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Abstract: The development of vessels can provide important information about the growth status of animal embryos. It is,
therefore, important to automatically locate the deformed vessel branches from the embryo images. However, very few vessel
detectors can accurately locate all vessel branches when the captured images are low quality and the implied vessel shapes are
complex. In this study, a new framework consisting of vessel region extraction and snake shape optimisation is proposed. The
main contribution in this detector is a novel open snake model based on the global guidance field and deformation template
initialisation. Experimental results on a specific application of an embryo vessel database [Database and source codes: https://
github.com/wcxie/Egg-embryro-vessel-location/.] demonstrate that the proposed algorithm not only locates the vessel shape
properly but also obtains the orientations of embryo vessel branches accurately. Comparison to traditional guidance fields and
the active appearance model illustrates the effectiveness and competitiveness of the proposed model.

1 Introduction
During the past few decades, vessel location has been widely used
in vessel-related automatic analysis, which is a consistently popular
research topic. Kirbas and Quek [1] classified the algorithms for
blood vessel detection into six categories and provided a review of
each algorithm category.

With respect to (w.r.t.) general vessel location, pattern
recognition-related approaches [1] such as the skeleton method [2],
self-adaptive thresholdings [3] and matching filter approach [4]
were often employed. While the geometric deformable models of
the level-set method such as [5–8] are also applicable to extract the
vessel region, they can easily introduce over-segmentation. These
algorithms are applicable to predict the initial vessel region for the
further optimisation. However, they do not sufficiently use the
prior structure information implied in the vessel shape, thus cannot
identify the vessel branch information.

Unlike unordered vessels with uncertain fragment branches
such as retina vessels, there are vessels often shown with relatively
fixed and ordered shape. In this case, deformation template models
that incorporate the prior shape information are applicable such as
ellipse shape deformation [9, 10], morphological skeleton [11] and
hierarchical part-template matching [12]. However, the
oversimplification of the employed shape template or the
requirement for high-quality images limits their application. The
active appearance model (AAM) [13] approximates the target
shape with a linear combination of a training shape database,
whereas the efficacy of these models is limited for vessel location
since the training database is often small and the shape variation
space is large.

The snake deformation model is proposed for general object
location [1], which is frequently used for blood vessel detection
due to its flexibility during shape optimisation. Current snake
algorithms such as the classical snake model [14] locate the vessel
boundary with a closed curve, which is applicable for locating the
entire vessel shape. To apply the snake model to vessel branch
location, open snake models for locating 3D neuron centre lines
[15, 16] were proposed; these models drove seed points
progressively using a deforming force combination of gradient

vector flow (GVF), stretching force and a set of control rules on the
neuron structure. However, these curve-growing models may not
be suitable for vessel location with incomplete branches or noisy
bifurcations. In this work, rather than driving the curve
progressively in the form of line segments, an open snake model is
proposed to drive an initialised whole curve toward the longest
skeleton N.

From another perspective, the classical snake model [14] is
sensitive to noise and shape initialisation. To decrease the influence
of image noise, Bresson et al. [17] proposed an active snake model
with global optimisation based on the unification of image
segmentation and image denoising tasks. To reduce the sensitivity
of the classical snake model on shape initialisation and boundary
concavities, Xu and Prince [18] proposed a potential force of
gradient vector flow (GVF) with information regarding the
distance apart from the real boundary edge to help the evolution
curve converge to the boundary edge. On the basis of this, Li et al.
[19] proposed the edge preserving GVF as the external force; Hou
and Han [20] employed distance potential force distribution to
improve GVF on initialisation sensitivity; and Li et al. [21]
proposed a radiating GVF snake to facilitate the convergence of the
evolution curve to the real boundary. However, in these constructed
potential forces, only the information regarding the distance apart
from the detected boundary edge is used, while the length of the
detected edge line is not considered; thus, the evolution curve may
stagnate because of the fragment edges contained in the
contaminated image. In this work, a global guidance field (GGF) is
proposed to make up for this deficiency that incorporates not only
the distance apart from the skeleton lines but also the lengths of
these skeleton lines to avoid converging to small edge fragments.

