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Abstract

Recent studies have shown the vulnerability of CNNs un-
der perturbation noises, which is partially caused by the
reason that the well-trained CNNs are too biased toward
the object texture, i.e., they make predictions mainly based
on texture cues. To reduce this texture-bias, current stud-
ies resort to learning augmented samples with heavily per-
turbed texture to make networks be more biased toward rel-
atively stable shape cues. However, such methods usually
fail to achieve real shape-biased networks due to the insuf-
ficient diversity of the shape cues. In this paper, we propose
to augment the training dataset by generating semantically
meaningful shapes and samples, via a shape deformation-
based online augmentation, namely as SDbOA. The sam-
ples generated by our SDbOA have two main merits. First,
the augmented samples with more diverse shape variations
enable networks to learn the shape cues more elaborately,
which encourages the network to be shape-biased. Second,
semantic-meaningful shape-augmentation samples could be
produced by jointly regularizing the generator with ob-
ject texture and edge-guidance soft constraint, where the
edges are represented more robustly with a self information
guided map to better against the noises on them. Extensive
experiments under various perturbation noises demonstrate
the obvious superiority of our shape-bias-motivated model
over the state of the arts in terms of robustness performance.
Code is available at https://github.com/C0notSilly/-ICCV-
23-Edge-Deformation-based-Online-Augmentation.

* Corresponding author

Figure 1. Comparison of different models’ predictions on texture-
shape cue conflict samples [11] between Style Augmentation [21]
(CVPRW’19), deformation augmentation in [43] and ours. Spe-
cific to the testing image (a), the bottom row shows the original
(b) and augmented (c)-(e) images for training.

1. Introduction

Previous studies [13, 15, 38] have shown that convolu-
tion neural networks (CNNs) are vulnerable to perturbation
noises, e.g., adversarial noises. Such perturbation noises
imposed on the benign image can easily falsify model’s pre-
diction [28]. To improve the network robustness against
these noises, algorithms of texture augmentation have been
long studied to enable network to learn robust and discrimi-
native object texture features of different categories [11,24].

However, recent studies revealed that the vulnerability
of CNNs maybe caused by their ‘texture-bias’, i.e., the fea-
tures learned for object recognition bias towards objects’
textures instead of their shapes [2, 11]. As illustrated in
Fig. 1, when the input image (a) contains a cat that is
filled with an elephant’s texture, standard CNN networks
are more likely to predict it as an elephant despite the obvi-
ous shape difference between cats and elephants.

Consequently, some studies devote to reducing such



texture-bias to improve network robustness. Zhang et
al. [47] found that CNNs learned with adversarial train-
ing strategies are less texture-biased. Alternatively, shape-
biased CNNs are revealed to be more robust under diverse
adversarial attacks. Sun et al. [37] found that the net-
work adversarial robustness can be improved by directly
using edge maps to aid the training process. Carlucci et
al. [4] proposed to train CNNs on jigsaw puzzles, which
achieved superior performances by enabling the network to
pay more attention on the cues contained in the global struc-
ture. These works illustrate that the shape and structure fea-
tures, e.g. edge map, can reduce the texture-bias with a
stronger shape-bias, i.e. CNNs make predictions based on
more shape cues, rather than texture cues.

However, current studies mainly learned the features of
the object shape that is fixed, while the advantage of the
shape diversity for devising a more shape-biased model is
not well studied. Meanwhile, direct deformation augmenta-
tion on images may destroy the object semantics, especially
on the image boundary. Given the above observations, fol-
lowing question naturally emerged: Can we implement data
augmentation to the edge map to enhance the shape cues
and reduce texture-bias ?

To this end, we propose a thin plate spline (TPS) [10]-
based edge map deformation strategy to augment the shape
representation of the training data, aiming to enhance the
shape-bias of the well-trained network. To make the en-
coded object shape less sensitive to the noises, we extend
the edge map specific to only the object edges to include
broader boundary regions via the self-information guided
map [34]. Furthermore, to build up the correlation be-
tween the deformed shape and the texture category to make
the augmented samples more semantic-meaningful, we im-
prove the generator with the additional supervision of de-
noised texture cues and a shape-preservation loss.

