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a b s t r a c t

In evolutionary multi-objective optimization (EMO), the convergence to the Pareto set of a
multi-objective optimization problem (MOP) and the diversity of the final approximation
of the Pareto front are two important issues. In the existing definitions and analyses of con-
vergence in multi-objective evolutionary algorithms (MOEAs), convergence with probabil-
ity is easily obtained because diversity is not considered. However, diversity cannot be
guaranteed. By combining the convergence with diversity, this paper presents a new def-
inition for the finite representation of a Pareto set, the B-Pareto set, and a convergence met-
ric for MOEAs. Based on a new archive-updating strategy, the convergence of one such
MOEA to the B-Pareto sets of MOPs is proved. Numerical results show that the obtained
B-Pareto front is uniformly distributed along the Pareto front when, according to the
new definition of convergence, the algorithm is convergent.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Evolutionary algorithms (EAs), a type of stochastic algorithms inspired by natural evolution, can perform well in different
kinds of optimization problems because they do not require the extra properties that are often associated with optimization
problems, such as differentiability and continuity of the objective functions. In recent years, evolutionary multi-objective
optimization (EMO) has become one of the most active research areas in the field of evolutionary computation [9]. A wide
variety of multi-objective optimization algorithms (MOEAs), such as SPEA [52], SPEA2 [54], PAES [30], NSGA-II [13], IBEA
[55], MSOPS [25], SMS-EMOA [16,2], MOEA/D [49,50] and MDMOEA [56], have been proposed and successfully applied to
a number of real-world multi-objective optimization problems (MOPs). In addition, independent strategies have also been
proposed to improve the efficiencies of MOEAs [17,45,48,6,37,46]. However, the theoretical foundations of this area are still
very weak. Rudolph and Agapie [40] applied Markov chain theory to analyze some basic MOEAs, but the results are only
based on certain special MOEAs with finite state space. Villalobos-Arias et al. [47] showed that Markov chains associated
with the meta-heuristics for MOPs can converge geometrically to their stationary distribution, but convergence to the opti-
mal solution set is ensured only if the best solutions in the current population are retained and copied to the next generation.
Hanne [21] extended these convergence results to a type of MOEA that had an ‘‘efficiency-preserving’’ property, however,
convergence quality (i.e., the diversity of the final results) was not considered.

Diversity has recently been included in the convergence analysis of MOEAs to obtain a finite approximation of the Pareto
front. Knowles and Corne [31] analyzed the adaptive grid archive strategy proposed in [30] and proved that after a finite
number of iterations, the archive always represents an �-approximation of the Pareto front. However, the approximation
quality depends on the granularity of the adaptive grid and on the number of allowed solutions. Moreover, these results rely
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on the additional assumption that grid boundaries remain unchanged after a finite number of iterations, which can only be
fulfilled in certain special cases. Zhou and He [51] proposed a self-adaptive (l + 1) MOEA based on adaptive ‘‘box domina-
tion’’ and proved that under certain general conditions, the algorithm converges in probability or almost surely to the Pareto
front. However, the diversity of the final approximate Pareto front was not precisely given.

The hypervolume indicator, combining convergence and diversity in a metric, is the only known indicator compliant with
the concept of Pareto-dominance [8]. Auger et al. [1] analyzed how the optimal l-distributions-finite sets of l solutions max-
imizing the hypervolume indicator are spread over the Pareto front, and answered the question of how to choose the refer-
ence point to obtain extremes of the front. Additionally, Friedrich et al. [18] pointed out that in some special cases the
hypervolume indicator gives the best achievable multiplicative approximation ratio. However, these theoretical results only
hold for bi-objective problems with continuous Pareto fronts.