Although an improved guidance field is proposed to handle the
case of initialised shapes far from the target boundary edge, a good
initialisation is still necessary to further decrease the risk of
converging to a local optimum [1, 18]. Motivated by the work [12,
22], a deformation template algorithm integrating prior shape
information and using region and curve template matching is
proposed to obtain a global initialisation aiming at a specific
application in this work.
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The real application originates from the field of biological
engineering automation. According to statistics from the automated
egg incubation industry, ∼5–14% of the eggs do not hatch
successfully within a hatching period of three weeks [23].
Therefore, researchers attempt to filter out the eggs that hatch
unsuccessfully in the preceding 2 weeks and discard them in
advance to save further hatching costs. Although a three-level
classification of the embryo development degree was proposed for
the captured images [23], the implied vessels must be further
located to supervise the hatching status. However, as illustrated in
Fig. 1a, the provided image contains a great deal of bright and dark
spots during the imaging stage, and the embryo vessels are low
contrast, which results in blurred boundaries and broken shape
structures. Few algorithms can accurately locate the vessel shape
and simultaneously recognise its branches when provided with
such largely polluted images and vessel shapes. 

In this work, given the deficiency of current vessel location
algorithms for images containing blurry, bifurcated and complex
vessel shapes, a framework with novel strategies for vessel region
extraction and snake optimisation is proposed for location of
vessels with similarly fixed shapes. The proposed framework
related to the snake model consists of three novel ideas. First, an
open snake model preserving curve direction and length is
proposed to accurately fit the vessel skeletons. Second, a GGF is
proposed for the open snake model, which employs information
regarding not only the distance apart from the longest skeleton line
but also the length of the corresponding skeleton line. Finally,
initialisation with a deformation template method is proposed to
obtain a globally initialised shape for the proposed open snake
optimisation in a specific application.

This paper is structured into the following sections. The
proposed framework of vessel location is presented in Section 2,
which is further applied to a specific problem in Section 3. Then,
the experimental results and the corresponding illustrations are
demonstrated in Section 4. Finally, the conclusion and some
discussions are presented in Section 5.

2 Proposed algorithm
2.1 Algorithm framework

The framework of the proposed algorithm mainly consists of shape
region extraction based on self-adaptive thresholding and shape
optimisation based on the proposed GGF and an open snake model.

2.2 Shape region extraction

2.2.1 Spot patching and smoothness: Owing to extra lighting
sources or reflection, vessel images often contain multiple light
spots. To decrease their influence, Poisson patching which is
frequently used for the image inpainting [24] is employed for spot
region elimination, i.e. two-dimensional (2D) Laplacian equation
with Dirichlet boundary condition is used.

For the smoothness of the provided images, the minimization
model of total variation regularization term with L1 norm (TVG-
L1) [25] is employed to address the problem of irregular noise
contained in the input images, because it can remove the anomalies
and irregularities while well preserving the sharp edges of the
vessel. The parameters of this algorithm are set the same as those
in [25].

2.2.2 Self-adaptive thresholding: To restrict vessel shape
detection in a relatively local region, the vessel shape region is
extracted in advance. Since the pixel lighting intensity of a vessel
is darker than that of the adjacent regions, the thresholding method
[3] can be employed to filter out these pixels with different
parameter settings.

The self-adaptive thresholding with the mean operator [3]
transfers a grey image l into a binary image B with local threshold
value tv, which is presented as

Bp =
1 lp > ls(p, ws) − tv
0 otherwise

(1)

where lp, Bp are the pixel values of the position p on the original
and binary images and ls(p, ws) is a suitable statistical operator
around the position p, i.e. the mean filter. ws is the window size of
the filter and tv is a user-defined threshold value.

With the filtered region, the location of vessel branches should
be further improved, the following sections present the algorithms
for vessel branch orientation initialisation and optimisation.

2.3 Shape optimisation with GGF-based open snake model

2.3.1 Initial shape prediction: Used before snake optimisation,
shape initialisation is necessary because good initialisation largely
decreases the risk of location optimisation converging to a local
optimum [22]. In this work, for the proposed open snake
optimisation, Section 3.2 introduces a deformation template
method of shape initialisation for a specific application based on
the filtered vessel region.

2.3.2 Global GF: Although the smoothed image is often
employed for local optimisation in curve evolution, the small
fragment noise contained in the smoothed image makes the curve
vulnerable to a local optimum. In this work, GGF is proposed to
facilitate local optimisation by incorporating the information
related to the detected skeleton lines.