Fig. 1 sheds light on the above motivation of our shape
augmentation for enhancing networks’ shape-bias with a
toy experiment, where the probabilities to the shape la-
bel of an example sample [11] are predicted by the stan-
dard ResNet-50, the Style Augmentation [21], the image
deformation augmentation [43] and our method. Fig. 1
shows that the proposed algorithm achieves significantly
larger probability predicted to the shape label, i.e. tabby cat
over the baseline and the related approaches, which reveals
the obvious tendency of the proposed SDbOA in applying
shape cues for making predictions. For this observation,
we argue that the proposed edge-deformation augmentation
enables networks to learn the object shape cues more elab-
orately, while reducing the contribution of the texture cues
for prediction.

To the best of our knowledge, this work is one of the pi-
oneer attempts to enhance shape-bias of networks based on
the augmentation of object’s edges. The main contributions

of this paper are summarized as follows:

• We propose a TPS-based edge deformation to aug-
ment the object shape, and apply it to the online data
augmentation, which could help learning more shape-
biased networks.

• We propose a semantic-meaningful generation
paradigm to produce shape-augmentation samples
by jointly regularizing the generator with object
texture and edge-guidance soft constraint, where a
self information guided map is introduced to represent
these edge cues more accurately and robustly.

• Extensive results show the superiority of the proposed
algorithm over state of the arts (SOTAs) in terms of
universal robustness under adversarial, backdoor and
common corruption attacks and the training overhead.

2. Related work
2.1. Texture or shape-biased models associated with

recognition network robustness

Adversarial attacks have exposed the vulnerability of
networks to perturbation noises [3, 28, 29, 38], leading to
a growing concern for network robustness. Recent studies
have investigated the association between network robust-
ness and object texture or shape. Geirhos et al. [11] discov-
ered that CNNs trained on ImageNet rely heavily on texture
cues, leading to a texture bias in predictions. To address this
issue, Hermann et al. [18] proposed additive augmentation
techniques such as color distortion or blurring. However,
the contribution of shape cues to recognition robustness has
not received sufficient attention in their works.

Recently, Shi et al. [34] proposed an informative dropout
approach to help models learn robust representation from
a shape-bias perspective. Sun et al. [37] proposed to ex-
plicitly use object edges as semantically robust features to
against adversarial attacks. Since the object shapes used for
enhancing shape-bias are fixed, both approaches are unable
to learn a real shape-biased network.

In this work, we thus resort to the edge deformation
and augmentation to improve the diversity of object shapes.
Based on this, we attempt to enhance shape-bias, thus en-
abling the network to shift its attention from texture to more
on the shapes, and better discriminating the samples that
have different textures but the similar shape.

2.2. Data augmentation for recognition robustness
improvement

Data augmentation is a popular paradigm for improving
the robustness of recognition network against various per-
turbation noises [16,17,21,24,27,32,41]. This strategy can
be applied to generic computer vision tasks, which differs



Figure 2. Pipeline of the proposed SDbOA. For the training, all the three modules, i.e. Edge map-based shape encoding (EMSE), TPS-
based shape deformation (TSD) and Texture and shape-based generation (TSG) are used. For the testing, the TSD module is not needed.
⊘ denotes the ‘OR’ operation.

from some task-specific robustness improvement strategies
such as adversarial defense algorithms [1, 28, 31, 33, 36, 39]
that are designed for a specific attack scenario.

Lopes et al. [26] augmented the samples to trade off
robustness against recognition accuracy via adding noises
on the selected patches of a benign image. Hendrycks et
al. [16] proposed the AugMix augmentation, i.e. mixing
randomly generated augmentations to improve model ro-
bustness under common corruptions. Jackson et al. [21]
proposed to augment the data with the style transfer to mit-
igate domain bias and reduce overfitting. Lee et al. [24]
proposed to largely perturb the object texture to help model
concentrate on the invariant shape structure.

Most augmentation methods [16, 21, 24, 26, 32] either
focus on augmenting texture cues or fail to modify ob-
ject shape regarding edges or structure, such as geomet-
ric transformations [32, 35]. However, compared to im-
age deformation-based augmentation methods [10, 43, 48],
which strictly adhere to shape constraints, this hard guid-
ance may disregard the semantic coherence of the deformed
sample, as shown in Fig. 1.

In this work, we propose an object shape augmentation
approach based on the TPS-based [10] edge deformation,
with the aid of an extended edge encoding and a generator
with a soft constraint loss for the shape representation, to
dynamically enrich the object shapes.

