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Abstract

Due to the insufficient semantic information supervision
in existing works for dynamic facial expression recogni-
tion (DFER), videos with similar facial changes but dif-
ferent expressions may be easily confused. Thanks to the
potential textual information for semantic supervision, con-
trastive language-image pretraining (CLIP) model provides
a new direction for DFER. However, pre-trained CLIP
based on image-text pairs has difficulty in capturing tem-
poral features in the video domain. Therefore, we pro-
pose a novel visual language model that captures and ag-
gregates dynamic features of expressions in semantic su-
pervision via Inter-Frame Interaction Transformer (Inter-
FIT) and Multi-Scale Temporal Aggregation (MSTA). Fur-
thermore, though prompt learning is often used in CLIP to
enhance semantic supervision, previous studies have only
focused on the role of textual prompts, ignoring the im-
portance of visual prompts in facilitating the relationality
between the two. Therefore, we designed a Bidirectional
Enhanced Prompt (BiEhPro) to facilitate the learning of
this relationality between text and visual cues in enhanc-
ing semantic supervision. Extensive experiments and ab-
lation studies on three benchmark datasets, i.e., DFEW,
FERV39K, and MAFW, validate the effectiveness of our
modules and algorithm. Code is publicly available at
https://github.com/JunLiangZ/CLIP-Guided-DFER.

1. Introduction
Automatic facial expression recognition (FER) has be-

come a hotspot for researchers due to its applications in var-

ious fields. Since video can provide richer spatio-temporal

facial pattern reflecting facial expressions, increased atten-

tions have been drawn to dynamic facial expression recog-

nition (DFER).
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Figure 1. Comparison of traditional CLIP-guidance methods and

ours for DFER. (a) Standard CLIP [35] designs a textual de-

scriptor for each class and uses the cosine similarity between im-

age and text embeddings for inference. (b) Our approach pro-

vides enhanced semantic supervision of CLIP for DFER, via the

introduced inter-frame interaction, aggregation and bidirectional

prompt learning. InterFIT, MSTA and BiEhPro denote Inter-

Frame Interaction Transformer, Multi-Scale Temporal Aggrega-

tion and Bidirectional Enhanced Prompt.

With the popularity of deep learning and the availabil-

ity of large-scale datasets (e.g., DFEW [17], FERV39K

[45]), researchers have developed a variety of deep neural

networks (DNNs) to address the challenges in DFER, e.g.

2D/3D convolutional neural networks (CNNs) [8, 19], re-

current neural networks (RNNs) [7, 38], and more advanced

transformer-based architectures [22, 28, 44, 49]. However,

these methods train the model based on manually-labeled

tags, which may lack sufficient semantic supervision, thus

limiting the model’s capacity in understanding and differ-

entiating facial expressions.

Recently, visual-language pre-training models such as

CLIP [35] (shown in Fig. 1(a)) provide an effective solu-

tion, which use two independent encoders to achieve image-

text alignment in millions of image-text pairs, and offer

more semantic cues for supervising the visual represen-

tations. Though visual-language pre-training models are

helpful in various visual tasks, such as image classifica-

tion [51], detection [10, 2], and synthesis [33], it still faces

certain challenges in DFER. Challenge 1: How to effec-
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tively capture the temporal information of dynamic changes

in facial expressions in terms of CLIP guidance. Since the

duration of each expression is different, there will also be

the problem of inconsistency between short-term and long-

term temporal information [43]; and Challenge 2: Since the

expression label names are abstract, using only the textual

features of labels to provide semantic information may not

correlate well with the complex visual features of expres-

sions in the video. This motivates us to introduce prompts

to enhance visual and textual correlation.

To address these challenges, Li et al. [21] designed a

unified framework based on CLIP for both static and dy-

namic FER, i.e., CLIPER. However, the capacity of the

model is limited in capturing temporal information. Zhao

et al. [50] designed DFER-CLIP, incorporating a temporal

encoder and a prompt descriptor generated by a large lan-

guage model. However, this model only generates textual

prompts but ignores visual prompts, which may result in a

model that does not align visual and textual features well.

