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Abstract

Although great progress has been made in face detec-
tion, a trade-off between speed and accuracy is still a great
challenge. We propose in this paper a feature map masking
based approach for single-stage face detection. As feature
maps extracted from feature pyramid network might con-
tain face unrelated features, we propose a mask generation
branch to predict those significant units for face detection.
The masked feature maps, where only important features
are left, are then passed through the following detection
process. Ground truth masks, directly generated from the
training images, based on the face bounding boxes, are used
to train the feature mask generation module. A mask con-
strained dropout module has also been proposed to drop
out significant units of the shared feature maps, such that
the detection performance can be further improved. The
proposed approach is extensively tested using the WIDER
FACE dataset. The results suggest that our detector with
ResNet-152 backbone, achieves the best precision-recall
performance among competing methods. As high as 95.4%,
94.0% and 86.9% accuracies have been achieved on the
easy, medium and hard subsets, respectively.

1. Introduction
Face detection is a fundamental and essential task in var-

ious face applications. The pioneering work by Viola-Jones
[16] applies AdaBoost algorithm with Haar-Like features
to train cascaded classifiers. Most of the subsequent works
rely on hand-crafted features and carefully designed clas-
sifiers [24, 10]. In recent years, convolutional neural net-
work (CNN) [13, 4] achieves great progress. The deeply
learned features gradually replace these hand-crafted fea-
tures. These universal object detectors, such as R-CNN
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[12], SSD [8] and YOLO [11], apply CNN as the feature
extractor and achieve much better performance. They pro-
vide the new baselines for face detection. Although there
are a large number of studies based on CNN in face detec-
tion, detecting tiny faces remains a great challenge.

New anchors and networks [8, 21, 22] and merging con-
textual features [23, 17, 15, 6, 7] are common approaches
to detect faces with different scales. However, little at-
tention has been paid to significant units of shared feature
map, which play a significant role in face detection. In the
heatmap, the highlighted units of shared feature maps corre-
spond to extracted face features of original image. Here, the
highlighted units are defined as the significant units. Actu-
ally, as shown in Fig. 1, if the occupied area of face ground
truth (GT) boxes is small in the whole image, the area of the
significant units of shared feature maps are also small in the
corresponding detection head. These significant units can
be used to construct sparse shared feature maps, i.e. only
these significant units of shared feature maps are used for
classification and localization tasks. There are two issues
related to the significant units. The first one is how to label
these significant units. The second one is how to employ
significant units in face detectors. We address these issues
by introducing a facial feature masking module (FFMM)
and a mask constrained dropout module (MCDM) to make
full use of these significant units in the following steps.

Firstly, in our network, not only face class labels and
ground truth boxes in original images, but also the class la-
bels of significant units in shared feature maps are neces-
sary. To this end, we use face ground truth boxes to indicate
significant units. In this work, we use a weakly-supervised
solution to label significant units for generating the ground
truth mask.

Secondly, the significant units should be online labeled
in inference and applied to classification and localization
tasks. In this work, we propose a facial feature masking
module to retain the significant units of shared feature maps.

Thirdly, the face detector should make full use of the sig-
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Figure 1. Overall framework (a) and an entity with FFMM (b) and MCDM (c). Here, W is width, H is height and C is the channel number
of feature maps. ⊗ represents the element-wise product of two matrixes. Cn is multi-scale feature maps. MCDM-B represents that the
MCDM is located behind the shared feature maps. In (b) and (c), the content within yellow dotted box only exists in training and the
content of mazarine dotted box is shared both in training and testing.

nificant units. Inspired by Dropout [14], we introduce the
mask constrained dropout module (MCDM) to make these
units more robust and create useful features in shared fea-
ture maps.

In addition, we use a simple feature enhancement mod-
ule (FEM) to demonstrate that MCDM is effective for pro-
moting accuracy.

For clarity, there are three main contributions of our
work.

1. We use a weakly-supervised solution to generate
ground truth masks using face ground truth boxes. 2. To
utilize the significant units of feature maps, we propose
FFMM for generating the masks. Meanwhile, the proposed
module can also make a screening in shared feature maps
and ignore most background features to improve face detec-
tion accuracy. As FFMM can highlight the area of feature
maps where faces exist, the masked feature maps are sparse.
Structurally, if the FFMM is robust, it only pays attention to

prediction head where faces exist. 3. We propose MCDM
to randomly drop significant units of shared feature maps in
training to make these units more robust and create useful
features.

