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Abstract: Deep neural networks have demonstrated remarkable efficacy in numerous computer vision tasks. However, due 
to the training and testing sets of data coming from different domains, the domain gap limits the performances of deep 
neural networks. To enhance the generalization performance of deep neural networks, we provide a unique amplitude 
normalization (AmpNorm) approach to decrease the domain gap from the frequency domain perspective. Specifically, ours 
AmpNorm collects the amplitude spectrum from the source domain during training and then converts the images from the 
unseen target domain into those with a style similar to the source domain during testing. Our AmpNorm is simple yet 
effective, as well as plug-and-play, which is readily implemented into the majority of single-domain generalization (SDG) 
methods. Extensive results on three public benchmarks demonstrate that our AmpNorm can greatly improve these models’ 
performance on the invisible target domain. 
Keywords: Frequency domain, Style normalization, Domain Generalization 
 

1. Introduction 

Deep neural networks have demonstrated remarkable 

efficacy in numerous computer vision tasks [6]. Conventional 

deep neural networks are often trained based on the 

assumption that training and testing data are identically and 

independently distributed (i.e., they are independent and 

identically distributed (i.i.d.)). The assumption, however, is 

not always valid in practical implementations because of the 

scenarios' intricate data collecting limitations. When the 

testing data are collected from out-of-distribution (OOD) 

domains, the trained models' performance will drastically 

decline. [2]. Therefore, the domain generalization (DG) 

challenge [27], which tries to train a model with good 

generalization on unseen target domains, has attracted 

increasing attention from academic and industry fields. 

Previous methods [3,12,16] were widely suggested to 

solve the domain generalization challenge based on multi-

source domains, where the domain gap can be reduced by 

simply aggregating the data from multiple domains [13]. 

However, given the limitations of the scenarios' intricate data 

collecting, this method could not work well in real-world 

applications. Therefore, SDG methods have been widely 

explored [4,23,26], which need only one domain of data for 

training. Previous solutions for the challenging SDG task are 

mainly based on data manipulation [4,7], which aims to 

generate more diverse samples to expand the training sample 

space. However, because there is little variation in the styles 

specific to the samples from a single source domain, the 

produced samples are not sufficiently varied, which restricts 

the performances of models. 

To eliminate the style diversity of the samples, it is 

revealed that the amplitude of the frequency domain can 

approximately represent the style of an image [19,20,22]. We 

conducted a toy experiment to study the relationship between 

the image amplitude and its style in Fig. 1. It shows that the  

 
Fig. 1. Amplitude and phase of the frequency domain can 

approximate image style and content, respectively. If we swap 

the amplitudes of two images, their style will be swapped 

while their content will remain unchanged. 

 

content of the amplitude-exchanged sample is similar to the 

provided phase spectrum of the original sample, and the style 

of the amplitude-exchanged sample is similar to the provided 

amplitude spectrum. Motivated by the aforementioned 

observation, we suggest an innovative amplitude 

normalization (AmpNorm) approach to reduce the domain 

gap from the perspective of the frequency domain. 

Specifically, the images of the unseen target domain are 

converted into images with a style comparable to the source 

domain during testing, depending on the amplitude spectrum 

collected from the source domain during training. This 

paper's primary contributions are summed up as follows: 

• We suggest an innovative normalization (AmpNorm), 

which is one of the pioneering works of converting the 

target domain style to the source domain style in the 

frequency domain. 

• By using the collected amplitude spectrum of the source 

domain to replace that of the train and test samples, our 

AmpNorm can well reduce the domain gap to enhance 

the trained model’s generalization performance. 
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• Our AmpNorm's superiority is confirmed using three 

widely used benchmarks, and the results demonstrate 

that it can significantly enhance the model's performance 

on the previously undiscovered target domain. 
 