Using the definition of t-dominance, Laumanns et al. [32] proposed the notion of the t-Pareto set and presented two ar-
chive-updating strategies to obtain a t-Pareto set. Additionally, Hanne [22] derived an �-efficient set by proposing a new
framework of MOEAs in contrast to those in [32], although the archive size is claimed to be the same as in [32]. Schütze
et al. [43] presented an improved notion of the finite representation of the Pareto set called the �-Pareto set. Using the updat-
ing strategies, they proposed stochastic algorithms that converge to the �-Pareto set in a probabilistic way. To eliminate gaps
occurring in regions in which the Pareto front is ‘‘flat’’, several compound updating strategies [44] have been proposed to
generate a uniformly distributed �-Pareto set.

Although a bounded t-Pareto set or �-Pareto set can be obtained in [32,22,43,44], when MOPs with unknown
properties are encountered, it is difficult to determine the value of t (or �) to obtain an adequate tradeoff between
the complexity of the algorithm and the distribution density of the approximate Pareto solutions. Moreover, the size
of a t-Pareto set (or �-Pareto set) is not determined uniquely even if the value of t (or �) has been specified
[32,22,43,44]. Furthermore, the gap-free representation obtained in [44] is not formally described. In this paper, a
new definition of the B-Pareto set is proposed to obtain a uniformly distributed representation of a Pareto front. We also
present a new convergence metric that gives rise to a novel updating strategy that maintains convergence and guaran-
tees diversity. Accordingly, the MOEA converges almost surely to a B-Pareto front for a certain type of MOPs, namely, the
regular multi-objective optimization problems (RMOPs).

This paper is structured as follows. By taking into account both convergence and diversity, Section 2 presents the defini-
tion of convergence to a B-Pareto set, which is a new concept that provides a finite representation of a Pareto set. In Section 3,
convergence to a B-Pareto set of an RMOP is proved based on the definition of a convergence metric and the newly proposed
updating strategy. In Section 4, numerical experiments are conducted to verify the convergence results and to show the
rationality of the B-Pareto set definition. Some discussion points are presented in Section 5. Finally, some conclusions are
addressed in Section 6.

2. Combining diversity with convergence to the Pareto front

MOEAs are currently widely utilized to solve MOPs

min FðxÞ ¼ ðf1ðxÞ; f2ðxÞ; . . . ; fmðxÞÞ; ð1Þ

where x ¼ ðx1; . . . ; xnÞ 2 Sx # Rn and y ¼ ðy1; . . . ; ymÞ ¼ ðf1ðxÞ; . . . ; fmðxÞÞ 2 Sy # Rm. Sx, the set of all feasible solutions, is called
the feasible space, and Sy = F(Sx) is called the objective space.

To compare the feasible solutions of an MOP, the definition of Pareto dominance is often used [12]. In this paper, the def-
inition of dominance is provided for objective space Sy.

Definition 1. Let Sx and Sy be the feasible space and the objective space of MOP (1) respectively. yð1Þ ¼ yð1Þ1 ; . . . ; yð1Þm

� �
and

yð2Þ ¼ yð2Þ1 ; . . . ; yð2Þm

� �
are two vectors in Sy.

1. (Pareto dominance) y(1) is said to (Pareto) dominate y(2)(denoted as y(1) � y(2)) i.f.f.
(a) y(1) weakly dominates y(2) (denoted as y(1) � y(1)), i.e., 8i 2 f1; . . . ;mg : yð1Þi 6 yð2Þi ;
(b) 9j 2 f1; . . . ;mg : yð1Þj < yð2Þj .

2. (Pareto set & Pareto front)
(a) x 2 Sx is called a Pareto solution of MOP (1) if there does not exist a feasible solution x0 satisfying F(x0) � F(x);
(b) The set of all Pareto solutions of MOP (1) is called the Pareto set of MOP (1), denoted as PSx ;
(c) PF ¼ FðPSx Þ# Sy is called the Pareto front of MOP (1).