As shown in Fig. 2, under only textual prompts (Only TP),

the expression visual features result in lower similarity with

the corresponding textual features, producing wrong clas-

sification (i.e., green bars). In addition, it also overlooks

the problem of inconsistent information in DFER for short-

term and long-term temporal sequences, which may result

in the failure to capture the details of expressions appearing

in different temporal sequences.

To this end, we propose a new method for modeling

temporal cues of videos based on CLIP for addressing

Challenge 1. As shown in Fig. 1(b), the InterFIT uti-

lizes pre-training CLIP image encoders to generate frame-

level representations, to enable information exchange be-

tween frames through interaction token mechanism. In this

way, each interaction token not only describes the seman-

tics of the current frame but also communicates with other

frames to model their spatio-temporal dependencies. Then,

MSTA aggregates frame-level features from different tem-

poral scales to better capture short-term and long-term dy-

namic expression changes. Meanwhile, in order to enhance

the correlation between text and visual information, we

have developed a learnable BiEhPro module for generating

both text and visual prompts (i.e., addressing Challenge 2).

By generating prompts for both visual and text cues, BiEh-

Pro facilitates a tight correlation between both (as shown

by the red bar in Fig. 2), providing valuable semantic su-

pervision for learning expression information. In summary,

the novelties of our algorithm compared with related CLIP-

based ones are shown in the supplementary material, and

our contributions are outlined as follows:

• Based on the CLIP, we propose a new visual model-

ing method that introduces an interaction token mech-

anism to capture dynamic features while aggregating

features from multiple temporal scales to obtain dy-

' Fear' facial expression sequences ' Disgust' facial expression sequences

Figure 2. Visualization of the impact of different prompts. Differ-

ent video expression sequences and corresponding similarity his-

tograms in only text prompt (Only TP) and both textual and visual

prompts (TP+VP). Compared to only textual prompts, combining

textual and visual prompts makes the visual features closer to the

corresponding textual features, resulting in maximum similarity.

Ha: happy. Sa: sad. Ne: neutral. Ar: angry. Su:surprise. Di:

disgust. Fe: fear.

namic visual expression features.

• We design a Bidirectional Enhanced Prompt (BiEh-

Pro) to generate textual prompt and visual prompt

based on the mutual interaction of visual and textual

features, thus enhancing the correlation of text and vi-

sion in semantic supervision.

• Extensive experimental results on three datasets (i.e.,

DFEW, FERV39K and MAFW ) show that our method

outperforms existing state-of-the-art (SOTA) methods

in terms of both WAR and UAR.

2. Related Work
2.1. Dynamic Facial Expression Recognition

The DFER task is challenging because it requires deal-

ing with the abstract nature of expressions and the dy-

namic features of videos. Although manual feature meth-

ods [4] and STLMBP [15] have shown reasonable effective-

ness, they have limited applicability in specific scenarios.

Thanks to the development of deep learning, there has been

a trend towards extracting spatio-temporal features from se-

quences using 3D CNN [40, 41, 12], cascaded CNN-LSTM

[8, 7, 38], and CNN-Transformer [49, 25] structures. Yu et

al. [47] extracted local-global and spatio-temporal informa-

tion based on a cascaded CNN-LSTM structure. Wang et al.

[46] proposed a dual path multi-excitation collaborative net-

work (DPCNet) to extract essential information about ex-

pressions from a limited number of key frames in a video.

Li et al. [22] designed a plug-and-play module of global

convolution-attention blocks and an intensity-aware loss for

in-the-wild DFER. However, the aforementioned methods

solely depend on visual information and utilize manually-

labeled tags as supervision to train models, and the seman-
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Figure 3. Overview of our method. (a) Inter-Frame Interaction Transformer (InterFIT) implements spatio-temporal modeling. (b) Multi-

Scale Temporal Aggregation (MSTA) aggregates frame-level features from multiple temporal scales. (c) Bidirectional Enhanced Prompt

(BiEhPro) enhances the correlation between textual and visual features. MHSA denotes Multi-Head Self-Attention. FFN denotes Feed-

Forward Network. Max3×1
5×1 denotes the max pooling with kernel size of 5× 1 and step size of 3× 1. CroAtt denotes Cross-Attention.

tic cues were not fully explored in distinguishing between

different expressions with similar facial movements.