3. Methodology

The algorithm architecture, shown in Fig. 2, comprises
three main modules: (i) the edge map-based shape encod-
ing (EMSE) module used for robustly representing object
shape; (ii) the TPS-based shape deformation (TSD) mod-
ule used for providing flexible shape augmentation; and (iii)
the texture and shape-based generation (TSG) module used
for augmenting the samples dynamically, guided by the de-
formed shape.

3.1. Edge map-based shape encoding (EMSE)

To encode the object shape, the EMSE consists of two
blocks. Firstly, a Robust Canny [37] block that generates
an edge map for each image, describing the raw shape of
the object in the image. While the Robust Canny may dis-
regard some important shape cues of the object, we then
additionally encode a self-information guided map [34] to
provide complementary shape structure cues in addition to
the Canny operator. Specifically, an edge map Ê that en-
codes the pixel-wise self information is first computed as:

Ê(p) = −log(
∑

p′∈Np

e−(p−p′)2) (1)

where Ê(p) denotes the estimated self-information at the
pixel p = (x, y) of the original image I; and Np denotes
the neighbouring pixels of p.

Then, we obtain the average pixel-wise self-information
mi and perform a thresholding operation to obtain the self-
information guided map Einfo as follows

Einfo(p) =

{
1 Ê(p) ≥ mi

0 otherwise
(2)

Eq. (2) indicates that the greater the difference between
a pixel and its neighbors, the more shape cues this pixel
may contain. That is, for pixels close to the object bound-
ary, their self-information values tend to be relatively large.
Consequently, we use this self-information map to extend
the edge map extracted by Robust Canny, to leverage the
edge-surrounding cues to against the possible noises im-
posed on the edges, as follows

Eextend = ERC + Einfo (3)

where ERC denotes the edge maps extracted by the robust
Canny.



3.2. TPS-based shape deformation (TSD)

To augment the shape representation, we propose TPS-
based deformation on the meshing of the self-information
edge map in Eq. (3).

For the shape deformation, Dabouei et al. [7] suggested
to use the facial landmarks as control points, while this fash-
ion brings about an overhead of the additional detection
module and may damage semantic reasonability. By con-
trast, we propose to uniformly mesh the edge map, and use
the endpoints of the grids as the control points to guide the
edge map deformation for shape augmentation.

Specifically, the edge map Eextend is equally divided
into n = 16 grids, and the endpoints are denoted as {Pi,
i = 1, . . . , n}, which serve as the original control points
and are randomly perturbed to generate target control points
{Qi, 1 ≤ i ≤ n} as follows

Qi = Pi + λN (4)

where random noise N obeys N(0, 1), i.e. the normal dis-
tribution with mean 0 and variance 1, and the λ controls the
intensity of image deformation, which is set as 0.1. The
edge map meshing is visualized in Fig. 2.

Given the original and target control points, the edge
map deformation is then performed based on TPS. In partic-
ular, a transformation Φ is found to maximize the smooth-
ness of the edge map deformation while minimizing the gap
between two sets of control points. In this work, we use
two transformations Φx,Φy [10], specific to the translation
of the x, y coordinates of the control points, to obtain the
deformed edge map Edeform as:

Edeform(p) = (px +Φx(p), py +Φy(p))
Φx(p) = Mx · p+mx

0 +
∑

i w
x
i U(||p− Pi||2)

Mx,mx
0 , {wx

i } =
argmin

∑
i(Φ

x(Pi)− (Qx
i − P x

i ))
2 + EΦx

(5)

where U(·) denotes the function of radial basis kernel,
Mx ∈ R2, mx

0 , w
x
i ∈ R are the parameters specific to the x

coordinate. EΦx is the second-order smoothness term spe-
cific to the transformation Φx. For the y coordinate, the
transformation Φy is similarly derived.

3.3. Texture and shape-based generation (TSG)

Since the edge map deformation may cause the texture
distorted on the boundary regions, it may deteriorate the
fidelity of the deformed shape and the shape-based recog-
nition performance. Thus, we propose a new generative
model based on a two-stage training to inpaint the texture
of the deformed edge map, i.e. reconstructing this map into
the original image domain for the data augmentation.

While the Pix2Pix network [20] can achieve the inpaint-
ing from an edge map to the original image representation,
it can not well build up the correlation between the edge

map and the texture category, i.e. an image with correct
shape yet mismatched texture category may be generated.
Therefore, we propose to use both shape and texture cues in
the generator to build up this correlation.