To generate GGF, the skeleton pixels are detected in the filtered
vessel region using the skeletonisation algorithm [2]; continuous
skeleton lines are further detected with depth-first search (DFS),
where the starting pixels are selected as the upper most or lower
most pixels in the estimated principal direction VT of the vessel
shape. Then, the short skeleton lines corresponding to fragmental
vessel branches with length less than ε are abandoned to decrease
the interference of noisy filtered regions. With the searched
skeleton centrelines, each skeleton centre pixel is initially labelled
with an intensity value, i.e. the length of the longest skeleton line
across the pixel. Finally, the GGF image on each pixel p of the
provided image is calculated as follows:

GGFp = min
i

∥ p − SPi ∥c
LenSPi

α (2)

where SPi is the ith skeleton line and LenSPi is this line's length, i.e.
the same intensity value of all of the pixels on the centreline SPi.
∥ p − ℒ ∥c defines the distance between a point p and a curve ℒ,
which is approximated as the minimum distance from the point to
the dense interpolation points of the curve ℒ. Parameter α is a

Fig. 1  Example of embryo image and the proposed guidance field (a) Example embryo image with noisy and blurry vessel shape. The left is the input embryo
vessel image; the right is the shape to be located, where line 1 denotes the heart region and lines 3, 4, 6, 7 denote four main vessel branches. (b), (c):
Illustration of GGF generation, (b) Skeleton centre pixels and continuous skeleton lines obtained by DFS. Red circles are the starting searching pixels, (c)
Generated guidance fields with parameter α = 0.5, 1
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balance weight, which is set to be 0.8 for all the testing. With the
definition of GGF in (2), the guidance field integrates not only the
distances apart from the skeleton lines but also the lengths of these
lines into the shape optimisation, which can decrease the risk of
converging to the fragment skeleton lines contained in the noisy
images. The generated GGF is finally used to replace the
conventionally used smoothed image texture for shape local
optimisation, i.e. the open snake model introduced in the next
section. Generation of two example guidance fields is presented in
Figs. 1b and c.

(i) Open snake model preserving direction and length: The
original snake model [14] was proposed to improve the accuracy of
the located vessel boundary. However, it is not suitable for
optimising the location of the open vessel branch. For the original
snake model, some basic geometry features of the closed evolution
curve such as curve direction and length are not preserved during
curve evolution, which may result in an abnormal shape that is far
away from the initial vessel branch. Thus, to propose an efficient
open snake model for locating open vessel branches, some
conditions must be satisfied.

(1) The evolution curve of the snake model is open.
(2) The direction and length of the initial branch are preserved.
(3) The first point is fixed during snake evolving.

In the following, we introduce the proposed open snake model
satisfying the above three conditions. The proposed snake model
w.r.t. the variable v(s) = (x(s), y(s)) is represented as (see (3)) In
the first term of the snake model (3), Eint is the internal energy,
which is elaborated in the original snake model [14] and presented
as follows:

Eint = 1
2α(s)∥ vs(s) ∥2

2 + 1
2 β(s)∥ vss(s) ∥2

2 (4)

where vs(s), vss(s) are the first- and second-order derivatives w.r.t.
the length variable s, reflecting the length and the blending degree
of an evolution curve. Parameters α(s), β(s) are the coefficients of
these two derivatives, which are fixed to constants α, β to decrease
the model complexity.

For the exterior energy Eext in (3), the terms of Eline and
Eedge = − ∥ ∇I(x, y) ∥2

2 are retained, whereas the term reflecting
the curve curvature is discarded since the vessel branch shape is
smooth. That is, the exterior energy is formulated as

Eext = ω(Eedge + Eline) (5)

where ω is a parameter controlling the significance of input texture
image. In the original snake model, Eline is the image after
smoothness and self-adaptive thresholding in (1), whereas it is set
to be GGF image calculated in (2) of Section 2.3.2 as follows:

Eline = GGF (6)

Since the proposed open snake model evolves an entire curve with
several line segments toward the target centre line, rather than
evolves stepwise line segment to trace the vessel centre line such as
in [15, 16]; the two energy terms EDirPre, ELenPre in (3) are proposed
to preserve the geometric features of the open evolution curve.

