integrated perceptive vector
input to the gating network. This fusion enhances perceptual
stability, particularly with composite features exhibiting sub-
stantial representational variance.

The PKR method is employed to partition the percep-
tive vector into two sub-spaces, avoiding interference from

prompt semantics and enhancing perception stability. The
combined perceptive vector xg is processed through the At-
tention mechanism, generating a new prompt Pi+1 for the
next layer, as described by the formula:

Pi+1 = Pi + Attn(Cat(Pi, xc)) (4)

Here, the Efficient Channel Attention (ECA) module
within the CPB enriches IGMA with supplemental perceptive
information, blending insights across layers to reduce gating
sensitivity and bolster the model’s performance and stability.

3. EXPERIMENT
3.1. Data and Evaluation Metrics
In this study, we followed the MMDG’s Protocols 1 and 3
[12], applying a Leave-One-Out (LOO) test on fixed modal-
ities: S (SURF) [24], P (PADISI USC) [23], C (CeFA) [22],
and W (WMCA) [25]. Performance was measured using Half
Total Error Rate (HTER) and Area Under the Receiver Oper-
ating Characteristic Curve (AUC).

3.2. Implementation Details
All input images were standardized to 224 × 224 × 3 pixels,
segmented into 14 × 14 patches, and inputted into the ViT
where token hidden dimension d=768. We trained the model
using the Adam optimizer, a learning rate of 5e-5, weight de-
cay of 1e-3, over 100 epochs with a batch size of 32. The
classifier was a single fully connected layer reducing the class
token output from 768 to 2. The model was based on a pre-
trained ViT-Base on ImageNet, with the IGMA structure fea-
turing 2 activated experts per head, in total 1600 experts, a
hidden dimension of 8, and a 64-dimension CPB.

3.3. Cross-testing Results
Sufficient Source Domains Scenario. The results in Table
1 highlight our model’s state-of-the-art performance (3 out of
4) across several sub-protocols. Specifically, our model with
HTER dropping to 7.71%, a 34.44% decrease from the base-
line, and AUC rising to 97.72%, a 41.27% increase from the
baseline in ‘PSW→C’ setting. These improvements are a tes-
tament to the BIG-MoE architecture’s superiority in handling
generalized multimodal FAS tasks, indicating the excellent
generalization capacity of our model across unseen scenarios.



Fig. 3: Ablation study on expert numbers and activations.
(a) HTER with Varying Numbers of Activated Experts. (b)
HTER with Different Total Expert Counts. The ablation
study investigates the impact of expert count and activation on
model performance, providing insights into the optimal con-
figuration for expert utilization in the model.

Limited Source Domains Scenario. The results of
‘PS→CW’ in Table 2 also demonstrate our model’s supe-
rior generalization performance under limited source do-
mains, demonstrating enhanced multimodal generalization
over ‘ViT (Baseline)’. With the AUC of 95.13% and the
HTER of 14.11%, our model leads in state-of-the-art gener-
alization performance, highlighting the model’s outstanding
ability to generalize across limited source domains scenarios

3.4. Ablation Study
To validate the rationality and effectiveness of BIG-MoE,
we conducted meticulous ablation experiments. These aimed
to evaluate the impact of prompt settings on model perfor-
mance, comparing BIG-MoE with a Vision Transformer,
a coarse-grained MoE (ST MoE), and a fine-grained MoE
(PEER) to highlight the advantages of our CPB and IGMA.
Experiments were conducted using the CPW→S configura-
tion, testing prompt settings with Ps alone, Ps with Pd, and
the full setup. Results showed that all prompt configurations
improved performance, substantiating the rationality and ef-
fectiveness of our approach and demonstrating BIG-MoE’s
potential to enhance model capabilities, providing insights
for future work.
Impact of Experts’ Granularity. Fig. 3 indicates that
while moderate increases in IGMA granularity enhance the
Adapter’s performance, overly fine granularity can lead to
a decline in effectiveness. This suggests a critical trade-off:
granularity must be judiciously adjusted to maximize system
performance, underscoring the need for a balanced granular-
ity strategy in model optimization.
Effectiveness of IGMA. The data ‘w/ IGMA+CPB (With
Pt) ’ in Table 3 indicates that, with the help of perceptual
cues, IGMA sees a 15.03% HTER reduction and a 12.94%
AUC increase over the resluts of PEER [1]. The integration of
fine-grained experts with cues in the IGMA framework maxi-
mizes performance, surpassing the benefits of prompts alone.
The framework is indispensable for achieving optimal results.
Effectiveness of CPB. The results from ‘w/ IGMA’ to
‘BIG-MoE’ in Table 3 delineate the significant performance
enhancement attributable to each prompt element, thereby
validating our design rationale. These findings not only

Table 3: Ablation results on the proposed BIG-MoE.

Method CPW→ S
HTER(%)↓ AUC(%)↑

ViT [30] (Baseline) 20.88 84.77
w/ ST MoE [15] 14.31 88.69

w/ PEER [1] 22.34 84.97
w/ IGMA 21.12 85.50

w/ IGMA+CPB (With Pt) 20.55 88.41
w/ IGMA+CPB (With Pt&Pc) 10.44 93.87

BIG-MoE (Ours) 10.96 94.35

ViT BIG-MoE(Ours)

Fig. 4: t-SNE visualization when respectively tested on
CeFA, PADISI, SURF, and WMCA domains.

demonstrate the synergistic effects across modalities and fea-
tures, but also highlight the substantial refinement in cue
detection and decision-making capabilities afforded by an
optimal prompt combination.

3.5. Visualization and Analysis
t-SNE was used for dimensionality reduction and visualiza-
tion of complex data, effectively showing its utility with ViT
and BIG-MoE methods. Fig. 4 illustrates BIG-MoE’s ad-
vanced classification, aided by CPB technology in capturing
fine feature differences. However, to enhance model gener-
alizability across domains, optimizing multi-domain training
samples is needed due to variations in feature representation
from different training datasets.

4. CONCLUSION

This paper introduces BIG-MoE, integrating the Isolated Gat-
ing Mechanism Adapter and Convolutional Prompt Bypass
for generalized multimodal face anti-spoofing (FAS). The
former detects subtle spoofing cues with fine-grained experts
and efficient key retrieval, while the latter extracts local fea-
tures and boosts model perception via attention mechanisms.
Our method demonstrates superior performance in general-
ized multimodal FAS through extensive experiments. Future
work will focus on improving MoE’s generalization with lim-
ited samples and in multimodal settings.
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