Specifically, to provide texture cues for the generator, the
original image is smoothed with an easy-to-implement de-
noising step:

Itxt = Interp(DS(I)) (6)

where Interp and DS denote interpolation and down-
sampling methods, both of which are based on bilinear in-
terpolation. Itxt denotes the resulted texture map. This de-
noised texture map aims to provide rough guidance cues for
the synthesis of fine texture. To further provide the shape
cues in the edge encoder of the generator, we use Eextend

in Eq. (3) in the 1st-stage training, and Edeform in Eq. (5)
in the 2nd-stage training.

To train the generator, a two-stage strategy is used.
While a rough image is generated based on Eextend and the
denoised texture Itxt in the first stage, which is fine-tuned
with the input of the deformed edge map Edeform, and the
additional supervision of an object classifier and a newly
introduced shape-preservation loss.

Specifically, the generator is trained in the 1st stage with
the loss L1st, i.e. the sum of the adversarial loss Lgan [12],
a feature matching loss [22] and a auxiliary classification
loss referred from ACGAN [30], which is used to generate
rough image without shape deformation. During the second
stage, we jointly fine-tune the generator and the classifier
with the supervision of the cross-entropy classification loss
Lcls [37] in addition to Lgan, to better represent the corre-
lation between edge maps and textures.

In addition, to decrease the sensitivity of the generator
against the deformed edge map and stabilize the training,
we introduce a l1-norm shape-preservation loss between the
deformed edge map and that extracted from the generated
image as:

Ledge = ||eCNN(Isyn), Edeform||1 (7)

where Isyn and eCNN denotes the synthesized image and
convolution network to extract edges in [37]. It’s worth not-
ing that the deformed shape Edeform serves as a soft guid-
ance for generating the shape of the augmented sample, it
differs from the hard constraint in the direct image deforma-
tion, where the object shape is changed strictly according to
the target control points. Consequently, the training specific
to the loss L2nd in the fine tuning stage is formulated as:

min
G,θ

max
D

L2nd = Lgan + Lcls + Ledge (8)

where θ denotes the parameters of the classifier. G and D
denote the generator and the discriminator.



3.4. Overall training

For clarity, our sample synthesis with edge deformation
is also presented in Alg. 1, which is further used for online
shape augmentation in each epoch of the network training.

Algorithm 1 Edge deformation-based sample generation.
Input: input an image I and initialize the network
Output: the shape-deformed image

1: Obtain the extended edge map with Eq. (3);
2: Mesh the edge map and perturb the control points with

Eq. (4);
3: Perform edge map deformation with Eq. (5);
4: Obtain the denoised texture map with Eq. (6);
5: Perform the two-stage training for the generator based

on L1st and L2nd in Eq. (8);

Regarding the training complexity, our algorithm re-
quires only the similar runtime cost as the vanilla training,
which is significantly lower than that of offline augmenta-
tion. This statement, together with the adversarial robust-
ness of the online and offline augmentation for our method
are studied with a toy experiment in the supplementary ma-
terial.

4. Experiments
4.1. Dataset and experimental settings

Datasets We evaluate the robustness performance of the
proposed algorithm under five attacks, i.e. [3, 5, 28, 29, 38]
on four databases, i.e. Fashion MNIST (FM) [42], CelebA
(CA) [25], CIFAR-10 (C10) [23] and ImageNet (IN) [8].
Experimental setting ResNet50 [14] after the pretraining
or ResNet18 is used as the backbone for ImageNet or the
other three datasets, unless otherwise specified.

We follow the protocol in EdgeNetRob [37] to evaluate
the robustness performance under different adversarial at-
tacks. For adversarial robustness evaluation, we use the
l∞-norm perturbation constrained in the range [0, 1], and
the perturbation budgets, i.e. 25/255 for Fashion MNIST,
and 8/255 for CIFAR-10, CelebA and ImageNet. CelebA is
used for the task of gender recognition.
Evaluation metrics The performance is evaluated with the
shape-bias metrics [11, 19], the clean accuracy and the ac-
curacies under diverse attack scenarios. We follow EdgeN-
etRob [37] to evaluate the clean accuracy, i.e. the accuracy
on the testing set generated by EMSE and TSG modules for
SDbOA, and the performance on the original testing set for
non-generation algorithms.

To evaluate the capacity of our method in terms of
clean accuracy preservation compared with state-of-the-art
(SOTA) defense strategies and related data augmentation
approaches, we use the performance of the baseline as the
benchmark.