First, the energy term of vector bias EDirPre reflecting the
preservation degree of the initial vessel direction is proposed as
follows:

EDirPre = θ
2∥ vs(s) − ivs(s) ∥2

2 (7)

where ivs(s) is the first derivative (vessel direction) of the initial
curve before evolution.

Second, to preserve the initial arc length ∥ ivs(s) ∥2, the energy
term of distance bias ELenPre is introduced as follows:

ELenPre = η
2 ∥ vs(s) ∥2 − ∥ ivs(s) ∥2

2 (8)

With the model (3), a new open snake model using the GGF and
preserving the initial geometric features of branch length and
direction is proposed. To solve (3), the corresponding Euler–
Lagrange condition is formulated as follows: (see (9)) where ∇Eext
is the gradient of the external energy Eext, vss becomes a 2D vector
(vxx, vyy) and ∇Eext = (∂Eext/∂x), (∂Eext/∂y)  when the variable s is
treated as coordinates x, y. Then, the above equation is used for the
gradient descent method as follows:

∂v
∂t = − δEsnake (10)

Concerning the model (10), finite difference is employed for the
discretisation; i.e. (∂v/∂t) is discretised as γ(vi + 1 − vi), where
vi = (xi, yi) and γ is the inverse of step size. Then, the model (10) is
discretised as follows: (see (11)) The fourth and fifth terms on the
right-hand side of (11) contain non-linear terms
(∥ ivs ∥2/∥ vs

t + 1 ∥2)vs
t + 1 and ∇Eext

t + 1. To make the iteration form in
(11) linearly solvable, we employ the idea in [26] to make the
length preservation term linear by substituting the term
(∥ ivs ∥2/∥ vs

t ∥2)vs
t for (∥ ivs ∥2/∥ vs

t + 1 ∥2)vs
t + 1 and placing it on the

right-hand side of the iteration equation; and similarly assume the
movement of the snake is small enough that the external force does
not change much from one time step to the next, yielding
∇Eext

t ≃ ∇Eext
t + 1.

In (11), vss
t + 1, vssss

t + 1 are 2D vectors (∂xx
t + 1x, ∂yy

t + 1y), (∂xxxx
t + 1 x, ∂yyyy

t + 1 y)
when s is replaced with coordinates x, y, and
∂xx

t + 1x = (∂xx
t + 1x1, …, ∂xx

t + 1xn)T when n is the number of the discrete
points. The second-order and fourth-order spatial derivatives ∂xxxi
and ∂xxxxxi are discretised according to the finite difference
approximation under the Neumann boundary condition, then (11) is
formulated as

(A + γI)vt + 1 = γvt − θ ⋅ ivss − η d
ds

∥ ivs ∥2

∥ vs
t ∥2

vs
t − ω∇Eext

t (12)

where A records the discretisation coefficients of the linear terms
of vt + 1, ivss is the second-order derivative of the initial evolution
curve iv w.r.t. the length variable s. Equation (12) w.r.t. coordinates
x, y is finally re-formulated as follows: (see (13) and (14)) where
f x = (∂Eext/∂x), f y is similarly defined. For the x coordinate of the

min Esnake = ∫
0

1

Eint(v(s)) + Eext(v(s)) + EDirPre(v(s)) + ELenPre(v(s))ds (3)

δEsnake = − αvss + βvssss − θ(vss − ivss) − η vss − d
ds

∥ ivs| ∥2

∥ vs ∥2
vs + ω∇Eext = 0 (9)

γ(vt + 1 − vt) = αvss
t + 1 − βvssss

t + 1 + θ(vss
t + 1 − ivss) + η vss

t + 1 − d
ds

∥ ivs ∥2

∥ vs
t + 1 ∥2

vs
t + 1 − ω∇Eext

t + 1 (11)
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ith point on the evolution curve, the third term on the right-hand
side of (13) is computed as follows: (see (14)) where
di = vi + 1 − vi, idi = ivi + 1 − ivi, vi = (xi, yi) and ivi = (ixi, iyi) are the
ith points on current and the initial evolution lines, respectively.

To fix the first point during the snake evolving to satisfy the
third condition of the proposed model, the term related to the first
point (corresponding to the first column in matrix A) is moved to
the right-hand side of the iteration formula.