The rest of the paper is organized as follows. Section 2
provides an overview of the related works. Section 3 intro-
duces our method. Section 4 presents the experiments and
Section 5 concludes the paper.

2. Related Works

Multi-stage v.s. Single-stage. Both multi-stage and
single-stage object detection methods have been used in
face detection. Generally speaking, the accuracy of the
multi-stage object detector is higher while its speed is
slower. The more stages it has, the higher computation cost
it requires. Faster R-CNN [12] firstly applies the Region
Proposal Network (RPN) for generating region proposals.
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Figure 3. A feature enhanced MCDM.

Then it refines the region proposals by Fast R-CNN detec-
tor [3]. In the cascaded methods, the bounding box pro-
posals and the subsequent pixel or feature resampling stage
are computationally intensive. LDCF [9] applied CNN as
the feature extractor in the traditional face detection frame-
work. It is faster but does not perform well for tiny face
detection. Faceness [18] trains a series of CNNs for facial
attribute recognition to detect partially occluded faces. In
the first stage, the generated response maps of different fa-
cial parts are employed to produce face proposals, which
also do not work well for tiny face. Multiscale Cascade
CNN [19] is a multi-scale two-stage cascade framework and
employs a divide and conquer strategy to address the high
variability of scales. Its multiscale detection networks are
time-consuming. Two-stage CNN [19] is similar to Multi-
scale Cascade CNN [19]. Though a single network, instead
of multiple networks, is used for different scales, it is still
time-consuming. MTCNN [20] proposes a cascaded struc-
ture with three stages of carefully designed deep convolu-
tional networks to detect face in a coarse-to-fine manner.
While the computational costs of multi-stage detectors in-
crease with the number of faces in an image, the speed of
single-stage face detectors is constant. SSD [8] removes
proposal generation and subsequent pixel or feature resam-
pling stages to improve detection speed. YOLO [11] com-
putes a global feature map and uses a fully-connected layer
to predict detections in a fixed set of regions. Both SSD
and YOLO do not work well for small objects detection.
S3FD [22] proposes a max-out background label for the de-
tection layer at the lowest level to reduce the false positives
of small faces and a scale compensation anchor matching
strategy with two stages to improve the recall. The latest
single-stage detector is as accurate as the multi-stage ap-
proaches and its speed is fast, so we use it for face detection

in this work.
Context-associated Detectors. Recently, some works

show the importance of contextual information for tiny face
detection. DSSD [17] augments SSD with deconvolution
layers to introduce additional large-scale context in object
detection. The deeper the backbone, the more inference
time it costs. Pyramidbox [15] improves the utilization
of contextual information to provide extra supervision for
small faces. Its Low-level Feature Pyramid Network is rel-
atively bloated and can be optimized. Pyramidbox++ [7]
proposes the Dense Context Module with dense connection
to enlarge receptive field and pass information more effi-
ciently. Its dense context module is time-consuming. Reti-
naFace [2] uses independent context modules to increase
the receptive field. But it adds extra annotations of five fa-
cial landmarks to improve performance. To use the context
relationship between anchors, DSFD [6] proposes a feature
enhancement module that incorporates multi-level dilated
convolutional layers to enhance the semantic of the features.
Inspired by the above methods, we propose the simple fea-
ture enhancement module.

3. Our Method

We firstly introduce the overall face detection frame-
work, which consists of a backbone pretrained on ImageNet
[1] for multi-level feature extraction, and the corresponding
heads to process the extracted feature maps. Then, we in-
troduce FFMM and MCDM. Finally, we give the details of
the overall loss function.

3.1. Overall framework

Fig. 1 (a) shows the framework of our face detector. We
take the six layers f160×160, f80×80, f40×40, f20×20, f10×10

and f5×5 with different sizes from the backbone as inputs.
As the feature maps may contain both useful facial features
and irrelevant background information, we propose Facial
Feature Masking Module (FFMM) to mask out the useless
features by setting them to zero. We predict a facial feature
mask with the same size of the shared feature map to indi-
cate the units which are significant for face detection. The
maps, called stacked mask maps, are then multiplied with
the shared feature map to highlight the useful features for
the following bounding box regression and face/non-face
classification. The masked feature maps contain only use-
ful features for face detection, are thus much more sparse
than the original ones. The following convolutions can fo-
cus on these features and achieve more efficient face de-
tection. Based on FFMM, a specific dropout, called Mask
Constrained Dropout Module (MCDM), has also been de-
signed to drop out the neurons that generate the highlighted
features.
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3.2. Facial feature masking module (FFMM)

In this subsection, we introduce mask prediction, ground
truth mask generation and loss function.

