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Abstract

The convolutional neural network (CNN) is vulnerable
to degraded images with even very small variations (e.g.
corrupted and adversarial samples). One of the possible
reasons is that CNN pays more attention to the most dis-
criminative regions, but ignores the auxiliary features when
learning, leading to the lack of feature diversity for final
judgment. In our method, we propose to dynamically sup-
press significant activation values of CNN by group-wise
inhibition, but not fixedly or randomly handle them when
training. The feature maps with different activation dis-
tribution are then processed separately to take the feature
independence into account. CNN is finally guided to learn
richer discriminative features hierarchically for robust clas-
sification according to the proposed regularization. Our
method is comprehensively evaluated under multiple set-
tings, including classification against corruptions, adver-
sarial attacks and low data regime. Extensive experimental
results show that the proposed method can achieve signifi-
cant improvements in terms of both robustness and general-
ization performances, when compared with the state-of-the-
art methods. Code is available at https://github.
com/LinusWu/TENET_Training.

1. Introduction
Recent advances in convolutional neural networks

(CNNs) have led to far-reaching improvements in computer
vision tasks [11, 20]. However, vulnerability of CNNs to
image variations, including image corruptions [10] and ad-
versarial samples [8], has not been well resolved yet. Re-
searchers are thus exploring various ways to improve the
network robustness against these variations.

Adversarial training [10, 30, 32] is a typical solution to
improve the robustness of CNNs, which includes the at-
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Figure 1. Some solutions to improve the robustness of CNN. Un-
like with the regular training (a), adversarial training (b) widely
utilizes adversarial samples to train a robust CNN. Data augmenta-
tion and regularization based method (c) improves the robustness
performance by filling up new samples surrounding the decision
boundary. The proposed regularization method (d) enables net-
work to increase the representation space (e.g. red auxiliary axis
in d1) of the features learned by the CNN, and achieves better ro-
bustness against corrupted and adversarial samples, with various
projections on new planes (e.g. d2 and d3). Best viewed in color.

tacked samples into the training data, as shown in Fig. 1 (b).
Since adversarial training may impair the generalization
performance, there is often an inherent trade-off between
classification accuracy and adversarial robustness [29, 30].
In order to improve the robustness and generalization si-
multaneously, data augmentation and regularization meth-
ods (e.g. Random Erasing [33], Augmix [14], Cutout[7],
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Figure 2. The heatmap visualization of feature maps encoded with
ResNet-50, based on Grad-CAM [23, 34] with or without the pro-
posed method. Our method locates more diverse discriminative
regions (in red boxes) for both single-instance (a) and multiple-
instance (b) samples.

Dropout [15] and DeepAugmentation[12]) are proposed.
As shown in Fig. 1 (c), these algorithms address data aug-
mentation by randomly generating new samples obeying the
same distribution as the training data. Generally, data regu-
larization methods are state-agnostic, which can not be dy-
namically adjusted during CNN training. Thus, these regu-
larization techniques of CNNs [5, 16, 27, 28] failed to learn
features with sufficient diversity. As shown in the first row
of Fig. 2, CNNs can locate the most discriminative re-
gions [34] for both single-instance and multi-instance sam-
ples with the regularization method, while neglecting other
auxiliary features that are critical for the recognition. The
lack of auxiliary features may lead to insufficient feature di-
versity, which consequently results in a feature space with
low-dimension for classification and limits the robustness.
Meanwhile, current adversarial training and regularization
methods concentrate on the global image information by
expanding the training set, while the independence of local
features is not fully explored. These limitations motivate us
to improve the diversity of extracted features by CNNs and
devise a non-image-wise regularization strategy to enhance
network robustness.

In this paper, we propose a group-wise inhibition based
regularization method for improving feature diversity and
network robustness, denoted as TENET Training. Fig.1
(d1), (d2) and (d3) show the motivation of the proposed
method, where the increase of feature dimension and diver-
sity is beneficial for classification robustness against input
variations and adversarial attacks. To increase feature rep-
resentation space, group-wise feature regularization is pro-
posed to leverage the independence among group-wise fea-
tures. To improve feature diversity, the proposed algorithm
regularizes group-wise features dynamically in each train-
ing step. Specifically, based on the grouping of feature maps

and their importance evaluation, the group-wise reversed
map is proposed to suppress the activation values corre-
sponding to the most significant discriminative regions, and
guide the network to learn more auxiliary information in
less significant regions. As shown in the second row of
Fig. 2, the suppression of most significant discriminative
regions is beneficial for exploring more diverse features in
CNNs. Experimental results show that the proposed method
can improve the top-1 error rate of adversarial training from
36.37% to 31.75%, and outperforms regularization meth-
ods significantly in terms of classification accuracy based
on small sample. In summary,

• A group-wise inhibition based regularization method
is proposed to explore auxiliary features and promote
feature diversity.