To decrease the risk of converging to the local optimum as well
as the influence of noisy and fragment lines, the termination
condition of the simulated annealing algorithm is adopted which is
formulated as

∑ lVt − ∑ lVt − 1 ≥ 0.1∑ lVt − 1 (15)

where lVt  records the lighting intensities on pixels V = {v1, …, vn}
in the tth iteration.

For clarity, the pseudocode of the entire algorithm is presented
as Table 1. 

3 Application of embryo vessel location
3.1 Vessel region preprocessing and extraction

In this section, the preprocessing method in Section 2.2 is
employed on the chick embryo images. As illustrated in Fig. 1a,
each input chick embryo image includes a vessel structure that
consists of a central heart labelled with line 1 and six vessel
branches labelled with green lines; the four branches labelled 3, 4,
6 and 7 and the heart shape are the target vessels that must be
located.

To restrict the search range within a local region around the
vessel shape, the region of interest is extracted before the spot
patching in Section 2.2.1, and the preprocessing procedure is
presented in Fig. 2. 

With the preprocessing of the chick embryo images, TVG-L1
smoothness in Section 2.2.1 is employed to reduce the salt-and-
pepper noise while preserving the vessel geometry features.
Finally, self-adaptive thresholding in Section 2.2.2 is used to
extract the entire embryo region with parameter setting ws = 200,
tv = 0.05 for the following shape initialisation and guidance field
generation.

3.2 Chick vessel shape initialisation

The basic idea of the shape initialisation is to estimate the
approximated 35 points located on 7 different parts with Procrustes
transformation and deformation template matching, which is
conducted in three steps.

For the first step, the principal tangent and normal directions
(VT, VN) of the central heart region are initially approximated with
the first and second principal component vectors of the central
heart region, which is represented in Fig. 3a. 

For the second step, with the motivation from part-template
matching [12], local searching with template matching is
conducted around the centre point to improve the estimation of the
principal directions. The basic idea of this local searching is to find
the locally perturbed direction which makes the corresponding trial
template region best match the filtered vessel region with the
minimal lighting intensity sum SLi as follows:

(A + γI)xt + 1 = γxt − θ ⋅ ∂xxix − η ∂
∂x

∂xix2 + ∂yiy2

(∂xxt)2 + (∂yyt)2 ∂xxt − ω ⋅ f x
t

(A + γI)yt + 1 = γyt − θ ⋅ ∂yyiy − η ∂
∂y

∂xix2 + ∂yiy2

(∂xxt)2 + (∂yyt)2 ∂yyt − ω ⋅ f y
t

(13)

∂
∂x

∂xix2 + ∂yiy2

(∂xxt)2 + (∂yyt)2 ∂xxt

i

= ∥ idi + 1 ∥2

∥ di + 1 ∥2
(xi + 2 − xi + 1) − ∥ idi ∥2

∥ di ∥2
(xi + 1 − xi) (14)

Table 1 Pseudocode of the proposed vessel location algorithm
1: obtain vessel filtered region with (1) and the skeleton pixels with algorithm [2]
2: parameter initialisation: t = 0, α, β, γ, θ, η, ω, NumIter
3: adopt (16)–(18) in Section 3.2 to obtain the initial shape v0 = (x0, y0) = (ix, iy)
4: use (2) to obtain GGF image Eline in (6)
5: while t < NumIter do
6:  use (13) and (14) to calculate the right-hand side matrix in (12)
7:  use (12) to obtain the discretised vessel points at the t + 1th iteration
8:  if (15) is satisfied, output vt = (xt, yt) and exit; otherwise, t ← t + 1
9: end while
10: if t = NumIter, output vt = (xt, yt)

 

Fig. 2  Procedure of image preprocessing (a) Fitting of Canny boundary points of an original image with an ellipse. The detected boundary points are
labelled with red stars and the corresponding fitted ellipse curve is labelled with blue circles, (b) Image after the erosion operation, (c) Detection result of
spots with circles whose region has a perimeter <10π and whose average lighting intensity lies within the interval [0.05, 0.95], where spots are labelled with
white circles, (d) Image with white holes patched
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min
i

SLi = ∑
j = 1

n
lDPi, j (16)

where DPi, j is the jth pixel of the dense pixels DPi included in the
ith template region. Each candidate set of pixels DPi includes the
same number of pixels n for fair searching. The procedures of the
trial template generation and the principal direction improvement
are illustrated in Figs. 4a and b. 