Mask prediction. As mentioned in the framework,
given a feature map Xl ∈ RC×H×W passed to the l-th de-
tection head, stacked binary masks S ∈ RC×H×W need to
be generated to enhance the important facial features. As
shown in Fig. 1 (b), the main steps are shown as follows:

1. We apply 3 × 3 convolutions on shared feature maps
to generate logits maps A ∈ R2×H×W , which represent the
unnormalized probability of face/non-face for each pixel.

2. The softmax operation is applied on A to generate
probability mask M ∈ R2×H×W :

Mi(u, v) = softmax(Ai(u, v))

=
eAi(u,v)∑2
j=1 e

Aj(u,v)
,

2∑
i=1

Mi(u, v) = 1
(1)

where (u, v) is a coordinate position. Ai(u, v) is the logit at
(u, v) for i-th channel (face/background) of A. Mi(u, v) is
the probability of the predicted class i at (u, v). M1 andM2

are the probabilities of background and face, respectively.
3. We take out the second channel of the probability

mask M, i.e. M2 ∈ RH×W , where the probability of face
is stored, to generate a binary mask B ∈ RH×W :

B(u, v) =

{
1, M2(u, v) > ThMask

0, otherwise.
(2)

where B(u, v) is the value at (u, v) of B. ThMask is a
threshold.

4. The mask B is repeated for C times and then stacked
to align with the shared feature maps Xl. The stacked bi-
nary masks S have the same shape as that of the shared
feature map Xl.

5. We use Hadamard product (denoted as ⊗) to multiply
shared feature maps Xl with the stacked binary masks S to
generate masked feature maps X̃l ∈ RC×H×W .

6. The masked feature maps X̃l are passed to the detec-
tion head for classification and localization.

The binary map generation branch only contributes to
the information propagation in forward computation and is
not included in backward computation during training.

Ground truth mask. To train FFMM that generates
the proposed facial feature mask, the ground truth mask
G ∈ RH×W of every detection head needs to be cre-
ated from the input image. Figure 2 shows an example
mask generated for the input image with height Hinput and
width Winput, where two faces are available. Each pixel
in the mask (xmask, ymask) is firstly mapped to a pixel
(xinput, yinput) in the input image as below:

xinput = (xmask + 0.5)
Winput

W ,

yinput = (ymask + 0.5)
Hinput

H

(3)

where xinput and yinput are used as the precise center for
the following bounding box location. Based on the recep-
tive field size associated with the head, a set of square boxes
centering at (xinput, yinput), with size ranging from Min to
Max, can be generated. We compute IoU between face box
and the generated square box, both of which are in float-
ing representation to avoid rounding error. The pixel value
of (xmask, ymask) is set as 1 if and only if any of its square
boxes has a Jaccard overlap (>ThGT ) with the ground truth
box.

Loss function. To compute the mask loss of FFMM, we
should generate the mask label Y ∈ R2×H×W , which is
the one-hot encoding of the ground truth mask G. As the
face masks in detection head at shallow level account for
small regions, the predictions are tending to background.
As a result, the predicted probability for foreground may be
small. Therefore, we propose to filter out the nonsignificant
units with a threshold ThMask. As shown in Fig. 1 (b), the
cross entropy loss is used to measure the difference between
the predicted probability mask M and ground truth mask G:

Lmask = −
∑H
u=1

∑W
v=1

∑2
i=1Mi(u, v) log(Yi(u, v))

(4)
M(u, v) and Y (u, v) are the class prediction and one-hot
label on location (u, v), respectively.

3.3. Mask Constrained Dropout Module (MCDM)

As dropout has been widely proved to enhance the gener-
alization performance of network, we also applied the strat-
egy to our ground truth mask G during the training of face
detector. The pixels with value 1 in G generated in sec-
tion 3.2 are randomly dropped, i.e. set to 0, with a dropout
probability η. Our MCDM can thus be seen as a special
case of general dropout strategy. As each pixel in high-
level features is very important, we apply our MCDM in
low-level features. In addition, Pyramidbox [16] has proven
that shared features at adjacent levels have strong relation-
ship. Therefore, we adopt FEM to enhance the features.
The enhanced features are multiplied with the stacked bi-
nary masks generated by MCDM.