• Feature maps with different activation distribution are
processed separately to learn richer discriminative fea-
tures hierarchically to better represent images.

• Our proposed method achieves competitive perfor-
mances in terms of adversarial robustness and gener-
alization compared with related variants and the state
of the arts.

2. Related Work

2.1. Robustness against Corruption and Adversar-
ial Attack

The human vision system is robust in ways that CNN
based computer vision systems are not [13]. Particularly, a
large mount of studies [8, 10, 13, 17] show that CNNs can
be easily fooled by small variations in query images, includ-
ing common corruption [13] and adversarial perturbation
[10]. In order to improve the robustness against these vari-
ations, studies have been proposed based on various strate-
gies, such as structure modification, adversarial training and
regularization. Xie et al. [30] proposed a non-local fea-
ture denoising block to suppress the disturbation caused by
the malicious perturbation. A Discrete Wavelet Transform
(DWT) layer is proposed by Li et al. [21], which disentan-
gles the low- and high-frequency components to yield the
noise-robust classification. Different from structure based
methods, adversarial training and regularization methods
can improve the robustness without the modification of net-
work structure. Adversarial training proposed by Goodfel-
low et al. [10], in which a network is trained on adver-
sarial examples, is reported to be able to withstand strong
attacks [24]. However, there is a trade-off between classifi-
cation accuracy (generalization) and adversarial robustness.
Hence, more and more studies are resorted to the regular-
ization solutions [7, 14, 15, 33] to simultaneously improve
generalization and robustness against variations, i.e. com-
mon corruption and adversarial attack.



2.2. Regularization for CNNs
Regularization [7, 12, 14–16, 25, 28, 33] has been widely

employed in the training of CNNs, where image-wise and
feature-wise regularization methods were proposed to im-
prove generalization or robustness. Data augmentation is a
typical image-wise solution to regularize the data distribu-
tion [7, 12, 14, 33]. Devries et al. [7] proposed a regulariza-
tion technique to randomly mask out square regions of input
during training. Random Erasing proposed by Zhong et al.
[33] randomizes the values of pixels in a random rectangle
region. Hendrycks et al. [14] proposed Augmix to coor-
dinate simple augmentation operations with a consistency
loss. In a nutshell, these image-wise regularization solu-
tions generate images by random operations (e.g. cutout,
erasing and mixing), which concentrate on the global infor-
mation without fully exploring the independence of local
features. Meanwhile, the random operations are not dynam-
ically adapted during the training, which limit the feature
diversity. These studies motivate us to enhance the feature
diversity to improve network robustness and generalization
performances.

To explore local information during regularization,
feature-wise regularization techniques, including attention
based dropout [5], self-erasing [16, 28] and group orthog-
onal training [4], are proposed. Attention based dropout
proposed by Choe et al. [5] utilizes the self-attention mech-
anism to regularize the feature maps. Self-erasing [16, 28]
is an extension method of popular class activation map
(CAM) [23, 34], which erases the most discriminative part
of CAM, and guides the CNNs to learn classification fea-
tures from auxiliary regions and activations [27]. How-
ever, these methods are proposed for semantic segmenta-
tion rather than the classification task. Meanwhile, the
steep gradients introduced by the binary mask limit the per-
formances of dropout and erasing operation for classifica-
tion task. From another aspect, the erasing operation and
dropout are global regularizers, which do not fully explore
the independence of feature semantics, i.e. different feature
groups contain different semantics and should be processed
specifically. Group orthogonal training proposed by Chen
et al. [4] provides a solution for this problem, which guides
CNNs to learn discriminative features from foreground and
background separately. Although this group orthogonaliza-
tion strategy brings improvement of classification perfor-
mance by enhancing feature diversity, the relied large anno-
tation limits its applicability for general tasks.