2. Related Work 

 

2.1. Domain Generalization 
 

Domain Generalization (DG) intends to improve the 

performance of deep neural networks from the source domain 

to the unseen target domain. In terms of the number of source 

domains, DG can be categorized into multi-source and single-

source. SDG task is more difficult since it is hard to find 

consistent patterns across different source domains for the 

unseen domains [1]. Data manipulation methods [4,14] are 

used to deal with the task of SDG by manipulating the input 

samples to help deep neural networks learn general 

representations. In this paper, we suggest an innovative data 

manipulation approach, which converts the images of the 

unseen target domain into those with a style similar to the 

source domain.  

 

2.2. Style-based Method for DG 
 

Previous researches [9,18,19,20,22,29,30] have 

shown that the style and content cues of the image are 

particular to the amplitude spectrum and the phase spectrum 

of the frequency domain, respectively. Therefore, many 

researchers [4,8,29] suggested introducing noise into the 

amplitude spectrum of the frequency domain to generate 

more varied samples. [29] resorted to the amplitude mix (AM) 

and amplitude swap (AS) approaches. [4] proposed phase 

scaling, constant amplitude, and high pass filter to generate 

augmentation samples for source domain training. However, 

the generated samples lack sufficient diversity due to the 

limited number and style of the single-source domain samples. 

In this paper, we suggest an innovative amplitude 

normalization (AmpNorm) approach to reduce the domain 

gap from the perspective of the frequency domain, i.e. 

transferring the amplitude spectrum’s style from the source 

domain to the unseen target domain. 

 

3. Methodology 

 

3.1. Preliminary 
 

Fourier Transform Given an image 𝑥 ∈ ℝ𝐻×𝑊  with 

a single channel, the Fourier transform of ℱ(𝑥)  at the 

coordinate of (𝑢, 𝑣) for converting 𝑥 from the spatial domain 

to the frequency domain is formulated as: 

 

        

𝑥𝑧(𝑢, 𝑣) = ℱ(𝑥)(𝑢, 𝑣)

= ∑ ∑ 𝑥(ℎ, 𝑤)𝑒−𝑖2𝜋(
ℎ
𝐻

𝑢+
𝑤
𝑊

𝑣)

𝑊−1

𝑤=0

𝐻−1

ℎ=0

 
       (1) 

 

where 𝑖  is imaginary unit and the height and width of the 

image are denoted by 𝐻, 𝑊, respectively. The amplitude and 

phase spectrum are formulated as: 

 

      

𝒜(𝑥)(𝑢, 𝑣) = √ℛ2(𝑥)(𝑢, 𝑣) + ℐ2(𝑥)(𝑢, 𝑣),

𝒫(𝑥)(𝑢, 𝑣) = arctan (
ℐ(𝑥)(𝑢, 𝑣)

ℛ(𝑥)(𝑢, 𝑣)
)              

      (2) 

 

where ℐ(𝑥) and ℛ(𝑥) represent imaginary the and real parts 

of ℱ(𝑥), respectively. Moreover, ℱ(𝑥) can put back together 

using 𝒜(𝑥) and 𝒫(𝑥) as: 

 

      
ℱ(𝑥)(𝑢, 𝑣) = 𝒜(𝑥)(𝑢, 𝑣) cos(𝒫(𝑥)(𝑢, 𝑣))

    +𝑖𝒜(𝑥)(𝑢, 𝑣) sin(𝒫(𝑥)(𝑢, 𝑣))
      (3) 

 

For RGB images, 𝒜(𝑥)  and 𝒫(𝑥) are calculated in 

the channel-wise manner. 

 

 
Fig. 2. Overview of our amplitude normalization. We update 

the source domain amplitude by the EMA of the source 

domain from the amplitude of the frequency domain samples 

to replace the amplitude of source and target domain samples 

and then generate samples with a similar style to the source 

domain. 

 

3.2. Amplitude Normalization 
 

In this section, we introduce our amplitude 

normalization (AmpNorm) method that converts samples 

from any unseen domain into samples with similar styles to 

the source domain. Fig. 2 shows the overview of our 

AmpNorm. 