Figure 3. Shape and texture sensitivity of the valilla net and ours
against adversarial noises. (a) and (d) show a clean sample and an
attacked sample generated by PGD-40 [15], with a texture patch
and an edge map extracted by Robust Canny, (b) and (e) show the
feature maps (FMs) with the highest L2-norm activation represent-
ing these samples based on ResNet-50, and (c) and (d) show the
FMs by ours. ‘Dist’ denotes the L2-norm distance.

4.2. Function Analysis of the proposed modules

4.2.1 Function of shape bias for robustness

Since adversarial noises are generated within a limited ad-
versarial budget and sparsely distributed in perturbed re-
gions, Fig. 3 shows that the object’s shape of an image is
less perturbed compared with its texture. Specifically, the
edge maps reflecting the shape remain similar for the be-
nign and attacked samples, while the feature maps of these
samples with the vanilla net are largely different, i.e. their
distance is large, reflecting that the yielded feature repre-
sentation of object texture has already largely perturbed by
the attack. By contrast, our algorithm yields significantly
smaller feature map bias, suggesting a more shape-biased
model can make feature representation more robust against
adversarial perturbations.

4.2.2 Function of the proposed modules

The performance of TSD Fig. 4 illustrates the funda-
mental contribution of the TSD module for shifting from
texture-bias to shape-bias. For a moderate magnitude of λ
in Eq. (4), e.g. λ = 0.1, augmented samples with diverse
shapes and the similar texture are generated. To be specific,
the constraint loss in Eq. (7) encourages the diversity of the
generated shapes, and our GAN generator enhances the se-
mantic rationality of the generated samples and the similar-
ity of their textures. Consequently, these shape-augmented
and texture semantic-preserved data could induce the net-
works to use more neurons to remember the diverse varia-
tions of an object shape, and encourage learned networks to
make predictions mainly based on the shape cues, i.e. caus-
ing the learned networks to be more shape-biased.
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Figure 4. The t-SNE visualizations of features with varying λ.

The performance of EMSE and TSG To shed light on
how the introduced self-information edge map and TSG
work, we visualize the produced edge maps with the Ro-
bust Canny [37] and the proposed self-information in Fig.
5, together with the generated samples with Pix2Pix [20]
and our generator.

The first row of Fig. 5 shows that the proposed self-
information guided map can encode richer shape cues and
represent shapes more accurately and robustly than those
with mere Robust Canny. The second row of Fig. 5
shows that the proposed TSG generates images with well-
preserved sharpness of object shape and realistic texture,
i.e. better building up the connection between shape and
the texture label, compared with Pix2Pix [20].

4.3. Quantitative evaluation

4.3.1 Results of shape-bias metrics

Geirhos et al. [11] proposed the first shape-bias evaluation
metric based on the prediction accuracy for a texture-shape
cue conflict dataset [11] as:

sbGE =
#Corrected Prediction to Shape Label

#All the Samples
(9)

where # denotes counting the number. This dataset [11]
consists of images with shape and texture from different

Figure 5. Visualizations of samples from EMSE and TSG. (a) rep-
resents a vanilla sample. (b) and (c) represent edge maps extracted
by Robust Canny [37] and EMSE. (d) and (e) represent images
generated by Pix2Pix [20] and our TSG.

classes to misguide the CNN. Specifically, the object tex-
tures of the images [11] are largely interfered with category-
irrelevant styles, which places big challenge for current
texture-biased networks.

Islam et al. [19] proposed another shape-bias metric as:

sbIS =

∑nf
i=1 ρi
nf

, where ρi =
Cov(zai , z

b
i )√

V ar(zai )V ar(zbi )
(10)

where nf is the number of feature maps. zai and zbi rep-
resents the i-th flattened feature maps corresponding to the
image pair (a, b) from the texture-shape cue conflict dataset
[11], while the two images contain the similar shape but
have different textures. The normalized correlation coeffi-
cient ρi measures the proportion of feature maps to repre-
sent the shape cues. The quantitative results of the standard
network, StyleAug [21], ShapeAug [24] and our SDbOA in
terms of the two quantitative metrics are shown in Tab. 1.

Tab. 1 shows that our SDbOA consistently achieves the
larger shape-bias values compared with the standard net-
work and the related augmentation algorithms [21, 24] in
term of both quantitative metrics for the training databases
of ImageNet (IN), Stylized IN [11] (SIN) and SIN+IN.