Therefore, we introduced a visual-language model (e.g.,

CLIP [35]) to enhance the semantic information via textual

supervision, to allow models to consider both visual fea-

tures and semantic information during the learning process.

2.2. Visual-Language Models

Visual-language pretraining has received increasing at-

tention in recent years, especially visual-language pretrain-

ing methods based on large-scale data contrastive learning

[31, 16, 35]. These methods have shown appealing perfor-

mance on various downstream tasks, including object de-

tection [2], image segmentation [5, 23], and visual retrieval

[36]. However, the absence of video-specific temporal cues

in image-level pre-training makes it challenging to adapt

visual-language pre-training models to videos. Therefore,

recent studies [18, 32] apply CLIP to videos and show its

prospect on DFER. Li et al. [21] proposed an unified frame-

work for dynamic FER called CLIPER, while its capacity in

capturing dynamic temporal information is limited. Zhao

et al. [50] proposed DFER-CLIP to explore expression

descriptors and transformer-based temporal modeling for

FER. However, this model does not consider the imbalance

between short-term and long-term temporal relationships in

dynamic expressions, and may ignore the expression details

that occur within a short-term temporal sequence [43].

To this end, we propose to enhance the pre-training CLIP

for dynamic expressions, so as to allow models to encode

frame-level temporal features and capture both long-term

and short-term temporal features.

2.3. Prompt Learning

With the progress of large language models, prompt

learning has become a new approach [11, 14, 27]. As

opposed to traditional fixed prompts (e.g., “A photo of a

{class}” [35]), prompt learning treats prompts as learn-

able parameters, aiming to find the most appropriate embed-

ding [32]. This approach allows models to learn and adapt

the prompt representation, and has been widely applied to

various visual and visual-language models [18]. Zhou et

al. [52] proposed context optimization (CoOp), which uti-

lizes learnable vectors to model the context of prompts.

They [51] further proposed conditional context optimiza-

tion based on CoOp, which can be generalized to unseen

classes and reduce sensitivity to category transformation.

However, these methods only focus on prompt learning of
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enhanced textual features, ignoring that for visual features.

Therefore, we propose to leverage text features to mutu-

ally reinforce visual features, so as to learn the correlation

between text and vision via generating both textual and vi-

sual prompts. Based on these prompts, the corresponding

textual and visual features can be both enhanced.

3. Proposed Method

Overview. As shown in Fig. 3, our approach aligns video

and corresponding text representations by jointly training

video and text encoding components. In the visual en-

coding part, we specially designed the Inter-Frame Interac-

tion Transformer (InterFIT) and the Multi-Scale Temporal

Aggregation (MSTA) to facilitate inter-frame information

transfer, capture the dynamic features of expressions, and

consequently extract their visual features. In the text encod-

ing part, we utilize the pre-training text encoder in CLIP and

propose a learnable Bidirectional Enhanced Prompt (BiEh-

Pro) to extend it. This key idea is to utilize the mutual in-

teraction between text and vision to generate corresponding

textual and visual prompts, thus enhancing the model’s un-

derstanding and recognition of expressions. Finally, based

on the similarity between the visual and text features in

the feature space, the classification category is determined

based on the highest similarity.

Preliminary. Formally, given a video clip X ∈
R

T×C×H×W consisting of T RGB images, where H and

W denote the height and width of images, respectively,

and C denotes the dimension. For each frame xt, t ∈
{1, · · · , T} in the video clip X , we partition it into N non-

overlapping patches of size P × P , and then use a linear

mapping to obtain an embedding representation for each

patch
{
e
(0)
t,n

}N

n=1
∈ R

D, where N = H W/P 2, D denotes

the dimension of each patch embedding. After that, we add

a learnable embedding e
(0)
t,0 to the sequence of embedded

patches, which is referred to the class token. This token is

represented as a frame-level representation in the final out-

put of the encoder, whose input at frame t is denoted as:

z
(0)
t =

[
e
(0)
t,0 , e

(0)
t,1 , · · · , e(0)t,N

]
+ es (1)

where es represents the spatial position encoding [32].

3.1. Inter-Frame Interaction Transformer (Inter-
FIT)

In order to capture dynamic features in a sequence of

frames during the extraction of frame-level representations

by the CLIP visual encoder, we introduced an interaction

token mechanism in the CLIP visual encoder, which facil-

itates the interactive transmission of inter-frame temporal

information. This InterFIT is shown in Fig. 3(a).