With the improved principal directions VT and VN, the positions
of the central five points on the boundaries of the heart region are
obtained as illustrated in Fig. 3b, which are used to locate the
coordinates of the other vessel branches with the Procrustes
transformation. That is, finding the scaling coefficient b, rotation
matrix T and translation matrix C such that

P = b ⋅ RP ⋅ T + C (17)

where RP, P are the central five points of the pre-computed mean
shape of the training shape database and the estimated shape,
respectively. Parameters b, T , C are then applied to obtain the
points on each vessel shape branch as follows:

Qi, j = b ⋅ RQi, j ⋅ T + 1
ni

∑
j = 1

ni

C j (18)

where RQi, Qi record ni = 5 points on the ith vessel branch of the
mean and estimated shapes. Fig. 3c presents an estimated example
shape.

For the last step, the vessel shape initialisation is further
improved with branch-wise curve templates, i.e. deformed, rotated
and translated parametric curves, to approximate vessel branches.
For curve template generation, the vessel shape is divided into four
parts with four quadrants using the optimised principal directions
(VT, VN), and the central heart region is abandoned to reduce
disturbance. Figs. 4c and d present the procedures of curve
template generation and shape branch matching, then the best
curve template achieved in (16) is chosen as the improved
initialisation of the vessel branch in the corresponding quadrant,
which is further employed for snake optimisation.

3.3 Abnormal shape elimination

After the shape initialisation or the snake optimisation, the
obtained curve template may be abnormal if vessel branch texture
does not exist in the considered quadrant. This abnormal vessel
branch is replaced with the initialised average shape in (18). A
vessel branch is determined to be abnormal if the average
intersection angle AveAng ≥ (π /4) in (19) after shape initialisation
or value ov ≥ (1/3) + (π /4) after snake optimisation

AveAng = 1
ni − 1 ∑ j ⟨ProcVi, j, OptVi, j⟩,

ov = 1
ni

∑ j lOptSi, j + AveAng
(19)

where ⟨ProcVi, j, OptVi, j⟩ denotes the intersection angle between
vectors of ProcVi, j = ProcSi, j + 1 − ProcSi, j and

Fig. 3  Procedure of initial vessel shape generation (a) Generation of the principal tangent VT and normal VN directions labelled with red and green lines, (b)
Five points on the heart region generated for estimating the entire shape, (c) Estimated entire vessel shape using the central five points

 

Fig. 4  Procedures of the trial template generation and the principal direction improvement (a),(b): Template region generation and local searching for
principal direction improvement. Left (a): Ring template region generation for improving VN. The top-right corner shows the variation region of the basic trial
ring polygon labelled with red circles in the directions of VT and VN, in which the basic trial polygon is perturbed with a distance smaller than r along the
direction VT and an angle smaller than π /2 in the direction VN. Right (a): Three example trial regions for VN improvement. Red circles enclose the optimal
trial region obtained in (16), green stars and blue triangles enclose another two trial regions. (b) Rectangular template region generation for improving VT

and three example trial regions for VT improvement. (c),(d): Curve template generation for branch-wise initialisation improvement. Left (c): Basic line
generation by rotation and point interpolation. Right (c): Generation of red basic template curves by fitting different number of points on the two basic lines
with B-spline curves. Left (d): Generation of the curve templates by rotating the basic template curves into the second quadrant. Right (d): Production of
multiple curve templates in the second quadrant by applying multiple angles θi uniformly distribute in the interval [α, β] = [ − π /3, π /3] to the step (c)
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OptVi, j = OptSi, j + 1 − OptSi, j, ProcS, OptS are the shapes obtained
by Procrustes transformation (18) and curve templates (16) (or
snake optimisation) and ni is the number of points on the ith vessel
branch. lOptSi, j is the lighting intensity on the pixel OptSi, j. Branch
OptSi has been scaled to have the same length as ProcSi.