Since the amplitude and phase of the image in the 

frequency domain can surrogate the style and content of the 

image, respectively, we customize the style of the image by 

regularizing the amplitude of this image. We extract the 

amplitude, i.e. 𝑥𝑎 and the phase, i.e. 𝑥𝑝  of the frequency 

domain samples 𝑥𝑧 as: 

 

                                {
𝑥𝑎 = 𝒜(𝑥𝑧),

𝑥𝑝 = 𝒫(𝑥𝑧).
                              (4) 

 

We collect the amplitude spectrum of the source 

domain during training to represent the style of the source 

domain in order to transferring the image style from the 

source domain to the unseen target domain. Specifically, the 
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domain consistent samples �̅�  encoded the source domain 

style can be obtained as: 

 

               
�̅�𝑧 = 𝑠𝑎

𝑆 cos(𝑥𝑝) + 𝑥𝑎
𝑆 sin(𝑥𝑝),

�̅� = ℱ−1(�̅�𝑧).                              
            (5) 

 

where ℱ−1(·)  denotes the inverse Fourier transform, 𝑥𝑎
𝑆  is 

the source domain amplitude, which is updated iteratively by 

the exponential moving average (EMA) of the source domain 

amplitude as: 

 

              𝑥
𝑎(𝑘)
𝑆 = (1 − 𝜆)𝑥

𝑎(𝑘−1)
𝑆 + 𝜆𝑥𝑎(𝑘)              (6) 

 

where 𝑥
𝑎(𝑘)
𝑆  is the source domain amplitude 𝑥𝑎

𝑆  in the 𝑘-th 

iteration, and 𝑥𝑎(𝑘) is the amplitude specific to the mini-batch 

samples in the 𝑘-th iteration. Finally, we feed the domain 

consistent samples �̅� into network 𝑓 as: 

 

                                    �̅� = 𝑓(�̅�, 𝜃)                          (7) 

 

where 𝜃  records the parameters of 𝑓 . The classification 

accuracy is evaluated using the cross-entropy loss as: 

 

                                  ℓ = ℒ(�̅�, 𝑦)                           (8) 

 

where 𝑦 is true label of the sample 𝑥. For clarity, Pseudo-

code of our AmpNorm is shown in Algorithm 1. 

 

 

 

4. Experiments 

We first introduce the datasets and experimental 

settings in this section. Secondly, we compare the suggested 

method with the state-of-the-art (SOTA) approaches on three 

benchmarks. Lastly, we conduct ablation studies and 

visualization experiments to analyze the proposed method. 

 

4.1. Datasets and Experimental Settings 
 

Three benchmarks are used to evaluate ours 

AmpNorm, i.e. PACS [12], Office-Home [25] and 

DomainNet [21]. All the three benchmarks are used in object 

recognition task for evaluating the domain generalization 

performance. 

PACS [12] contains four domains, i.e. Photo, Art 

painting, Sketch and Cartoon. PACS contains7 categories 

with 9,991 images. 

Office-Home [25] contains four domains, i.e. Art, 

Product, Real-World and Clipart. It contains 65 categories 

with 15,500 images. 

DomainNet [21] contains six domains, i.e. Quickdraw, 

Painting, Infograph, Real, Clipart and Sketch. It contains 345 

categories with 0.6 million images. 

ResNet18 [6] serves as the backbone network pre-

trained on ImageNet [5], and empirical risk minimization 

(ERM) [24] is used as the baseline. Adam [10] optimizer with 

momentum of 0.9 and weight decay of 5e-4 are used. The 

initial learning rate is set to 5e-4 and the cosine annealing 

learning rate scheduler [17] is used for 120 epochs. The size 

of the input image is 224 × 224 and the batch size is 64. For 

the AmpNorm module, the momentum of the exponential 

moving average 𝜆 of 0.1 (Eq. (6)), and the amplitude (Eq. (5)) 

of the source domain is initialized to 1. 