Specifically, the interaction token i
(l)
t ∈ R

D for the t-th
frame in the l-th layer is obtained by linearly transforming

the class token e
(l−1)
t,0 to make use of the global information

in this frame. Then, InterFIT inputs all interaction tokens

into a Bidirectional LSTM (Bi-LSTM) [37] and Multi-Head

Self-Attention (MHSA), where MHSA uses a self-attention

at the frame level to learn the temporal dependencies in the

expression sequence, and its representation at the l-th layer

is formulated as:

Î(l) = I(l) +MHSA
(
LN

(
Bi-LSTM

(
I(l)

)))
(2)

where Î(l) =
[̂
i
(l)
1 , · · · , î(l)T

]
, LN denotes the layer normal-

ization [1], l ∈ {1, · · · , L} denotes the index of the InterFIT

layer and L denotes the number of InterFIT layers.

Next, the interaction completion token î
(l)
t is connected

to the corresponding frame token z
(l−1)
t , which conveys

global temporal information to each frame via the MHSA.

This process aids in learning temporal and spatial interac-

tions to capture global spatio-temporal dependencies, which

can be represented as follows:

[
ẑ
(l)
t , i

(l)

t

]
=

[
z
(l−1)
t , î

(l)
t

]
+MHSA

(
LN

([
z
(l−1)
t , î

(l)
t

]))
(3)

where [·, ·] denotes the concatenation of frame tokens and

interaction token features.

InterFIT implements the transfer of inter-frame informa-

tion through L InterFIT layers to encode the global spatio-

temporal information in a sequence. Finally, we utilize the

class tokens, which contain global spatio-temporal informa-

tion, as frame-level representations to acquire each frame-

level feature of the video, i.e., Z = [e
(L)
1,0 , · · · , e(L)

T,0] ∈
R

T×D.

3.2. Multi-Scale Temporal Aggregation (MSTA)

To aggregate frame-level feature of the video to obtain

its final visual characterization, the duration of expression

varies from video to video, thus simply aggregating the total

duration would overlook some instantaneous subtle changes

in expression. To this end, we introduce the MSTA as

shown in Fig. 3(b), which aggregates frame-level features

from different temporal scales to obtain richer visual repre-

sentations.

Given all frame-level representations Z ∈ R
T×D of a

video clip, we first fuse the features of different temporal

scales as:

Ẑ =
∑3

i=1 Zi =
∑3

i=1 Maxssiksi

(
ZTr

)
, (4)

where ZTr ∈ R
D×T is the transpose of Z, Maxssiksi

denotes

a max pooling operation with kernel sizes of ksi and the

step size of ssi. ksi ∈ {5 × 1, 5 × 1, 7 × 1}; ssi ∈ {3 ×
1, 3× 1, 1× 1}. Ẑ, Zi have the same size of (D,T/3). The
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output of Eq. (4), Ẑ, is an element-wise summation of the

aggregation results for multiple temporal scales Zi.

Then, the MSTA model produces frame-level weights as:

Ui = FCi

(
Ẑ
)

i ∈ {1, 2, 3} (5)

where FCi (·) stands for a fully connected layers of Zi gen-

erating the frame selection weighting tensor Ui ∈ R
D×T/3,

respectively. The weights are further normalized as:

Ws,c,t = eUs,c,t/
∑

i e
Ui,c,t , s ∈ {1, 2, 3} (6)

where Us,c,t ∈ R
1×1 denotes the value of the c-th channel

of the t-th frame of Us, Ws,c,t ∈ R
1×1 is the weight of the

c-th channel of the t-th frame of Zs. Weighted features for

different temporal scales are then obtained as:

Zw =
∑3

i=1 Wi � Zi (7)

where Wi ∈ R
D×T

3 are weight tensors computed according

to Eq. (6) and � denotes the element-wise multiplication.

Finally, we flatten Zw ∈ R
D×T

3 and map it through a

fully connected layer FCV to obtain video-level features of

dynamic expressions:

V = FCV (flatten (Zw)) (8)

where V ∈ R
D, FCV (·) denotes a fully connected layer.