4 Experimental results
4.1 Database and experimental setting

We perform the experiments on a personal computer with a 3.2 
GHZ core processor and 4 GB random access memory. A database
of 72 embryo vessel images were used for the experiments, which
were captured using 810 nm infrared lighting and a charge-coupled
device camera by Co-Photoel Tech Co., Ltd. For each image, the
ground truth heart region and each of the six main vessel branches
in Fig. 1a are manually labelled with five uniformly distributed
discrete points on interpolation curve. The manual marking up is
done by a committee of three people including an initial marker, a
checker from the university and a proofer from the collaborating
company. According to the image quality and shape complexity,
the database is manually divided into three categories evenly:
good, fair and poor.

To analyse the results quantitatively, a metric reflecting the bias
between the located vessels and the ground truth is defined as
follows:

error =
(1/m ⋅ n)∑i, j ∥ Pi, j − Vi ∥c
maxi, j, k, l ∥ Vi, k − V j, l ∥2

, (20)

where m, n are the numbers of vessels and the points on each
branch, Pi, j is the jth interpolated point on the ith located branch,
Vi, k is the kth point on the ith ground truth branch Vi, point and
curve distance ∥ p − ℒ ∥c is defined in (2).
maxi, j, k, l ∥ Vi, k − V j, l ∥2 is the size of the vessel shape. The overall
runtime metric RT of the considered algorithms is also considered
for the comparison.

To analyse the effects of initialisation, GGF and the algorithm
strategies, different versions of algorithms with each module
considered are compared with the proposed model, which are
presented in Table 2. The notation abbreviation r1c2 denotes the
position of row one and column two. 

4.2 Performance of GGF-based snake model

(i) Comparison of initial shape prediction: For the region
extraction for the snake model, the popular level-set algorithm [6,
7] reported to be able to deal with the homogeneous effect in the
segmentation problem, is also tested and compared with the self-
adaptive thresholding method. Fig. 5 presents vessel regions
extracted by the two algorithms on the smoothed images. It can be
seen from the second row of Fig. 5 that though the level-set-based
segmentation can find the vessel structure, it is sensitive to patch-
shape-like noise such as grey spot patches and introduces many

fragment patches that result in over-segmentation. The grey regions
in the third row of Fig. 5 record the filtered regions by the self-
adaptive thresholding method, which are more applicable for the
skeletonisation method to filter out the long skeleton lines for
snake optimisation initialisation.
(ii) Comparison of snake model energies: To evaluate the
performance of the proposed snake model, three average energy
terms in the objective function are compared including Eline in (5),
EDirPre in (7) and ELenPre in (8). Three versions of snake algorithms
are adopted for comparison including the original snake model
(OriSnake), Snake − G0I1 and Snake − G1I1 in Table 2. The three
energy values of these three snake models w.r.t. the number of
iterations are presented in Fig. 6, in which OriSnake results in the
largest and the most unstable direction and length energies, because
it does not preserve the branch direction and length. Actually,
lighting intensity term is negative correlation with the direction and
length terms, though larger direction and length energies are
obtained, Snake − G1I1 achieves smaller lighting intensity than
Snake − G0I1 which illustrates that Snake − G1I1 is able to find a
better curve branch by properly preserving the initial direction and
length.
(iii) Comparison of guidance fields: To check the performance of
the proposed GGF compared with other guidance fields, the
gradient vector flow (GVF) [18] frequently used for closed
boundary location [27] is employed for the comparison, which was
proposed to deal with the cases of poor initialisation and boundary
concavities. The average location errors of the snake model with
GVF and GGF on the 24 good samples are 3.34 and 3.17%,
respectively, which illustrate the effectiveness of the proposed
GGF in overall. Fig. 7 shows an example that the evolution curve
with GVF stagnates to a line which is far from the ground truth
branch in the green rectangular region, whereas the curve
converges to the ground truth branch successfully with the
proposed GGF. As seen in right of Fig. 7a, the magnitude of the
guidance force around the considered branch is much smaller than
that around the heart region due to the misleading spot patches
surrounding the considered branch, whereas GGF yields strong
guidance information around the long ground truth line as shown in
right Fig. 7b, since it integrates the distance apart from the longest
skeleton line in a local region and the length of the skeleton line.
This result indicates that the proposed GGF is more robust than
GVF against small noisy spot patches, and it is more beneficial
than GVF for facilitating the snake model to converge to true
branch centrelines.