In this paper, a regularization method based on group-
wise inhibition, namely TENET Training, is proposed to
improve network robustness and generalization, which is
free of extra annotations. Particularly, a Channel-wise Fea-
ture Grouping (CFG) module is proposed to model the
channel-wise features in groups. Subsequently, the features
in different groups are processed specifically by Group-wise
Map Weighting (GMW) module to quantify the importance
of each group. Meanwhile, in order to avoid the steep gra-
dients caused by binary mask, a Rectified Reverse Function

(RRF) is proposed to smooth group-wise reversed maps.
Finally, these reversed maps are used to suppress the ac-
tivation values to regularize the learned features. Extensive
experiments clearly show the significant improvements in
terms of robustness and generalization performances.

3. Proposed Method
The overview of the proposed TENET Training is shown

in Fig. 3., where CNN is dynamically regularized accord-
ing to the training step, and significant activation values are
suppressed to guide network to explore different features
hierarchically. Since the feature maps with the similar ac-
tivation distribution are prone to contain redundant infor-
mation, we firstly group the channel-wise feature maps us-
ing the proposed CFG module in Section 3.1. In order to
further quantify the contribution of each group, the GMW
module is introduced in Section 3.2 to evaluate the group
importance. Considering the feature groups with negative
importance score should contribute less to the classification
performance, Rectified Reverse Function (RRF) is proposed
to smooth the reversed map of the filtered groups. Follow-
ing RRF, the group-wise inhibition is devised to suppress
the most significant features and explores the less signifi-
cant auxiliary features, which is introduced in Section 3.3.
Finally, we conclude the pipeline of the proposed TENET
Training together with the loss design in Section 3.4.

3.1. Channel-wise Feature Grouping Module
According to the pipeline shown in Fig. 3, a feature ex-

traction module F (·) is firstly applied to encode the fea-
tures set A = {a1, ..., aj , ..., aNc

} of the input sample x,
where aj is the jth feature map. Since A is prone to con-
tain redundant features, a Channel-wise Feature Grouping
module, denoted as CFG module, is introduced to group A
to reduce the complexity of feature-wise operation. Given
Nc features as input, the corresponding NG centers are ob-
tained to form the set Ac, which are initialized as a random
subset ofA. The distance from each feature map ofA to the
corresponding center is calculated as follows

Dist(aj , Ac[l]) =
1

Ha ×Wa

∑
Ha

∑
Wa

(aj −Ac[l])
2 (1)

where l ∈ [1, NG] is the index of the center and (Ha, Wa)
is the size of aj . Based on Eq. (1), the centers are updated
as similar as k-means clustering. NG groups are then ob-
tained by grouping the feature maps to the corresponding
center. In order to alleviate the influence caused by the ran-
dom selection, the center searching process is carried out
repeatedly in the CFG module. Based on the grouping pro-
cedure, the centers are updated according to Center Point
Search Function, i.e. CF(·) as follows

CF(IDS)={argmin
aj∈A

dist(aj ,
1

nl

∑
IDi=l

ai)
∣∣∣l∈ [1,NG]} (2)
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Figure 3. The pipeline of the proposed regularization method (TENET Training). Notice that CNNs consist of the feature extraction
module F (·) and the classifier D(·). In the first inference, feature maps A encoded with F (·) are divided into NG groups by the CFG
module, and loss Ld is calculated based on D(·). Reversed maps RM are then derived using GMW module and RRF . In the second
inference, the Hadamard Product of A (with IDS) and RM is fed to D(·) to calculate the loss Ltotal.

where the set IDS = {ID1, ..., IDj , ..., IDNc} stands for
the set of feature map indices corresponding to each group.
IDj refers to the group index of aj . nl is the number of
feature maps in the lth group. Based on Eq. (2), Ac can be
refined iteratively until CF(·) is stable.