3.3. Bidirectional Enhanced Prompt (BiEhPro)

Previous works on DFER have focused on acquiring

discriminative feature embedding supervised by manually-

labeled tags [46, 28], which often neglect the underlying

deeper semantics conveyed by the expressions. Text can

provide rich semantic information, which is helpful to a

model for learning the association between expressions and

semantic meaning.

Thus, we use a pre-training text encoder from CLIP to

obtain the text features:

Kj = TxtEnc(clsj) j ∈ {0, 1, · · · ,#class− 1}
(9)

where Kj ∈ R
D denotes the textual features of the j-th

class, #class denotes the number of classes, clsj denotes

the j-th expression class name, and TxtEnc (·) denotes the

text encoder.

Based on this, as shown in Fig. 3(c), the learnable Bidi-

rectional Enhanced Prompt (BiEhPro) module is proposed,

leveraging textual features to mutually reinforce visual fea-

tures so as to learn the correlation between text and vision.

This process generates textual and visual prompts to en-

hance the understanding and recognition of expressions.

Specifically, BiEhPro contains M blocks. Each block

consists of two Cross-Attention (CroAtt) and Feed-Forward

Networks (FFN) for learning textual and visual prompts.

The block at the m-th layer can be represented as:

K̃
(0)
j = Kj

K
(m)

j = K̃
(m−1)
j +CroAtt

(m)
V→Kj

(K̃
(m−1)
j , Ṽ (m−1))

K̃
(m)
j = K

(m)

j + FFN
(m)
V→Kj

(K
(m)

j )

Ṽ (0) = V

V
(m)

= Ṽ (m−1) +CroAtt
(m)
Kj→V (Ṽ

(m−1), K̃
(m−1)
j )

Ṽ (m) = V
(m)

+ FFN
(m)
Kj→V (V

(m)
)

(10)

where m ∈ {1, · · · ,M}, the textual representation Kj and

visual representation V are obtained in Eq. (9) and Eq. (8),

respectively, K̃
(m)
j is the text prompt generated at the m-th

layer, and we obtain the text prompt at the m-th layer by

using the text prompt K̃
(m−1)
j from the (m − 1)-th layer

as a query and the video prompt Ṽ (m−1) as both the key

and value, which allows the textual representation to extract

relevant visual information from the video. Similarly, we

obtain the visual prompt Ṽ (m).

We then use the textual prompt K̃
(M)
j and visual prompt

Ṽ (M) generated after M BiEhPro blocks to extend the tex-

tual representation Kj and visual representation V as:

K̂j = Kj + αK̃
(M)
j

V̂ = V + βṼ (M)
(11)

where α, β are also learnable parameters. Finally, we in-

troduce a contrastive loss to optimize our goal (i.e., maxi-

mize sim(V̂ , K̂j) if V̂ and K̂j match, otherwise minimize

it), based on the cosine similarity sim(V̂ , K̂j) between the

visual and textual representations:

L = −∑#class−1
j=0 1y=j log

exp(sim(V̂ ,K̂j)/τ)∑#class−1
k=0 exp(sim(V̂ ,K̂k)/τ)

(12)

where y denotes the true label, τ is the temperature parame-

ter. For clarity, the pseudo-code and the time complexity of

our algorithm are presented in the supplementary material.

4. Experiments

4.1. Datasets and Implementation Details

Datasets: We evaluated the performance of our method on

three DFER datasets (i.e., DFEW [17], FERV39k [45], and

MAFW [26]). We use DFEW and FERV39k for 7-class

DFER tasks and MAFW for 11-class tasks.

Data Pre-processing: For the visual component of the in-

put, we select T = 8 frames from a video clip. Due to the

limited number of videos used to train the network, we em-

ploy data augmentation techniques, such as random crop-

ping, color dithering, and image flipping in the training. We

preprocess all the raw images based on facial landmarks and
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resize them to 224x224. For the text part, we directly input

the labeled text to learn the specific prompts.

Training Setting: The entire framework was implemented

using PyTorch GPUs and all our models are trained on

a single Tesla P100 GPU. We utilized CLIP’s VIT-B/32

(L = 12, P = 32) as the backbone, keeping the text en-

coder fixed, and fine-tuning it by incorporating CLIP’s vi-

sual encoder into the InterFIT. For all datasets, the model

was trained for 100 epochs using the AdamW optimizer and

cosine scheduler, with a 5-epoch warm-up. The learning

rate, the minimum learning rate, the weight decay and the

batch size were set to 2e-5, 2e-7, 5e-4 and 32, respectively.