Method Dataset sbGE [11] sbIS [19]
Standard IN 21.39 17.0

StyleAug [21] IN 67.31 28.5
ShapeAug [24] IN 38.46 21.3

SDbOA IN 71.28 31.2
Standard SIN 81.37 26.2

StyleAug [21] SIN 73.72 32.7
ShapeAug [24] SIN 67.75 29.8

SDbOA SIN 82.40 39.9
Standard SIN+IN 34.65 18.4

StyleAug [21] SIN+IN 71.04 30.4
ShapeAug [24] SIN+IN 63.67 23.1

SDbOA SIN+IN 78.79 37.5
Table 1. Quantitative results in terms of two shape-bias metrics
(%) with two shape-bias enhancement methods, i.e. StyleAug [21]
(CVPRW’19) and ShapeAug [24] (CVPRW’22).

4.3.2 Robustness against various perturbations

Robustness against adversarial attacks: To study the ad-
versarial robustness of our SDbOA compared with the SO-
TAs, we present the performances of seven algorithms in
terms of clean accuracy and adversarial robustness against
FGSM [13], PGD [28], C&W [3] and DeepFool [29] in Tab.
2.

As shown in Tab. 2, the models trained with SDbOA
maintain relatively stronger robustness against various ad-
versarial attacks, than those with the SOTAs. Specifically,
SDbOA outperforms NuAT [36] by the margins of 14.10%
and 27.72% in terms of the robustness under C&W and



DeepFool on CIFAR-10, and outperforms EdgeNetRob [37]
by a margin of 6.98% under C&W on ImageNet.

While Tab. 2 includes generic adversarial training (AT)-
based SOTAs for the comparison, we further compare our
algorithm with additional two AT-based algorithms [31, 33]
that are also based on generative model as similar as ours in
Tab. 3, where the same protocol (evaluation with AutoAt-
tack [5]) and network architectures as [31,33] are employed.

Since the works [31,33] require adversarial training, tens
of millions of adversarial samples in addition to the vanilla
images are generated for the training, resulting in a sig-
nificantly larger runtime complexity. Despite this, Tab. 3
shows that our online augmentation model can still outper-
form the listed adversarial-training-based methods in terms
of the clean accuracy and adversarial robustness with rea-
sonable training overhead.

Data. Method
Clean
Acc. FGSM PGD CW

Deep
Fool

FM

Vanilla Net 92.42 27.42 0.58 10.00 39.5
PGD [28] 86.58 78.84 81.2617.54 0.56

AT+CAS [1] 87.41 79.23 78.4232.95 31.46
NuAT [36] 88.02 81.43 82.3767.07 42.19

AT+CR [39] 87.46 80.82 81.9534.57 37.04
EdgeNetRob [37] 85.01 78.30 75.7582.47 71.43

SDbOA 88.52 80.32 83.2687.24 76.12

CA

Vanilla Net 99.18 48.86 0.00 23.57 20.80
PGD [28] 92.85 85.40 83.3542.78 19.84

AT+CAS [1] 93.06 89.88 87.6865.36 37.05
NuAT [36] 94.26 93.80 89.5267.25 29.42

AT+CR [39] 95.32 94.58 90.7464.38 39.06
EdgeNetRob [37] 95.52 92.64 55.0875.92 83.72

SDbOA 98.74 95.34 88.2879.84 91.50

C10

Vanilla Net 90.70 7.84 0.00 16.78 14.30
PGD [28] 75.82 54.56 44.6618.02 0.38

AT+CAS [1] 76.51 62.32 47.8151.43 37.42
NuAT [36] 79.51 62.12 46.4541.96 34.66

AT+CR [39] 82.80 64.81 53.3950.66 43.19
EdgeNetRob [37] 79.21 62.48 39.6643.46 54.45

SDbOA 83.27 67.82 50.9156.06 62.38

IN

Vanilla Net 75.82 5.40 0.00 – 5.44
PGD [28] 55.34 40.46 30.8316.04 18.36

AT+CAS [1] 57.03 47.58 36.7223.67 27.92
NuAT [36] 58.38 48.12 40.3021.71 25.40

AT+CR [39] 52.03 41.72 27.9321.40 21.07
EdgeNetRob [37] 65.73 45.87 33.6220.85 23.40

SDbOA 68.56 49.10 35.7627.83 28.89
Table 2. Clean accuracy and adversarial robustness (%) with
vanilla net, PGD Training [28], AT+CAS [1] (ICLR’21), NuAT
[36] (NeurIPS’21), AT+CR [39] (AAAI’22), EdgeNetRob [37]
(ICCV’21) and ours. The best and 2nd best performances are la-
beled with bold and underline.