3.2. Group-wise Map Weighting Module

Following feature grouping module, the feature maps are
processed in the group-wise mode. To differ the contribu-
tion of each group, a Group-wise Map Weighting module,
namely GMW module, is proposed to calculate the weight
wj of each aj as follows

wj =
1

Ha ×Wa

∑
Ha

∑
Wa

∂Ld(A)

∂aj

Ld(A) = D(A)× One-Hot(D(A))

(3)

where D(·) is a classifier, which maps A to the class score.
Ld(A) is the product of prediction and the corresponding
one-hot vector of D(A). Since ∂Ld(A)

∂aj
is applied to quan-

tify the importance of aj to the prediction, the group-wise
importance scores, i.e. IS = {I1, ..., Il, ..., ING

} can be
obtained by averaging wj of each group (IDj=l) as follows

Il =
1

Nl

∑
IDj=l

wj (4)

Similar to IS, the group-wise feature maps, i.e. M =
{m1, ...,ml, ...,mNG

} can be obtained by averaging the
weighted feature maps as follows

ml =
1

Nl

∑
IDj=l

wj × aj (5)

3.3. Group-wise Inhibition using Rectified Reverse
Function

Based on the importance scores, group-wise feature
maps are applied to obtain the reversed map set, i.e. RM =
{rm1, ..., rml, ..., rmNG

}. Since the steep gradients intro-
duced by the binary mask may limit the classification per-
formance, the reversed maps are further smoothed. Mean-
while, considering the feature groups with negative impor-
tance scores should contribute less to the update of the
reversed mask, we therefore propose a Rectified Reverse
Function, i.e. RRF(·), to obtain the reversed maps as fol-
lows

rml = RRF(ml, Il) = sgn(Il > 0)× 1

1 + eml
(6)

where sgn(·) is the sign function. Due to the negative cor-
relation between ml and rml, the computation of RM is
deemed as a reversed map. Based on RM , the group-wise
inhibition is formulated as follows

ŷ = D(RM ⊗A) (7)



where D(·) is a classifier with the input of A and ŷ refers to
the predicted label of the group-wise inhibition. ⊗ refers to
the group-wise Hadamard product.

3.4. Loss Design of TENET Training
While ŷ is obtained by group-wise inhibition, F (·) and

D(·) can be directly learned based on the loss Lc(y, ŷ),
i.e. the cross entropy for single-label classification or bi-
nary cross entropy for multi-label classification. The group-
wise inhibition reduces the variation between groups, while
it may introduce invalid activation units in F (·) or D(·). To
regularize these activation units, an orthogonal loss Lo(A)
is adopted, which is formulated as follows

Lo(A) =

Ng∏
l=1

(

Nc∑
j=1

(sgn(IDj = l)× aj)) (8)

From another aspect, by mapping rml into the region of
[0, 1], the magnitude of back-propagation gradients is sup-
pressed for F (·) and D(·). To alleviate vanishing gradient
problem, a general classification loss, i.e. Lc(yi, D(A)), is
employed. Finally, the total loss is formulated as follows

Ltotal = Lc(yi, D(A)) + αLc(yi, ŷ) + µLo(A) (9)

where α and µ are the hyper parameters. For clarity,
TENET Training is summarized in Algo. 1

Algorithm 1 TENET Training
Input:

Training Sample: x
Initialization of F (·) and D(·)

Output:
Trained CNNs: F (·) and D(·)

1: for all training steps do
2: Extract A from F (x);
3: Obtain IDS of A using CFG Module according to

Eqs. (1) and (2);
4: Derive (IS,M) with GMW Module according to

Eqs. (3), (4) and (5);
5: Employ RRF to obtain RM according to Eq. (6);
6: Obtain ŷ according to Eq. (7);
7: Calculate Ltotal according to Eqs. (8) and (9);
8: Update F (·) based on ∂Ltotal

∂F and update D(·)
based on ∂Ltotal

∂D ;
9: end for

10: Return F (·) and D(·).

4. Experimental Results and Analysis
As listed in Table 1, to evaluate the performance of

the proposed method, extensive experiments are carried on
publicly-available data sets, including PASCAL VOC 2012

Table 1. Summary of Experiment Configurations and TENET
Training Gains.

Task-[protocol] Dataset Previous SOTA Gain

Standard Classification-[4]
PASCAL

VOC 2012[9]
Group Orthogonal

Training [4] 2.9%

Robustness against
CIFAR-10/100 [18]

A. T. [24] 5.75%
Adversarial Attack-[8, 24] Augmix[14] 15.56%∗

Robustness against CIFAR-10/100-C [13]
Augmix[14]

1.77%
Common Corruption-[13, 14, 21] ImageNet-C [13] 2.8%†

Generalization-[2] CUB-200 [26] GLICO [2] 2.75%
∗ The gain is obtained in CIFAR-10 against FGSM (8/255).
† The gain is obtained by following 90-epoch Protocol [21].