The number of bidirectionally enhanced prompt blocks, i.e.,

M , was set to 2.

In all experiments, we use weighted average recall

(WAR) and unweighted average recall (UAR) as evaluation

metrics. In the following analysis, our method is primar-

ily evaluated on the DFEW dataset, and the performance is

compared with fully supervised SOTA method.

4.2. Comparison with SOTA Methods

Results on large in-the-wild datasets. We compare our

method with previous SOTA supervised methods on DFEW

[17], FERV39k [45], and MAFW [26] in Tab. 1.

Tab. 1 shows that our method achieves the SOTA re-

sults in terms of UAR and WAR metrics on all the three

datasets. Specifically, on the DFEW dataset, our method

surpasses the baseline by 2.57% in terms of UAR and 2.62%

in terms of WAR. Meanwhile, our method outperforms the

method utilizing CLIP [35], i.e., DFER-CLIP [50] by a mar-

gin of 1.24% in terms of UAR and 1.33% in terms of WAR.

These large improvements suggest that our method can ef-

fectively incorporate image and text-based pre-training of

CLIP into DFER to enhance semantic supervision. For

FERV39k, our method achieves SOTA performance, i.e.

41.43% (UAR) and 51.83% (WAR), outperforming the pre-

vious best method, DFER-CLIP, by a margin of 0.16% in

terms of UAR and 0.18% in terms of WAR. For MAFW,

our method outperforms current best-performance methods

(i.e., DFER-CLIP [50] and T-MEP [48]) by 1.17% in terms

of UAR and 1.53% in terms of WAR. These appealing per-

formances of our algorithm reveal its powerful generaliza-

tion capacity, even across diverse scenarios.

4.3. Ablation Studies

The baseline model uses the pre-trained CLIP as the

backbone. Based on this, we conduct ablation studies to

investigate the impact of the components in our approach,

including Inter-Frame Interactive Transformer (InterFIT),

Multi-Scale Temporal Aggregation (MSTA), and Bidirec-

tional Enhanced Prompt (BiEhPro).

Evaluation of each component: Tab. 2 shows the per-

formance evolution of our method for extending CLIP to

the DFER task. We can observe that our proposed InterFIT

can improve UAR and WAR by 0.77% and 1.58%, respec-

tively, by modeling inter-frame spatio-temporal informa-

tion. Then, attaching the MSTA for aggregating frame-level

features of different temporal scales can further improve the

UAR by 0.72% and WAR by 0.34%. This indicates that our

module can effectively utilize the dynamic temporal infor-

mation in a video while enabling the visual features to en-

code both long-term and short-term information. Finally,

through the proposed BiEhPro, our approach can surpass

the baseline UAR by 2.57% and WAR by 2.62%. For the

reasons, the specific textual and visual prompts are gener-

ated to enhance the correlation between the two, and obtain

better semantic supervision.

Impact of the text: To evaluate the impact of the text

cues, we replace the text encoder with a randomly initial-

ized fully connected layer as the classification head. Tab. 3

shows that the performance of the model degrades without

the textual branch. The text information can improve the

UAR by 0.44% and the WAR by 0.53%, respectively. This

suggests that the semantic information included in the tex-

tual representation is helpful to complement expressions.

Evaluation of block number M in BiEhPro: In this

section, we investigate the performance sensitivity against

M and present the results in Tab. 4.

Tab. 4 shows that smaller shallow models are unable to

effectively capture the correlation between text and visual

priors due to their limited number of parameters. In addi-

tion, networks with larger M may lead to overfitting due

to limited training data. Therefore, increasing the number

of BiEhPro blocks may not always helpful to performance

improvement.

Comparison with related prompt methods: We com-

pare several existing prompting methods in Tab. 5, includ-

ing CLIP (zero-shot) [35] and CLIP-based prompt learn-

ing methods such as CoOp [52], CoCoOp [51], and DFER-

CLIP [50].