Robustness of augmentation approaches against

Method Clean Robust Runtime AT
FDA28 [31] 85.97 60.73 Days "

SDbOA28 85.27 68.15 3-5 Hours %

PORT34 [33] 87.00 60.60 Days "

SDbOA34 87.12 73.36 3-5 Hours %

Table 3. Adversarial robustness (%) of the generative-model-based
adversarial training approaches, i.e. FDA [31] (NeurIPS’21) and
PORT [33] (ICLR’22) on CIFAR-10. We follow the robustness
metric in [31] measured by AutoAttack [5]. AT represents ‘ad-
versarial training’. ‘28’ or ‘34’ stands for using WideResNet-28-
10 or WideResNet-34-10 [45] as the classifier network, follow-
ing [31, 33].
common corruptions and adversarial attacks: To eval-
uate the performances of our data augmentation and related
augmentation techniques under common corruptions [15]
and adversarial attacks, we present the results of nine SO-
TAs in term of mean corruption error (mCE) and adversarial
robustness in Tab. 4, where mCE is evaluated under all 15
corruptions and each corruption has 5 severities [15].

Methods Corruptions↓ Adversaries↓
Baseline 26.4 91.3

Cutout [9]arXiv 25.9 96.0
Mixup [46]ICLR′18 21.0 93.3

CutMix [44]ICCV ′19 26.5 92.1
AutoAugment [6]CV PR′19 22.2 95.1

AugMix [16]ICLR′19 12.4 86.8
AugMax [41]NeurIPS′21 19.9 39.1

PixMix [17]CV PR′22 9.5 82.1
TPS-Deform [43]MM ′22 22.4 44.0

SDbOA 18.8 27.7
Table 4. Robustness performances (%) of nine data augmentation
techniques on CIFAR-10-C, i.e. the corruption set of CIFAR-10,
based on the baseline of WideResNet-40-4 [45] under PGD-20 at-
tack. The adversaries metric is the misclassification rate under
PGD-20 with the l∞ budget of 2/255.

Tab. 4 shows that large majority of SOTA data augmen-
tation techniques improve robustness against corruptions
without paying enough attention on the adversarial robust-
ness. It’s worth noting that our algorithm achieves much
better adversarial robustness, i.e. 27.7% with large margins
over those, i.e. 82.1% and 86.8% achieved by PixMix [17]
and AugMax [41] that perform better than ours in terms
of mCE. This maybe because that these two augmentations
are mainly focused on robustness against a specified type of
samples, while ours is developed for universal robustness.

Robustness against backdoor attacks: To study the ro-
bustness of the proposed algorithm under backdoor attacks
[40] compared with the related data augmentation methods,
we follow the protocol in [37], and present the clean accu-
racy on the standard testing data and the attack success rate
on the poisoned data (Pois. ASR) of seven algorithms, un-



der backdoor attacks with two patterns in Tab. 5. Poisoning
ratio is set as 20% for Fashion MNIST and 5% for CelebA.

Data. Method

Backdoor Pattern
Pixel Pattern

Clean
Acc.↑

Pois.
ASR↓

Clean
Acc.↑

Pois.
ASR↓

FM

Vanilla Net 87.43 94.30 87.12 95.22
SpecSign [40] 86.23 45.62 85.93 52.31

EdgeNetRob [37] 83.48 0.12 82.21 2.74
AugMax [41] 89.83 54.60 89.27 73.14
PixMix [17] 89.25 92.04 88.01 94.78

TPS-Deform [43] 86.35 47.43 86.27 62.21
SDbOA 87.25 0.04 87.07 0.98

CA

Vanilla Net 98.30 97.20 98.00 97.40
SpecSign [40] 98.45 64.78 97.98 54.23

EdgeNetRob [37] 92.80 10.90 93.10 12.50
AugMax [41] 98.84 45.97 98.23 74.10
PixMix [17] 98.18 78.32 97.98 89.28

TPS-Deform [43] 97.43 71.31 97.47 74.52
SDbOA 95.20 3.49 94.87 4.21

Table 5. Performances (%) of vanilla net, Spectral Signature
(SpecSign) [40] (NeurIPS’18), EdgeNetRob [37] (ICCV’21),
AugMax [41] (NeurIPS’21), PixMix [17] (CVPR’22), TPS-
Deform [43] (MM’22) and SDbOA under backdoor attacks.