[9], CIFAR-10/100 [18], ImageNet-C [13] and CUB-200
[26]. We firstly introduce the employed data sets and the
corresponding implementation details. The performance of
the proposed method on standard image classification task
is evaluated, and the encoded feature maps are visualized
for the algorithm analysis. Finally, both the robustness and
generalization performances of the proposed method are
evaluated based on the comparison with the state-of-the-art
methods.

4.1. Data Sets and Implementation Details
We evaluate the performance of TENET Training from

three aspects, i.e. standard classification, robustness and
generalization (see Table 1).

Standard Classification. In this case, ResNet-18 [11]
is selected as the backbone in our TENET Training. PAS-
CAL VOC 2012 [9] is used for the evaluation, while 5,717
and 5,823 images are used for the training and validation,
respectively. The protocol in [4] is adopted. The CNNs
for evaluation are pretrained on the ImageNet [6], and fine-
tuned on PASCAL VOC 2012 training set. In the training
stage, the shorter side of image is resized to a random value
within [256,480] for the scale augmentation. The resized
image is then randomly cropped to the size of 224×224 for
the training based on the batch size of 256. In the testing
stage, ten-crop testing is used to evaluate the performance.

Robustness. In this case, the robustness of the proposed
algorithm against both adversarial attack and image corrup-
tion is evaluated on CIFAR 10/100 [18], CIFAR 10/100-C
[12] and ImageNet-C [12]. ResNeXt-29 [31] and ResNet-
50 [11] are chosen as the backbones. To test the robust-
ness of the proposed method against adversarial attacks, two
popular attacks, FGSM [10] and PGD [1], are employed.
The performance is then evaluated according to the protocol
in [8]. The perturbation budget (ε) is set to 8/255 or 4/255
under l∞ norm distance for the two attacks. PGD-K stands
for K-step attack with a step size of 2/255. Meanwhile,
adversarial training is used to defense powerful iterative at-
tacks of PGD. To make the results more convincing, an effi-
cient adversarial training method (free-AT) [24] is adopted,
where the hop step of free-AT, i.e. m, is set to 4.

Against image corruption, 15 different kinds of corrup-
tions, such as noise, blur, weather and digital corruptions,
are performed on CIFAR 10/100-C and ImageNet-C for the



Table 2. The Ablation Study of the Proposed Method on the Validation Dataset of Pascal VOC 2012 in terms of Average Precision (%).

Baseline
Channel-wise

Inhibition
Group-wise
Inhibition Lo areo bike bird boat bottle bus car cat chair cow table dog horse mbk prsn plant sheep sofa train tv mean

√
× × × 94.8 83.8 91.5 79.4 56.6 88.2 78.9 90.8 64.8 61.5 57.9 90.9 73.7 83.8 96.0 51.6 77.1 58.2 89.8 77.1 77.1√ √

× × 94.2 82.8 92.9 83.3 62.2 90.8 81.0 92.8 71.1 74.1 63.0 88.2 83.9 88.5 93.5 58.4 85.2 64.7 93.1 80.6 81.2√
×

√
× 93.9 81.7 92.5 83.7 63.8 90.9 82.7 91.5 69.5 76.4 64.6 89.6 85.9 89.3 96.5 58.1 84.6 64.5 93.2 83.7 81.8√

×
√ √

95.6 84.3 91.1 83.1 61.3 91.4 83.2 91.6 72.8 77.4 65.9 91.3 84.4 89.2 96.3 57.4 83.9 67.6 94.5 83.1 82.3

Table 3. Performance Comparison between the Proposed Method and the State of the Arts on the Validation Dataset of Pascal VOC 2012
in terms of Average Precision (%).

Model areo bike bird boat bottle bus car cat chair cow table dog horse mbk prsn plant sheep sofa train tv mean
ResNet18[11] reported in [4] 95.2 79.3 90.2 82.8 52.6 90.9 78.5 90.2 62.3 64.9 64.5 84.2 81.1 82.0 91.4 50.0 78.0 61.1 92.7 77.5 77.5

ResNet18 trained in this paper 94.8 83.8 91.5 79.4 56.6 88.2 78.9 90.8 64.8 61.5 57.9 90.9 73.7 83.8 96.0 51.6 77.1 58.2 89.8 77.1 77.1
GoCNN [4] 96.1 81.0 90.8 85.3 56.0 92.8 78.9 91.5 63.6 69.7 65.1 84.8 84.0 83.9 92.3 52.0 83.9 64.2 93.8 78.6 79.4