The entire Pareto front is usually not a single point but a set of points. Because of the limitations of our computational
abilities, only a finite subset of the Pareto front can be generated by MOEAs. Therefore, the purpose of global optimization
is to obtain a finite approximation of the Pareto front that is not only close to the true Pareto front but that is also well-dis-
tributed. To obtain a diverse and precise approximation of the Pareto front, MOPs are solved by MOEAs with a fixed popu-
lation size and a fixed archive size. A universal framework for MOEAs is illustrated with Algorithm 1, where n(t) is the
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population at generation t, and g(t) is the intermediate population obtained using the ‘‘Generate ()’’ function. During the pro-
cess of evolution, the archive AðtÞ and population n(t) are updated using the ‘‘ArchiveUpdate ()’’ function and ‘‘PopUpdate ()’’
functions, respectively.

Algorithm 1. Multi-objective evolutionary algorithm (MOEA)

1: Set generation counter t := 1;
2: Initialize n(t) randomly;

3: AðtÞ :¼ nðtÞ;
4: for t = 1,2, . . .do
5: g(t) := Generate(n(t));
6: Aðtþ1Þ :¼ ArchiveUpdateðAðtÞ;gðtÞÞ;
7: n(t+1) := PopUpdate (n(t), g(t));
8: end for
9: Output the results

2.1. A uniform representation of the Pareto front

As a finite approximation of the true Pareto front, the final results of an MOEA should be distributed uniformly along it.
Many metrics have been defined to measure the diversity of a finite representation [12], and several updating strategies have
been proposed to maintain an appropriate level of diversity and an approximately high quality with respect to the final re-
sults [13,32,16,2,22,41–43]. Some of the most favorable strategies are based on �-dominance, which leads to the convergence
of MOEAs to the �-Pareto set [32,43].

The �-Pareto set controls the distance between two adjacent points of the approximate Pareto front via �, and accordingly,
a finite representation of a Pareto set is defined. However, with respect to its size and members, the �-Pareto set cannot be
determined by solely the value of �. Moreover, gaps may exist in the PF approximation [44], and determining � during engi-
neering computations is difficult because of the unknown properties of MOPs. Furthermore, the boundary points of the Par-
eto front are also usually difficult to obtain. Therefore, to overcome these difficulties we propose the concept of a B-Pareto
set, which maintains the diversity in the finite representation of the true Pareto front with a fixed archive size.

Definition 2. Let y(1) and y(2) be two vectors in Sy. 8d 2 Rþ, y(1) is said to weakly d-ball dominate y(2) (in short y(1) � dy
(2))

with respect to MOP (1) if there exists at least one point y 2 U(y(1),d) such that y � y(2), where Uðyð1Þ; dÞ ¼
fy 2 Rm; ky� yð1Þk2 6 dg.

A weaker version of dominance, which is denoted weak d-ball dominance, is defined in Definition 2, and its comparison
with Pareto dominance is illustrated in Fig. 1. All vectors in the neighborhood U(y(1),d) are weakly d-ball dominated by y(1),
and vectors dominated by y 2 U(y(1),d) are also weakly d-ball dominated by y(1). Then, if yð2Þ 2 Rm is not weakly d-ball dom-
inated by y(1), the distance between y(1) and y(2) is necessarily greater than d. We provide an example to explain how to deter-
mine the weak d-ball dominance relation.

Example 1 (Determination of the weak d-ball dominance relation). Let y = (y1, . . . ,ym) and y0 ¼ y01; . . . ; y0m
� �

be two vectors in Sy.
For a given d > 0,

1. if y � y0, then y � dy0;
2. if y does not weakly dominate y0, $j1, . . . , jk 2 {1, . . . ,m} such that

yjl
> y0jl ; l ¼ 1;2; . . . ; k:

Denote y00 ¼ y001; . . . ; y00m
� �

, where y00i ¼min yi; y
0
i

� �
; i ¼ 1; . . . ;m. Then y � dy0 if and only if ky � y00k2 6 d. h

Then, the so-called weak d-Pareto front, a finite representation of the Pareto front, is obtained by Definition 3.

Definition 3. Let d 2 Rþ.

1. A set Pd # Rm is called a weak d-approximate Pareto front of MOP (1) if every point y 2 Sy is weakly d-ball dominated by
at least one y0 2 Pd.