Tab. 5 shows that SDbOA achieves the lowest ASR val-
ues against backdoor attacks on the two datasets, e.g. it
significantly outperforms AugMax [41] that performs best
in terms of clean accuracy, by the margins of 54.56% and
72.16% specific to the pixel and pattern attacks on Fashion
MNIST. Meanwhile, the clean accuracy is reasonably pre-
served compared with the most related algorithm, i.e. Ed-
geNetRob [37].

4.3.3 Hyperparameter analysis and ablation study

Analysis of hyperparameter λ: To analyze the sensitivity
of the learned model’s shape-bias against the deformation
intensity, i.e. λ in Eq. (4), we conduct a hyperparameter
analysis and present the results in terms of the two shape-
bias metrics [11, 19] in Fig. 6.

Figure 6. Sensitivity of shape-bias metric values [11, 19] against
different deformation intensities (λ).

Fig. 6 shows that a greater deformation degree does not
always result in a more shape-biased model, i.e. the shape-
bias of the model learned by SDbOA gradually increases

EMSE TSD TSG Clean FGSM PGD C&W DeepFool
74.32 60.06 46.78 45.48 55.82

✓ 76.50 62.08 47.08 47.05 54.25
✓ ✓ 78.24 65.26 49.82 49.61 61.35

✓ ✓ 87.67 15.83 0.00 21.84 19.02
✓ ✓ 81.08 66.84 48.40 52.31 59.46
✓ ✓ ✓ 83.27 67.82 50.91 56.06 62.38

Table 6. Ablation study in terms of the clean accuracy and adver-
sarial robustness (%) on CIFAR 10.

when λ is smaller than the threshold of 0.1, while it is de-
creased when λ exceeds 0.1, i.e. the learned model gradu-
ally shifts from shape-bias to be more texture-biased.

To shed light on this observation, we argue that a mod-
erate deformation degree, e.g. λ = 0.1 in Fig. 4, is benefi-
cial to reasonably improve the diversity of shape representa-
tions without largely impairing shape semantic, and a model
learned from these valid shape variations can be made better
against the perturbation noises. However, as shown in Fig.
4, excessive deformation may be caused when a large λ, e.g.
λ = 0.2 is used, which may damage the global shape struc-
ture and original shape semantic, causing deformed samples
to even cross classification boundaries. When it happens,
these augmented samples with damaged shapes may instead
encourage the learned network to give prediction based on
the relatively stable texture, i.e. making the model to be
more texture-biased.

Ablation study: To study the performance of each mod-
ule in our SDbOA, we perform the ablation study in Tab. 6,
where Robust Canny [37] and Pix2Pix [20] are used as the
baseline shape encoding and generator, respectively.

By comparing the 5th and 7th rows of Tab. 6, it shows
that the EMSE module is beneficial to the network robust-
ness, reflecting the superiority of our edge augmentation
over direct image deformation. By comparing the 6th and
7th rows, it shows that the proposed TSD enables the model
to consistently improve the clean accuracy and the robust-
ness performances under four attacks. By comparing the 4th
and 7th rows, it shows that the improved generator with the
supervision of texture cues and the shape-preservation loss
largely improves the Pix2Pix in terms of the clean accuracy.

5. Conclusions

Considering the network robustness maybe impaired by
the excessive texture-bias, we shed light on how to shift
from texture-bias to shape-bias for CNN models, i.e. we
propose a novel edge deformation-based data augmentation
that enables networks to elaborately learn the shape varia-
tions, allowing the well-learned networks to make predic-
tions mainly based on the targets’ shapes. Our data aug-
mentation mainly differs from the related SOTAs that it is
developed based on the deformation of object’s edge map
rather than the image, and can reasonably preserve the se-
mantic rationality of the reconstructed samples with the
joint supervision of object texture and soft constraint of de-



formed shape cues. Experimental results reveal that our al-
gorithm can largely enhance model’s shape-bias in terms
of two quantitative metrics, and rather competitive robust-
ness against various perturbations compared with SOTAs.
Considering the recognition system trained with the pro-
posed shape augmentation is mainly applicable for pixel-
wise perturbation, yet may not work for patch-wise corrup-
tion where the shape structure is severely damaged, our fu-
ture work will be devoted to solving it.
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