TENET (Binary Mask) 93.2 83.8 91.3 83.2 59.8 91.6 79.6 90.6 66.3 75.2 62.1 89.7 84.7 88.4 96.3 58.0 87.0 65.2 93.1 82.1 81.1
TENET (Instance-wise Inhibition) 93.1 82.7 92.6 82.9 61.1 90.9 81.8 91.6 70.6 73.7 63.3 91.5 85.6 88.5 96.4 56.8 85.1 61.8 93.2 82.3 81.3

TENET 95.6 84.3 91.1 83.1 61.3 91.4 83.2 91.6 72.8 77.4 65.9 91.3 84.4 89.2 96.3 57.4 83.9 67.6 94.5 83.1 82.3

evaluation, and each kind of corrupted data has five differ-
ent severity levels [12]. We follow the training protocols
and evaluation metrics used in Augmix [14] and WRes-
Net50 [21]. The Clean Error is the regular classification
error on the original (uncorrupted) test or validation dataset,
and mCE (Mean Corruption Error) for CIFAR-10/100-C is
the mean over all 15 corruptions. Meanwhile, the mCE
for ImageNet-C is normalized by the corruption error of
AlexNet [19]. Due to the computational efficiency, Aug-
mix without Jensen-Shannon divergence (JSD) loss is im-
plemented.

Generalization. Since CUB-200 [26] contains only 30
images for each of the 200 species of birds, it is used as a
popular benchmark to test the generalization of CNNs. We
follow the protocol in [2], and evaluate the generalization
with three numbers of samples per class (SPC) for training,
i.e. 10, 20 and 30. For a fair comparison, the same ResNet-
50 [11] in the protocol [2] is adopted as the backbone. To
train the CNNs, the smaller side of the images from CUB-
200 is resized to 256, the scaled images are then randomly
cropped to the size of 224 × 224. In the testing stage, the
prediction is based on the center cropping with the size of
224× 224.

TENET Training. For the hyper parameter setting, the
cluster number NG is set to 6, while α and µ are set as 0.1
and 0.1, respectively.

The public platform pytorch [22] is used for the imple-
mentation of all the experiments on a work station with CPU
of 2.8GHz, RAM of 512GB and GPU of NVIDIA Tesla
V100.

4.2. Effectiveness Analysis of the Proposed Method

Ablation Study. To quantify the contribution of each
module in TENET Training, we test the discriminative per-
formance of the variant with or without this module. Ta-
ble 2 shows the results carried out for standard classifica-
tion. Since GMW is based on CFG module, these two mod-
ules denoted as Channel-wise Inhibition and Group-wise

Ours

Baseline

Input

Figure 4. The visualization of the discriminative regions for image
classification of CUB-200 using Grad-CAM [23, 34]. The 1st-3rd
rows show the input samples, the discriminative regions extracted
by ResNet-50 and the results based on TENET Training.

Inhibition are evaluated integratedly. Table 2 shows that
the performance of the baseline in the first row can be im-
proved by both channel-wise inhibition and group-wise in-
hibition. Specifically, an improvement of 4.1% in terms of
mAP is achieved by channel-wise inhibition. To study the
performance of GMW and CFG modules, Table 2 shows
that the group-wise inhibition further improves the perfor-
mance using Lo(A). The most significant improvement of
TENET Training happens when all the proposed modules
are employed, i.e. the proposed method achieves a mAP of
82.3%, which largely outperforms the baseline with a mAP
of 77.1%.

Visualization of TENET Training. To study the diver-
sity of the learned features with the proposed TENET Train-
ing, we visualize the discriminative regions of the input
samples from CUB-200 using Grad-CAM [23, 34] in Fig. 4.
Compared with the baseline, the CNN using TENET Train-
ing derives more discriminative regions, such as wings,
heads and tails, for classification.

To study the distribution of the extracted features, we



Table 4. Top-1 error rates (%) on ImageNet and Top-1 mCE rates (%) on ImageNet-C with ResNet-50. Aug. stands for Augmix.