2. A subset P�d of PF is called a weak d-Pareto front if P�d is a weak d-approximate Pareto front of MOP (1).
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Fig. 2 illustrates the difference between a weak d-approximate Pareto front and a weak d-Pareto front. Note that the d-
neighborhoods of all points in Pd constitute a cover of the Pareto front, i.e., "y 2 PF, there exists a y0 2 Pd satisfying y 2
U(y0,d). When all points in Pd are located on the Pareto front, the weak d-approximate Pareto front becomes a weak d-Pareto
front. Thus, the value of d also affects the size of P�d, which influences the complexity of updating processes in MOEAs. A large
value of d will lead to a sparsely distributed P�d, whereas a small value of d will cause a large weak d-Pareto set of high com-
plexity. To eliminate the difficulty of choosing an appropriate value of d, this value is set at the minimum distance between
two vectors in a weak d-Pareto front.

Definition 4. Let PFB be the set of N vectors on the Pareto front of MOP (1), and let

dy� ¼ distðy�; PFB n fy�gÞ ¼ min
y2PFBnfy�g

ky� y�k2; y� 2 PFB:

PFB is said to be an approximate B-Pareto front of MOP (1) of size N, if PFBn{y⁄} is a weak dy�-Pareto front of MOP (1) for a
y⁄ 2 PFB with

distðy�; PFB n fy�gÞ ¼ min
y–y0

y;y02PFB

ky� y0k2:

The inverse image PSB of PFB is called an approximate B-Pareto set of MOP (1) of size N.

Fig. 1. The comparisons between dominance and weak d-ball dominance. The weak d-ball dominance is a weak version of dominance, and the distance
between two points which are not weakly d-ball dominated by each other is greater than d.

Fig. 2. The illustrations of a weak d-approximate Pareto front (a) and a weak d-Pareto front (b). The neighborhoods of all points in a weak d-approximate
Pareto front constitute a cover of the Pareto front. When the points are all located on the Pareto front, it comes to a weak d-Pareto front.
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Fig. 3(a) shows a two-dimensional case of the approximate B-Pareto front. Here, the radius of neighborhoods is deter-
mined by N automatically, differing from the definition of the weak d-approximate Pareto front. The value of
dy� ¼ distðy�; PFB n fy�gÞ is not arbitrarily small for a given MOP with a bounded Pareto front because the definition of PFB re-
quires that all vectors on PF are weakly dy� -ball dominated by at least one point in PFBn{y⁄}, i.e., fUðy; dy� Þ; y 2 PFB n fy�gg is a
finite cover of the Pareto front. When

d� ¼ min
y�2PFB

dy� ¼ min
y–y0

y;y02PFB

ky� y0k2

is maximized subject to the given size N, it approaches the definitions of both the B-Pareto front and the B-Pareto set.

Definition 5. Denote PF as the set of all approximate B-Pareto fronts of MOP (1) of size N. P�FB 2 PF is said to be a B-Pareto
front of MOP (1) of size N if

divðP�FBÞ ¼ sup
PFB2PF

divðPFBÞ;

where divðXÞ ¼min x–x0

x;x02X
kx� x0k2 if X is a set of N vectors in Rm. The inverse image P�B of P�FB is called a B-Pareto set of MOP(1)

of size N.
Definition 5 provides a new definition for a finite representation of a Pareto set, namely, the B-Pareto set. Under some

mild conditions, the existence of the supremum of div(PFB) can be obtained. For example, when the objective space Sy of
MOP (1) is compact, the maximum value of div(PFB) can be achieved from the continuity of div(PFB). Furthermore, it can make
members of F�FB distributed as uniformly as possible by maximizing div(PFB) on the condition that its cardinality remains un-
changed. Specifically, the B-Pareto front of size N, as illustrated in Fig. 3(b), contains N points distributed uniformly along the
true Pareto front when it is simply connected. In addition, the automatic determination of the diversity of the B-Pareto set
avoids the problem of choosing an appropriate value for the given precision, which greatly influences the efficiency of
MOEAs.