As shown in Tab. 5, our prompt method outperforms

other related ones. In particular, our method outperforms

DFER-CLIP, which is also applied to DFER, by 1.51% and

2.12% on UAR and WAR, respectively, with only textual

prompts (i.e.,w/o InterFIT, MSTA, VP and w/o TM). In ad-

dition, the UAR and WAR are further improved by 0.41%

and 0.52% under the concurrent use of textual and visual

prompts (i.e.,w/o InterFIT, MSTA). With the entire method

(i.e.,w/ InterFIT, MSTA and w/ TM), our modules achieve

an improvement of 1.24% and 1.33% in terms of UAR and

WAR, respectively. In addition, our approach enables the

end-to-end online learning without the need of an addi-

tional large language models as in DFER-CLIP. Besides,

our prompting approach not only considers textual prompts

but also generates visual prompts, which enhances the cor-

relation between textual and visual cues in semantic super-

vision.
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Table 1. Comparison (%) with SOTA methods on DFEW. Bold denotes the best. Underline denotes the second best. The red text indicates

the improvement of our method over the baseline.

Methods Backbone
DFEW FERV39k MAFW

UAR WAR UAR WAR UAR WAR

C3DCV PR′15 [40] C3D 42.74 53.54 22.68 31.69 31.17 42.25

P3DICCV ′17 [34] P3D 43.97 54.47 23.20 33.39 - -

I3D-RGBCV PR′17 [3] Inflated 3D ConvNets 43.40 54.27 30.17 38.78 - -

3D ResNet18CV PR′18 [12] ResNet18 46.52 58.27 26.67 37.57 - -

R(2+1)D18CV PR′18 [41] R(2+1)D 42.79 53.22 31.55 41.28 - -

ResNet18-LSTM [13, 9] ResNet18-LSTM 51.32 63.85 30.92 42.95 28.08 39.38

ResNet18-ViT [6, 13] ResNet18-ViT 55.76 66.56 38.35 48.43 35.80 47.72

EC-STFLMM′20 [17] C3D / P3D / et al. 45.35 56.51 - - - -

Former-DFERMM′21 [49] Transformer 53.69 65.7 37.20 46.85 31.16 43.27

DPCNetMM′22 [46] ResNet50 57.11 66.32 - - - -

T-ESFLMM′22 [26] ResNet-Transformer 57.11 66.32 - - 33.28 48.18

ESTPR′22 [28] ResNet18 53.94 65.85 - - - -

Freq-HDMM′23 [39] VGG13-LSTM / et al. 46.85 55.68 33.07 45.26 - -

LOGO-FormerICASSP ′23 [30] ResNet18 54.21 66.98 38.22 48.13 - -

IALAAAI′23 [22] ResNet18 55.71 69.24 35.82 48.54 - -

AENCV PRW ′23 [20] ResNet18 56.66 69.37 38.18 47.88 - -

M3DFELCV PR′23 [43] ResNet18-3D 56.10 69.25 35.94 47.67 - -

MSCMPR′23 [24] ResNet18+TSM 58.49 70.16 - - - -

T-MEPTCSV T ′23 [48] CNN-Transformer 57.16 68.85 - - 39.37 52.85

CLIPERarXiv′23 [21] CLIP 57.56 70.84 41.23 51.34 - -

DFER-CLIPBMCV ′23 [50] CLIP 59.61 71.25 41.27 51.65 39.89 52.55

LSTPNetIV C′24 [29] ResNet18-Transformer 60.18 71.16 40.63 50.07 - -

Baseline CLIP 58.28 69.96 39.52 49.80 39.13 52.31

Ours CLIP 60.85(+2.57) 72.58(+2.62) 41.43(+1.91) 51.83(+2.03) 41.06(+1.93) 54.38(+2.07)

w
/ t

ex
t

w/o text Prediction: Angry. w/ text Prediction: Sad. 
Groud truth: Sad.

w/o text Prediction: Neutral. w/ text Prediction: Angry. 
Groud truth : Angry.

w
/o

 te
xt

Figure 4. Visualization of text impact on DFEW. The first row is a heatmap generated without text imported (i.e. w/o text) and the prediction

is labeled in blue. The second row is the heatmap generated with text imported (i.e., w/ text) and the prediction is labeled in red.