Protocol
Clean Noise Blur Weather Digital
Error Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG mCE

Baseline [11] reported in [14] 23.8 79 80 82 82 90 84 80 86 81 75 65 79 91 77 80 80.6
Cutout [7]

90-epoch
Protocol[21]

23.2 79 81 80 77 90 80 81 80 78 70 61 74 87 74 75 77.7
WResNet50 (Haar) [21] 23.1 77 79 79 71 86 77 77 80 75 66 57 71 84 75 77 75.3

Augmix [14] 23.0 71 71 71 72 88 72 72 78 78 67 60 72 86 75 76 73.9
TENET 23.1 73 78 75 74 87 76 80 79 78 67 63 73 84 72 71 75.3

TENET (Aug.) 22.8 69 69 69 69 87 69 70 76 75 64 56 69 82 72 73 71.1
Augmix [14] 180-epoch

Protocol[14]
22.5 68 69 70 73 81 69 67 75 73 67 61 61 80 71 72 70.5

TENET (Aug.) 22.4 69 67 68 72 81 66 69 74 74 65 59 60 82 69 70 69.6

European Goldfinch

Confidence Score: 99.9%
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Figure 5. The visualization and quantification of the feature
maps extracted by the 3rd residual block of ResNet-50 using
TENET Training. (a) An input image with the label of European
Goldfinch. (b) The activation distribution, the corresponding im-
portance and confidence scores of each group clustered by CFG
module. (c) The example feature maps selected from the 3rd and
4th groups.

further visualize the group-wise maps with different impor-
tance scores of the input image in Fig. 5, where feature
maps are clustered into six groups. The confidence score
of each group corresponds to the variant with or without
the selected group. Fig. 5 (b) shows that, the importance
score (orange line) calculated by GMW module is similar
with confidence score (green line) in tendency, which illus-
trates the effectiveness of the GMW module. Meanwhile,
Fig. 5 (b) also shows the large variations among the ac-
tivation distributions of the group-wise features, which in-
dicates the reasonability of group-independent processing.
As a contrast, the instance-wise operation involved in tra-
ditional methods can not regularize the most important fea-
tures but only the features with the largest group size ( i.e.
group-1 in Fig. 5), based on the average of activation maps
or annotations. Thus, the proposed group-independent pro-
cessing can facilitate our TENET training to achieve better
performance than other regularization methods.

Fig. 5 (c) shows that group-3 and group-4 out of six
groups are the most important for CNN, which can improve
the confidence score output by the CNN from 0 to 99.8%.
Group-1 is relatively less important than group-3 and group-
4 but can increase confidence score, while the impacts of
group-2, 5 and 6 on the classification performance is very
limited. More precisely, when these three groups are not
used, the confidence score has dropped by only 0.09%. This
observation indicates that the inhibition of the important
groups can help improve the efficiency without losing ac-
curacy. Hence, in the proposed method, we only regularize
the groups with higher importance scores.

4.3. Comparison with Related Methods
Comparison in Standard Classification. To study

the classification performance of the proposed method, we
compare it with the group orthogonal training [4] denoted as
GoCNN in Table 3. In additional, we include TENET (Bi-
nary Mask) and TENET (Instance-wise Inhibition) for the
comparison. TENET (Binary Mask) refers to the proposed
method that suppresses the activation value using binary
masks rather than the smoothed reversed maps. In TENET
(Instance-wise Inhibition), CFG module and GMW module
are replaced by Grad-CAM [23, 34], which process features
by instance-wise operation. Table 3 shows that TENET
Training outperforms the competing methods significantly.
The proposed method achieves a mAP of 82.3%, exceed-
ing group orthogonal training by 2.9% absolutely. This in-
dicates group-wise inhibition using the smoothed reversed
maps is suitable for classification. Meanwhile, the proposed
method uses less information than group orthogonal train-
ing, i.e. large-scale dense annotations, e.g. segmentation or
localization labels, are not demanded. While state-agnostic
inhibition used in group orthogonal training regularizes fea-
tures in a coarse way, it limits both the accuracy and effi-
ciency. However, based on the proposed group-wise inhibi-
tion, our method can consistently improve the classification
performance, and does not demand any extra annotations.

Comparison in Robustness. We compare the proposed
method with two state-of-the-art regularization methods
[7, 14], a wavelet integrated method [21] and an adversar-
ial training one [24], for robustness evaluation against im-
age corruption and adversarial attacks in Tables 4, 5 and
6. One can observe that TENET Training outperforms
the competing methods in each case. For the recognition



Table 5. Top-1 error rates (%) on CIFAR-10 and Top-1 mCE
rates (%) on CIFAR-10-C trained with various methods based on
ResNeXt-29. A.T. stands for Adversarial Training. The brack-
ets following the adversarial attack method show the perturbation
budget (ε).