As shown in Fig. 3, in our FEM, a 1 × 1 convolution,
followed by batch normalization and ReLU operations, is
firstly used to normalize the two adjacent shared feature
maps. The feature map with lower resolution is upsampled
to the same size with the higher resolution one, before the
element-wise product. Three branches with different dilated
convolutions are then applied to the fused feature maps and
the outputs are further combined to generate the final en-
hanced feature map for MCDM.

3.4. Overall Loss Function

As our detector consists of three branches, i.e. FFMM,
classification and bounding box regression, the overall loss
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Figure 4. Examples of the detection results for UF-SSD+FFMM-
×1

function is a combination of different losses to supervise the
training of the three branches: L = λ1Lmask + λ2LC+L.
λ1 and λ2 are the balanced loss weights. While Lmask su-
pervises the prediction of facial feature mask, LC+L is the
same as RPN [12] and defined as below:

LC+L(pi, ti) =
λ3

Nconf

∑
i Lconf (pi, p

∗
i )

+ 1
Nloc

∑
i p

∗
iLloc(ti, t

∗
i ),

(5)

where Nconf denotes the total number of positive and neg-
ative anchors, and Nloc is the number of positive anchors.
pi is the predicted probability of the i-th anchor. The i-
th anchor will be positive only when p∗i is 1, otherwise
negative. The classification loss Lconf is the softmax loss
over two classes including face and non-face. Lloc(ti, t∗i )
is the smooth L1 loss between the regression prediction ti
and the ground truth offsets t∗i of the i-th anchor, where
ti = {tx, ty, tw, th}i and t∗i = {t∗x, t∗y, t∗w, t∗h}i. We only
compute the localization loss of positive anchors. λ3 is the
balanced loss weight.

4. Experiments
4.1. Dataset and Evaluation Metrics

We carry out all the experiments on the WIDER FACE
dataset, which consists of 32203 images and 393703 labeled
faces. We use the data in training set (about 13k images)
for training, and present ablation study results in terms of
average precision (AP) on validation set, which consists of
around 3k images. Our main results are reported on both
validation set and testing set (about 16k images), in terms
of precision recall (PR) curves.

4.2. Training Details

For all the experiments, we take the Universal Face Sin-
gle Shot MultiBox Detector (UF-SSD) as the detector.

Data Augmentation. As there are many small faces in
the original images, we generate new data with larger faces
to solve the scale imbalance problem. Following [8, 22], we
randomly crop a square patch from the original image with
a ratio [0.3, 1] of its shortest side. We only keep the overlap-
ping between the patch and face box when the center of the
face box is within the patch. The cropped patch is resized
to 640 × 640 and horizontally flipped with a probability of
0.5, followed by photo-metric distortions [5].

Table 1. Ablation studies of FFMM based on VGG-16 [13] back-
bone on WIDER FACE validation set. ThGT and ThMask are set
to 10−3 and 10−2, respectively. ”×1” denotes applying FFMM
only on f160×160 layer, while ”×6” denotes applying FFMM on
all shared layers.

Architecture (%) Easy Medium Hard
UF-SSD(VGG-16) 92.10 90.00 77.50
UF-SSD+FFMM-×1 92.40 90.80 83.50
UF-SSD+FFMM-×6 93.40 91.60 80.90

Table 2. Ablation studies of MCDM based on VGG-16 [13] back-
bone on WIDER FACE validation set. ThGT is set to 10−3.
”MCDM-B” denotes applying MCDM after the enhanced feature
map ef160×160.

Architecture (%) Easy Medium Hard
UF-SSD(VGG-16)+FEM 93.40 92.10 85.00
UF-SSD+FEM+MCDM-Bη=0.10 94.00 92.70 86.00
UF-SSD+FEM+MCDM-Bη=0.20 93.30 92.20 85.50
UF-SSD+FEM+MCDM-Bη=0.30 93.70 92.40 85.30

Table 3. Efficiency analysis of various methods on WIDERFACE
validation set.