In fact, the B-Pareto front of an MOP of size N is not necessarily determined uniquely. Fig. 4(a) and (b) describes two spe-
cial cases. When the Pareto front is a regular hexagon, the B-Pareto front of size seven is the set of points illustrated by real
squares (Fig. 4(a)). However, if the Pareto front is a disc, then the B-Pareto front of size seven is not uniquely determined, as
illustrated by real circles in Fig. 4(b). In this case, one point on the B-Pareto front is the center of the disk, and the other six
points are the vertices of any inscribed regular hexagon of the circle.

2.2. Definition of convergence

Most importantly, MOEAs should converge to the global Pareto set. Two popular ways of implementing conver-
gence analysis of EAs are as follows. The first approach involves modeling the EAs as Markov chains such that
the convergence of EAs can be investigated by studying the properties of Markov chains [35,10,39,38]. This method
is widely applied to analyze EAs with finite state space and has been extended to the convergence analysis of MOEAs
[40,47]. In the second approach, based on the objective values of individuals, an additional metric function is defined
to study the convergence of EAs. In this case, the stochastic convergence of EAs can be studied by analyzing the
convergence of a random variable sequence (r.v.s.). The theoretical analyses of real-coded EAs are mainly studied
in this way, as in [39,3,15,4,5,26,27]. Additionally, this method has been applied by He and Yao [28,29] to analyses
of some discrete-coded EAs, and by Laummans et al. [33] to successfully analyze the convergence properties of a
discrete-coded MOEA.

Fig. 3. Visualizations of an approximate B-Pareto front (a) and a B-Pareto front (b) of MOP (1) of size N. The set of N neighborhoods {U(y,d⁄);y 2 PFB}
constitute a finite cover of the Pareto front, where d⁄ is the minimum distance between any two points in PFB. When d⁄ is maximized subject to the size N, it
becomes to a B-Pareto front of MOP (1) of size N.
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In this paper, we will also define a scalar function to compare feasible solutions, and consequently the convergence of
MOEAs is investigated by defining a convergence metric and a diversity metric. Convergence to a B-Pareto set is defined
by the convergence of two different metrics. First, we introduce the stochastic convergence of an r.v.s..

Definition 6. Let {X(t), t = 1,2, . . .} be an r.v.s. {X(t); t = 1,2, . . .} is said to converge almost surely to X⁄, denoted by XðtÞ !a:s:X�, if

P lim
t!1

XðtÞ ¼ X�
� �

¼ 1:

To quantify the closeness a feasible solution to the Pareto set, a non-negative function d(x) should be defined to satisfy (1)
d(x) P 0 and (2) dðxÞ ¼ 0() x 2 PSx ;8x 2 Sx. Then, the convergence metric and the diversity metric of archives are defined as
follows:

Definition 7. Let A be the archive of size N in an MOEA. The convergence metric DðAÞ and diversity metric DIVðAÞ are
respectively defined as

DðAÞ ¼ 1
N

X
x2A

dðxÞ ð2Þ

and

DIVðAÞ ¼ min
x–x0

x;x02A

kFðxÞ � Fðx0Þk2: ð3Þ

By (2), the convergence metric of archives is defined such that (1) DðAÞP 0 and (2) DðAÞ ¼ 0 () A# PSx ;8A# Sx. As
such, it quantifies the distance from A to the true Pareto set. The metric DIVðAÞ, which is defined as the minimum distance
between any two solutions, reaches the maximum value whenA becomes the B-Pareto set. The following example shows the
feasibility of constructing these two metrics.