Clean mCE
FGSM
(8/255)

PGD-7
(4/255)

PGD-100
(8/255)

Baseline [31] 5.72 29.88 72.81 94.15 -
Cutout [7] 3.97 29.20 71.07 97.19 -

Augmix [14] 3.95 13.32 76.03 93.67 -
TENET 3.89 26.46 61.05 91.28 -
TENET
(Aug.) 3.50 12.31 60.47 90.45 -

A.T. [24] - - 36.37 22.61 42.82
TENET
(A.T.) - - 31.75 20.07 37.07

against image corruption, the best performance is achieved
with the combination of TENET Training and Augmix (de-
noted as TENET(Aug.)), which achieves 69.6%, 12.31%
and 35.73% error rates on ImageNet-C, CIFAR-10-C and
CIFAR-100-C, respectively. Augmix [14] with JSD loss can
achieve a mCE of 68.4% on ImageNet-C, while it requires
three times the GPU memory and runtime cost compared
with the proposed method.

For robustness against adversarial attacks, two attack
paradigms, namely FGSM and PGD, are employed to test
the trained CNNs with different regularization methods. Ta-
bles 5 and 6 show that the CNNs using the proposed method
outperform those with other regularization methods by a
large margin. When FGSM is considered, our method can
achieve an error rate of 60.47%, exceeding other regulariza-
tion methods by around 10% absolutely. Meanwhile, our
method is complementary to the Adversarial Training (de-
noted as A.T.). Typically, the proposed method achieves
the error rates of 37.07% and 63.13% against PGD-100
on CIFAR-10/100, which outperforms Adversarial Training
clearly, i.e. 37.07% vs. 42.82% and 63.13% vs. 65.17%.

Table 6. Top-1 error rates (%) on CIFAR-100 and Top-1 mCE
rates (%) on CIFAR-100-C trained with various methods based
on ResNeXt-29.

Clean mCE
FGSM
(8/255)

PGD-7
(4/255)

PGD-100
(8/255)

Baseline [31] 23.33 53.40 85.93 95.96 -
Cutout [7] 20.73 54.60 87.03 98.13 -

Augmix [14] 21.83 37.50 84.65 95.32 -
TENET 20.56 51.21 78.71 94.62 -
TENET
(Aug.) 19.46 35.73 75.28 93.54 -

A.T. [24] - - 60.13 47.99 65.17
TENET
(A.T.) - - 58.60 46.17 63.13

Comparison in Generalization. To further study the
generalization performance achieved by TENET Training,

Table 7. Comparison of TOP-1 Accuracy (%) for CUB-200 based
on ResNet-50 with Different Numbers of Training Samples Per
Class (SPC).

Methods SPC = 10 SPC = 20 SPC = 30

MixMatch [3] 36.02 60.57 70.41
Random Erase [33] 63.72 66.14 73.74

Cutout [7] 64.33 68.47 74.97

GLICO [2] 65.13 74.16 77.75

A.T. [24] 44.53 57.91 63.67

TENET 66.07 76.91 80.34

we compare the proposed method with regularization meth-
ods [3, 7, 33], data augmentation method [2] and adversarial
training [24] in Table 7. Table 7 shows the evident improve-
ments of TENET Training over other methods in every case.
Typically, when 20 samples per class are used for train-
ing, the proposed method can achieve 76.91% in terms of
Top-1 accuracy. As a comparison, adversarial training [24]
achieves the Top-1 accuracy of only 57.91% in this case.
It seems that adversarial training can improve the robust-
ness, while it may also largely impair the generalization
performance. Hence, Table 7 illustrates that the proposed
method can better maintain the generalization performance
compared with other methods.

5. Conclusion
In this paper, we proposed a group-wise inhibition based

feature regularization method to improve the robustness and
generalization of CNNs. In the proposed algorithm, CNN
is regularized dynamically when learning, where the most
discriminative regions with significant activation values are
suppressed to enable the network to explore more diverse
features. Richer features then help to better represent im-
ages even with malicious variations. The effectiveness of
the proposed method was verified in terms of standard clas-
sification, adversarial robustness and generalization perfor-
mance based on small number of training samples.
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