 

 

4.2. Comparison with SOTA methods 
 

The test accuracies of AmpNorm and SOTA methods 

for SDG on PACS dataset are reported in Table 1. It shows 

that our AmpNorm improves the performance of recent 

single-domain methods in different proportions. For example, 

AmpNorm improves the performance of ERM by 5.51% and 

that of DAC by 1.97%. Notably, our AmpNorm can largely 

improve the performance of the model, while using Photo and 

Sketch as the source domains. This may be because that the 

Photo domain contains more rich style information and the 

Sketch domain have a highly similar style, AmpNorm can 

sufficiently leverage these style cues. For Cartoon and Art 

painting domains, due to the artistic processing of the image, 

the style information is more complex and difficult to 

recognize, the performance of AmpNorm is not as good as 

the other two domains. 

Table 2 shows the results of Office-Home dataset. It 

clearly shows that our AmpNorm can improve the 

performance of the model after integrating AmpNorm into 

the baseline and other SOTA domain generalization methods. 

For example, AmpNorm improves the performance of ERM 

by 2.30% and that of DAC by 1.59%. 

The results of DomainNet dataset are reported in 

Table 3. We can see that our AmpNorm can facilitate the 

Algorithm 1 Pseudocode of AmpNorm, PyTorch-like 

  # f: the backbone network 

  # domain_amp: the source domain's amplitude 

  #  𝜆: the momentum of the exponential moving average 

   

  for x, y in loader:  # load a batch of data 

      𝑥𝑟  = AmpNorm(x) 

      𝑦𝑟 = f(𝑥𝑟)  # (N, K) # Eq. (7) 

      L = CrossEntropyLoss(𝑦𝑟, y)  # Eq. (8) 

      L.backward()  # back-propagate 

      update(f)  # update network parameters 

   

  def AmpNorm(x):  # Amplitude Normalization 

      𝑥𝑧 = fft(x)  # Fast Fourier transform (Eq. (1)) 

      𝑥𝑎 , 𝑥𝑝  = decompose(𝑥𝑧 )  # calculate amplitude and 

phase  (Eq. (2)) 

      if training:      # update source domain amplitude only 

if in training stage 

          domain_amp = (1 - 𝜆 ) * domain_amp + 𝜆  * 

mean(𝑥𝑎, dim=0) # Eq. (6) 

      𝑥𝑟𝑧
 = compose(domain_amp, 𝑥𝑝)  # replace amplitude 

# Eq. (3) 

      𝑥𝑟  = ifft(𝑥𝑟𝑧
)  # Inverse Fast Fourier transform  

      return 𝑥𝑟   
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Table 1 SDG classification accuracies (%) with ResNet18 as the backbone on the PACS dataset, where each SOTA is used as 

the baseline. We use a source domain for model training and the remaining three domains for model evaluation. The strong 

labels denote the higher performance levels. Red italics indicate the best performance. 

 

Method Photo Art Painting Cartoon Sketch Average 

EMR [24] 39.54 65.92 60.96 40.58 51.75 

EMR w/ AmpNorm 54.05 66.79 61.67 46.54 57.26 (5.51↑) 

AugMix [7] 55.44 69.19 70.36 51.95 61.73 

AugMix w/ AmpNorm 58.68 70.64 70.48 53.08 63.22 (1.49↑) 

L2D [28] 59.55 74.95 72.05 50.70 64.31 

L2D w/ AmpNorm 60.91 74.24 73.41 54.92 65.87 (1.56↑) 

ACVC [4] 58.40 72.09 72.38 51.68 63.64 

ACVC w/ AmpNorm 61.88 71.03 72.05 52.00 64.24 (0.60↑) 

DSU [15] 53.06 72.21 66.58 46.58 59.61 

DSU w/ AmpNorm 59.11 72.60 65.93 47.81 61.36 (1.75↑) 

DAC [11] 56.17 73.06 70.66 56.92 64.20 

DAC w/ AmpNorm 62.31 73.87 71.10 57.40 66.17 (2.51↑) 

 

 

Table 2 SDG classification accuracies (%) with ResNet18 as backbone on the Office-Home dataset, where each SOTA is used 

as the baseline. We use a source domain for model training and the remaining three domains for model evaluation. 