Example 2 (The convergence metric and diversity metric for discrete-coded MOEAs). Let x 2 A, where A is the archive of a
discrete-coded MOEA of size N. Then non-dominated sorting [13] can be performed on the solutions space to evaluate the
feasible solutions. Define the function

dðxÞ ¼ rankðxÞ � 1;

where rank(x) is the rank of feasible solution x in the feasible space Sx. The value of rank(x) is 1 when F(x) belongs to the first
non-dominated front, 2 when F(x) belongs to the second non-dominated front, and so on. It follows that (1) d(x) P 0 and (2)
dðxÞ ¼ 0 () x 2 PSx ;8x 2 Sx. Thus, the convergence metric of the MOEA defined by

DðAÞ ¼ 1
N

X
x2A

dðxÞ

satisfies (1) DðAÞP 0 and (2) DðAÞ ¼ 0 if and only if A# PSx ;8A# Sx. Meanwhile, DIVðAÞ can also be defined according to
(3). h

According to Definition 6, the convergence of an MOEA can be defined by the convergence of fDðAðtÞÞ; t ¼ 1;2; . . .g.

Fig. 4. Two cases of the B-Pareto front. In case (a), the B-Pareto front of size seven is uniquely determined, and in case (b), the seven points in B-Pareto front
of size seven is not uniquely determined, where the six points on the circle can be located on the vertexes of any inscribed regular hexagon of the circle.
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Definition 8. Let PSx be the Pareto set of MOP (1), and let fAðtÞ; t ¼ 1;2; . . .g be the archive sequence of an MOEA. The MOEA
is said to converge almost surely to PSx if DðAðtÞÞ!a:s:0, i.e.,

P lim
t!1

DðAðtÞÞ ¼ 0
� �

¼ 1:

Here D(�) is the convergence metric defined by (2).
Definition 8 describes the convergence of MOEAs by that of r.v.s. without respect to the diversity of the final approxima-

tion of the Pareto set. If the diversity sequence fDIVðAðtÞÞ; t ¼ 1;2; . . .g also converges, we say that the MOEA converges al-
most surely to a B-Pareto set of MOP (1) of size N.

Definition 9. Let fAðtÞ; t ¼ 1;2; . . .g be the archive sequence of an MOEA of size N. The MOEA is said to converge almost
surely to the B-Pareto set of MOP (1) of size N if

1. it converges almost surely to the PSx of MOP (1);
2. fDIVðAðtÞÞ; t ¼ 1;2; . . .g converges almost surely to supPSB2PSDIVðPSBÞ, where PS is the set of all approximate B-Pareto sets

of MOP (1) of size N.

Definition 5 presents the notion of a B-Pareto set using the uniform distribution of the B-Pareto front, and Example 2
shows that the convergence metric and diversity metric of the archive can also be defined according to the distribution of
FðAðtÞÞ. Thus, the convergence to the B-Pareto set is defined in Definition 9. If the image FðAðtÞÞ of the archive approximates
the B-Pareto front in objective space Sy, we say that the archive sequence AðtÞ converges to the B-Pareto set in feasible space
Sx. In fact, a similar definition can be performed on the population sequence of MOEAs without an archive if the population
sequence {n(t); t = 1,2, . . .} of the MOEA is used to define the convergence metric D(�) and diversity metric DIV(�). In this paper,
DðAÞ and DIVðAÞ are both defined using the archive of the MOEA described in Algorithm 1.

3. Convergence to a B-Pareto front for regular multi-objective optimization problems (RMOPs)

As an initial analysis, we consider MOPs with bounded and simply connected Pareto fronts, known as regular multi-objec-
tive optimization problems (RMOPs). An example of an RMOP is as follows:

min FðxÞ ¼ ðf1ðxÞ; f2ðxÞ; . . . ; fmðxÞÞ;
x 2 ½a1; b1� � ½a2; b2� � � � � � ½an; bn�# Rn:

�
ð4Þ

Assume that F = (f1, f2, . . . , fm) is convex and continuous. The following investigates the convergence of an MOEA to its B-Par-
eto set.

3.1. Construction of the convergence metric

As presented above, the convergence metric of an MOEA is based on the definition of d(x). First, we discuss some prop-
erties of the Pareto front of MOP (1).