Method Speed
UF-SSD(VGG-16) 55.50(ms)
UF-SSD+FFMM-×1 63.19(ms)
Pyramidbox(VGG-16) [15] 98.17(ms)

Optimization details. We train the detectors for 200K
iterations using the stochastic gradient descent (SGD) opti-
mizer. The initial learning rate is 10−3 or 2× 10−4 and di-
vided by 10 after 100K, 150K and 180K iterations. Weight
decay and momentum are set to 5 × 10−4 and 0.1, respec-
tively. ThMask is set to 10−2. The balanced loss weight λ1,
λ2 and λ3 are set to 1.0, 1.0 and 4.0, respectively.

4.3. Ablation Studies

For ablation studies, we use VGG-16 [13] as the back-
bone and take the outputs conv3 3, conv4 3, conv5 3,
conv fc7, conv6 2 and conv7 2 from the backbone to carry
out detections.

FFMM. As shown in the second row in Tab. 1, UF-
SSD+FFMM-×1 obtains improvements of 0.3%, 0.8% and
6.0% on easy, medium and hard subsets, respectively.
While those of UF-SSD+FFMM-×6 are 1.3%, 1.6% and
3.4%, respectively. The results show that FFMM can boost
detection performance, especially on the hard subset. More-
over, applying FFMM on more heads is helpful to detect
easy and medium faces, but the improvement on hard sub-
set drops a little.

MCDM. As shown in the first row in Tab. 2, we take
UF-SSD(VGG-16)+FEM as the baseline for comparisons.
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Figure 5. Precision-recall (PR) curves on WIDER FACE validation and testing sets.

The second row in the table indicates that when η is 0.10,
the baseline integrated with MCDM-B gets the best per-
formances of 94.00%, 92.70% and 86.00%, with improve-
ments of 0.6%, 0.6% and 1.0% on easy, medium and hard
subsets, respectively. It indicates that MCDM can effec-
tively boost the detection performance on all subsets, which
justifies the effectiveness of our approach.

In summary, both FFMM and MCDM can notably boost
the detection performance.

4.4. Comparisons with State-of-the-art Methods

After ablation studies, we compare our approaches
with state-of-the-art methods in Fig. 4. The UF-
SSD+FEM+MCDM-Bη=0.10 uses ResNet-152 (RES-152)
as the backbone [4]. The PR curves of our UF-
SSD+FEM+MCDM-Bη=0.10 and UF-SSD+FFMM-×1 are
at the top of that of other state-of-the-art methods on all
subsets. In particular, UF-SSD+FEM+MCDM-Bη=0.10

achieves the best performances of 95.4%, 94.0%, 86.9%
on easy, medium and hard subsets, respectively, which is
a new state-of-the-art. UF-SSD+FFMM-×1 also surpasses
all other state-of-the-art methods, such as [19, 23, 18, 9, 20],
especially on hard subset that contains massive tiny faces,
except for our UF-SSD+FEM+MCDM-Bη=0.10. We can
see that the two curves on validation and testing sets are
very similar. Specifically, the accuracy of both methods
drops 0.4% from validation sets to testing ones on hard sub-
set, which justifies the generalization ability of two models.
As shown in Fig. 4, our UF-SSD+FFMM-×1 can detect
many tiny faces. In particular, UF-SSD+FFMM-×1 detects
734 faces of the World Largest Selfie image shown at Fig.

4, which confirms the effectiveness of our proposed FFMM
on detection of tiny faces.

4.5. Efficiency Analysis

We now test the efficiency of our approach with that of
literature works like Pyramidbox and UF-SSD (VGG-16).
Table 3 shows the mean speed to process an image in the
WIDER FACE validation set, recorded on a GTX 1080Ti
GPU. One can observe from the table that the mean pro-
cessing time of our approach is 63.19ms, which is similar
with that of UF-SSD (VGG-16) and much more efficient
than Pyramidbox. FFMM filters out the unimportant units
which may generate low-quality predictions. The decrease
of low-quality predictions reduces the process time of NMS.
Therefore, our model is more efficient.

5. Conclusion
In this paper, we propose the facial feature masking

module (FFMM) and mask constrained dropout module
(MCDM) for face detection. FFMM can be regarded as a
screening on feature maps to obtain significant units for de-
tection. As the masked feature map is sparse, the computa-
tion cost can be saved. MCDM randomly drops the signif-
icant units of feature maps to make them more robust and
thus generate more useful features.

Both of our approaches can boost the detection perfor-
mance. We will improve the proposed modules in our fu-
ture work, for example, by applying fewer FFMMs without
decrease of the performance. We will also improve the em-
pirical threshold in FFMM to make it adaptive.
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