 

Method Art Clipart Product Real Average 

EMR [24] 44.90 36.46 35.12 51.47 41.99 

EMR w/ AmpNorm 45.52 36.96 39.90 54.41 44.20 (2.21↑) 

AugMix [7] 50.81 48.41 45.60 57.28 50.53 

AugMix w/ AmpNorm 51.23 49.26 48.33 60.27 52.27 (1.74↑) 

L2D [28] 51.93 46.04 47.95 57.53 50.86 

L2D w/ AmpNorm 52.27 46.03 49.09 61.04 52.11 (1.25↑) 

ACVC [4] 52.15 51.97 48.35 59.18 52.91 

ACVC w/ AmpNorm 52.19 52.52 50.31 62.98 54.50 (1.59↑) 

DSU [15] 49.45 42.99 44.41 57.20 48.51 

DSU w/ AmpNorm 50.43 44.30 47.21 59.79 50.43 (1.92↑) 

DAC [11] 52.84 47.89 48.38 61.19 52.57 

DAC w/ AmpNorm 52.46 48.73 51.47 62.59 53.81 (1.24↑) 
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Table 3 The performances of the SOTAs on the DomainNet benchmark for SDG with ResNet18 as backbone, where each 

SOTA is used as the baseline. We use a source domain for model training and the remaining five domains for model evaluation 

 

Method Clipart Infograph Painting Quickdraw Real Sketch Average 

EMR [24] 22.17 17.22 23.68 2.92 19.33 22.84 18.03 

EMR w/ AmpNorm 23.38 18.86 25.33 6.09 21.94 23.83 19.90 (1.87↑) 

AugMix [7] 24.73 18.38 23.87 5.52 21.05 24.69 19.71 

AugMix w/ AmpNorm 25.17 19.87 25.80 8.05 23.41 25.74 21.34(1.63↑) 

L2D [28] 23.05 18.38 23.14 5.09 21.12 23.83 19.10 

L2D w/ AmpNorm 25.38 19.06 26.59 7.05 24.19 24.78 21.18(2.08↑) 

ACVC [4] 25.86 19.60 23.65 8.11 22.46 24.26 20.66 

ACVC w/ AmpNorm 26.72 20.80 25.20 9.06 23.88 24.97 21.77 (1.11↑) 

DSU [15] 23.62 18.88 25.86 5.85 21.27 23.11 19.76 

DSU w/ AmpNorm 25.57 19.45 26.76 8.15 22.97 24.47 21.33 (1.57↑) 

DAC [11] 24.09 18.10 23.73 5.99 22.69 24.99 19.93 

DAC w/ AmpNorm 24.87 19.73 24.55 7.47 22.91 25.38 20.82 (0.89↑) 

 

 

baseline and the SOTA methods to improve their 

performances. For example, AmpNorm improves the 

performance of ERM by 1.87% and improves that of DAC by 

0.89%. 

 

Table 4 The running time (ms) of the baseline and our 

AmpNorm based on different backbones. 

 

Backbone  ResNet18 ResNet50 ViT-B Swim-B 

Baseline  15.0 46.1 151.8 151.7 

AmpNorm  17.7(+2.2) 48.8(+2.7) 153.5(+1.7) 152.5(+0.8) 

 

All the aforementioned comparisons demonstrate the 

effectiveness of our AmpNorm in enhancing generalization 

performance across domains. Meanwhile, our AmpNorm is 

plug-and-play and can be seamlessly incorporated into SOTA 

methods without additional runtime overhead, as shown in 

Table 4. 

 

 

4.3. Ablation Study 
 

Amplitude Dimension. To study the performance of 

our AmpNorm against the dimension of the source domain 

amplitude, i.e. Eq. (5), we present the results in Fig. 3(a). The 

channel amplitude ∈ ℝ𝐶  the spatial amplitude ∈  ℝ𝐻× 𝑊 and 

the global amplitude ∈ ℝ𝐶× 𝐻× 𝑊 mean the amplitude of the 

frequency domain in the channel, spatial, and global 

dimensions, respectively. The channel amplitude has only 

𝐶 = 3  parameters but the performance is unsatisfactory, 

while the global amplitude has the most parameters and 

achieves the best performance. This is probably that the 

channel amplitude is too simple to represent the style 

information of the source domain, while the global amplitude 

can represent rich style information of the source domain. 