Table 2. Ablation study (%) of our modules on DFEW.

InterFIT MSTA BiEhPro FLOPs(G) UAR WAR

× × × 23.58 58.28 69.96

� × × 24.65 59.05 71.54

� � × 24.65 59.77 71.88

� � � 24.71 60.85 72.58

4.4. Visualization

Visualization of text impact. To shed light on the text

cues for semantic supervision in DFER, we visualize the

Table 3. Ablation study (%) of text information on DFEW.

Method FLOPs(G) UAR WAR

w/o text 24.65 60.41 72.05

w/ text 24.71 60.85 72.58

heatmaps of the model’s attention on expression sequences

with/without text information in Fig. 4.

Fig. 4 shows that the model without the supervision of

text cues (i.e., w/o text) is unable to accurately focus on

some easily confused expression sequences, e.g. predicting

‘sad’ as ‘angry’ or ‘angry’ as ‘natural’. In contrast, after
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fd1 fd2 fd3 fd4 fd5

Happiness Sadness Netural Anger Surprise Disgust Fear

Figure 5. Feature distributions learned by the baseline (top) and our proposed method (bottom) on fd1∼fd5 of DFEW. The red boxes label

the example regions specific to ‘angry’ class where the feature distributions of the baseline and ours differ much.

Table 4. Performance (%) sensitivity of the number of BiEhPro

blocks (M ) on DFEW. M = 2 is the default.

M FLOPs(G) UAR WAR

1 24.68 60.22 72.45

2 24.71 60.85 72.58
3 24.74 59.44 72.38

4 24.77 59.92 72.28

5 24.80 59.59 72.21

Table 5. Comparison (%) of different prompting methods on

DFEW. TP: text prompt. VP: visual prompt. TM: temporal model.

Method Prompt UAR WAR

Zero-shot CLIP [35] TP 23.34 20.07

CoOp [52] TP 44.98 56.68

CoCoOp [51] TP 46.80 57.52

DFER-CLIP(w/o TM) [50] TP 57.39 69.00

DFER-CLIP(w/ TM) [50] TP 59.61 71.25

Ours(w/o InterFIT, MSTA, VP) TP 58.90 71.12

Ours(w/o InterFIT, MSTA) TP+VP 59.31 71.64

Ours(w/ InterFIT, MSTA) TP+VP 60.85 72.58

introducing text cues (i.e., w/ text), it can guide the model

to focus on facial regions with higher expression charac-

teristics, such as the mouth or cheeks, to enhance semantic

supervision in expression understanding and recognition.

T-SNE Visualization. In this section, we use t-SNE [42]

to visualize the distribution of dynamic expression features

represented by the baseline and our method in Fig. 5. It

shows that the features obtained by the baseline exhibit ob-

vious overlaps between classes. In contrast, our method

achieves clearer boundaries between classes (as shown in

the red box in Fig. 5, our approach is clearer than the base-

line in distinguishing ‘angry’ from other classes) and makes

features distribute around cluster centers, i.e., learning more

discriminative features for DFER.

5. Conclusion

Due to insufficient semantic supervision in current meth-

ods of dynamic facial expression recognition (DFER), it is

difficult to distinguish confusing expression videos by re-

lying solely on their labelled tags. Recently, the introduc-

tion of the visual-language pre-training model, i.e., CLIP

provides a promising direction for effective semantic su-

pervision. However, it remains a major challenge how to

utilize CLIP to capture the dynamic changes in expres-

sions. To this end, we design a CLIP-based Inter-Frame

Interaction Transformer and Multi-Scale Temporal Aggre-

gation, enabling CLIP to extract dynamic features of ex-

pressions while aggregating expression cues from multiple

temporal scales. In addition, we also design Bidirectional

Enhanced Prompt to enhance the complementarity of vi-

sual and text cues in semantic supervision. Extensive ex-

periments validate the competitiveness of our method over

the state of the arts on three widely-used benchmarks, i.e.,

DFEW, FERV39k and MAFW.

Although our method has shown effectiveness, it may

still fail to effectively capture and recognize short or sub-

tle facial expression changes, as shown in the supplemen-

tary material. In our future work, we will design a dedi-

cated micro-expression detection model and integrate mul-

tiple modalities to improve our model.
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