4.3 Comparison of algorithms for shape optimisation

Fig. 8 presents vessel shape branches detected by algorithms with
different module settings in Table 2, where each three example
images from each category are presented. Table 3 presents the
quantitative results of the runtime, the location errors and the
corresponding parameter settings of the algorithms. 

Table 3 shows that the proposed snake model Snake − G1I1
provides the best performance among the algorithms with a
reasonable runtime cost.

The effect of shape initialisation on the proposed models can be
investigated by comparing the images in the third and fifth rows or
the sixth and eighth rows in Fig. 8. As seen, a good shape
initialisation is necessary for the open snake model; otherwise, the
evolution curve may be trapped in the wrong local optimum [the
sixth row and ninth column (r6c9) image’], which is supported by
the fact that the location errors of the algorithm Snake − G1I1 are
smaller than those of Snake − G1I0 in Table 3.

The images in the fourth and fifth rows or the seventh and
eighth rows of Fig. 8 are used to analyse the effect of the
constructed GGF. Since the constructed GGF implies information
regarding not only the distance apart from the target vessel branch
but also the length of the skeleton line, it can push the evolution
curve toward the optimal branch with long branch length. For
example, the lower-right branch in r7c7 has been relocated to the
optimum branch in r8c7. The effect of the GGF is further
supported by the fact that an improvement of 0.12% is achieved by
Snake − G1I1 compared with Snake − G0I1 on the fair images.

Table 2 Module setting for different versions of algorithms
Algorithm Input

texture
Initialisation Statement

AAM − G1I0
[13]

GGF (G1) Procrustes
(17), (18) (I0)

for AAM, the preceding 40
images are chosen for

training and the remaining
are chosen for testing. To

decrease the variation
space of AAM, half the

number of points on each
vessel branch is employed
for the training and testing

AAM − G0I1
[13]

smoothed
image (G0)

curve
templates (I1)

AAM − G1I1
[13]

GGF (G1) curve
templates (I1)

Snake − G1I0 GGF (G1) Procrustes
(17), (18) (I0)

Snake − G0I1 smoothed
image (G0)

curve
templates (I1)

Snake − G1I1 GGF (G1) curve
templates (I1)
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AAM [13] requires a shape and image database for model
training. Even though shorter vessel branches are requested for the
location than the snake optimisation, AAM rarely detects
abnormally shaped vessel branches due to the restriction of the
employed database such as the lower-left branch in r5c6.
Concerning runtime costs, the snake model Snake − G1I1 requires
as much runtime as AAM − G1I1 though the training runtime cost
of AAM is not included, since the snake model uses only the
derivatives of a set of discrete evolution points, rather than the
derivatives w.r.t. texture pixels by AAM.

5 Discussion and conclusion
This paper proposes a new framework for locating embryo vessels
which have three main novelties. First, an open snake preserving
initial direction and length is proposed to locate open vessel
branches. Second, a GGF incorporating not only the distance apart
from the skeleton lines but also the length of the skeleton line is
proposed, which can push the evolution curve toward the global
optimum. Finally, shape initialisation based on deformation
template matching is proposed for a specific application.
Comparison to different algorithms demonstrates the
competitiveness of the proposed GGF and model.

However, the proposed framework and models would benefit
from further improvement. First, vessel shape initialisation should
be made more general by considering the geometry features of the
entire vessel shape. Our future work will apply the state-of-the-art
deep learning method to improve the generalisation ability and
efficiency of the shape initialisation. Additional applications of the
proposed GGF and the open snake model such as the handwritten
digit location shall be exploited as well.
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Fig. 5  Comparison of algorithms for initial shape prediction. From up to down, rows correspond to the initial images, the vessel shapes obtained by level-set
segmentation and the self-adaptive thresholding method (blue lines denote the skeleton centre pixels)

 

Fig. 6  Energies of direction, length and lighting intensity of three snake models w.r.t. the number of iterations
 

Fig. 7  Comparison of guidance fields GVF [18] and GGF for the open
snake model (a), (b) Detection results and the used fields of GVF and GGF,
respectively. The green rectangular region encloses the detected branch
with large difference. The rectangular regions in central (a) and (b) are
enlarged and presented in right of (a) and (b), respectively
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