Performance sensitivity against 𝝀  in Exponential 

Moving Average (EMA). The outcomes that study the 

influence of the 𝜆 of EMA on the AmpNorm are shown in Fig. 

3(b). It is evident that this hyperparameter has little influence 

on the performance of the model within a certain range. When 

𝜆 is set as 0.0, the source domain amplitude is not updated, 

and the performance is the worst. When 𝜆 is set as 1.0, the 

source domain amplitude belongs to the last mini-batch in the 

training process. A suitable 𝜆  can help the model collect 

source domain amplitude quickly in the early training stage, 

and stabilize the model training in the later stage. The trained 

model has a certain robustness against the style of the source 

domain, the value of 𝜆  has minimal impact on the 

generalization performance of the model even if it is set as 

1.0. 

Dynamic 𝝀 of EMA in Eq. (6). While a large 𝜆 can 

make the model collect source domain amplitude quickly, this 

is not conducive to the stable training of the model. Therefore, 

we consider a dynamic 𝜆 strategy for the EMA (Eq. (6)) of 

the AmpNorm, i.e. 𝜆 is initialized to 1.0 and decays to 0.0 

based on the cosine annealing strategy. And 𝜆 keeps to 0.0 in 

the remaining training iterations, which means that the source 

domain amplitude is not updated. The results are shown in 

Table 5, where the dynamic iteration is the number of 

iterations of the cosine annealing strategy. The results 

demonstrate that the dynamic 𝜆  strategy can enhance the 

performance of the trained model to a certain extent. 
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(a) Dimension of the amplitude         (b) 𝜆 of the EMA 

Fig. 3. Ablation study of (a) the amplitude dimension and (b) 

the λ of the EMA (Eq. (6)) on the PACS dataset with ResNet18. 

 

Table 5 Ablation study of our AmpNorm on the number of 

dynamic iterations of λ in EMA (Eq. (6)) with ResNet18 on 

the PACS dataset. 

 

Dynamic 

Iterations 
Photo 

Art 

Painting 
Cartoon Sketch Average 

static 55.04 67.99 61.00 44.70 57.18 

1 54.69 67.45 59.54 43.29 56.24 

300 54.72 68.49 59.93 44.59 56.93 

500 55.64 68.11 60.83 45.45 57.51 

1000 55.67 65.88 60.06 43.02 56.16 

4000 54.69 66.75 60.96 44.27 56.66 

12000 55.75 67.29 60.79 43.40 56.81 

 

 

4.4. Visualization 
 

To study the style-normalized samples by our 

AmpNorm, we show those from four domains of the PACS 

dataset that are converted into different styles by our 

AmpNorm, as shown in Fig. 4. We can see that the samples 

of the unseen target domain can be converted into samples 

with a style similar to the source domain by our AmpNorm. 

For example, the samples of the Sketch domain (4th, 8th 

columns) can be converted into samples with a style similar 

to the Photo domain (4th row). We can see that our AmpNorm 

can transfer the source domain style information to the target 

domain. 

 

 
Fig. 4. Visualization of the AmpNorm on the PACS dataset 

for the domains of Art Painting, Cartoon, Photo, Sketch. 

 

 

5. Conclusion 

Inspired by the frequency domain amplitude is related 

to the image style, this paper proposed a simple yet effective 

method, i.e. Amplitude Normalization (AmpNorm), which 

explores this amplitude to surrogate the style cues for 

reducing the domain gap and enhancing the generalization 

performance of the learned model. In contrast to existing data 

manipulation methods, our AmpNorm does not generate new 

samples but converts the unseen target domain samples into 

samples that resemble the source domain in terms of style. 

Our AmpNorm is easy to implement, and plug-and-play to 

most existing methods, and can largely improve their 

generalization capacity. Extensive experiments on three 

benchmarks of SDG tasks demonstrate that our AmpNorm 

can greatly improve the state-of-the-art approaches to achieve 

better performance. 
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