Lemma 1. "i 2 {1,2, . . . ,m}, there exists an implicit function

yi ¼ hiðy1; . . . ; yi�1; yiþ1; . . . ; ymÞ

defined by the Pareto front of MOP (1).

Proof. Suppose that yð1Þ ¼ ðy1; . . . ; yi�1; y
ð1Þ
i ; yiþ1; . . . ; ymÞ and yð2Þ ¼ ðy1; . . . ; yi�1; y

ð2Þ
i ; yiþ1; . . . ; ymÞ are two different points in the

objective space Sy of MOP (1), where i 2 {1, . . . ,m}. Then either y(1) � y(2) or y(2) � y(1) holds. Thus y(1) and y(2) cannot be simul-
taneously located on the Pareto front and there exists an implicit function yi = hi(y1, . . . ,yi�1,yi+1 , . . . ,ym) defined by the Pareto
front of MOP (1). h

Using Lemma 1, we can now denote the Pareto front of RMOP (4) as

G ¼ fy ¼ ðy1; � � � ; ymÞ 2 Sy; yi ¼ hiðy1; . . . ; yi�1; yiþ1; . . . ; ymÞg; 8i ¼ 1;2; . . . ;m:

Then

Ghi
ðCiÞ ¼ fy ¼ ðy1; . . . ; ymÞ 2 Sy; yi ¼ hiðy1; . . . ; yi�1; yiþ1; . . . ; ymÞ þ Cig ð5Þ

represents a bounded hypersurface parallel to PF when Ci is a non-negative real number. So, "i 2 {1,2. . . ,m}, the objective
space Sy of RMOP (4) can be divided into two parts:

1. Si, in which all points are located on Ghi
ðCiÞ for some given non-negative number Ci;
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2. T i, in which all points cannot be located on Ghi
ðCiÞ for any non-negative number Ci.

See Fig. 5 for an illustration of a two-dimensional case. It is obvious that when Sy is convex, the points in T 2 are not lo-
cated on the curve y2 = h2(y1) + C2 for any non-negative real number C2, and thus, the Pareto front PF should be extended to
cover all points in Sy. Define

Hiðy1; . . . ; yi�1; yiþ1; . . . ; ymÞ ¼
hiðy1; . . . ; yi�1; yiþ1; . . . ; ymÞ; if ðy1; . . . ; yi�1; yiþ1; . . . ; ymÞ 2 Di;

Mi; if ðy1; . . . ; yi�1; yiþ1; . . . ; ymÞ R Di;

�
ð6Þ

Note that Di, the definition domain of hi(y1, . . . ,yi�1,yi+1, . . . ,ym), is the projection of PF on the subspace
fy ¼ ðy1; . . . ; ymÞ 2 Rm; yi ¼ 0g, and Mi is a given real number equal to or less than the infimum of yi. Then, any point
y = (y1, . . . ,ym) in Sy can be given a non-negative value Ci described as di(y1, . . . ,ym), because it is on

GHi
ðCiÞ ¼ fy ¼ ðy1; . . . ; ymÞ 2 Sy; yi ¼ Hiðy1; . . . ; yi�1; yiþ1; . . . ; ymÞ þ Cig

for one and only one Ci P 0. Taking
Pm

i¼1Ci as the measure of an individual x, we have the following definition.

Definition 10. "x 2 Sx, the non-negative function

dðxÞ ¼
Xm

i¼1

diðf1ðxÞ; . . . ; fmðxÞÞ ð7Þ

is called the fitness function of individual x.

The fitness function d(x) identifies the difference between x and the Pareto set and has the following properties.

Lemma 2. Let y(1) = F(x(1)) and y(2) = F(x(2)). If y(1) � y(2), then d(x(1)) < d(x(2)).

Proof. See Appendix A for the proof. h

Lemma 3. When the MOEA is applied to solve RMOP (4), it holds that d(x) P 0, "x 2 Sx. Furthermore, d(x) = 0 if and only if
x 2 PSx .

Proof. From the definition of d(x), d(x) P 0, "x 2 Sx. Furthermore, if x 2 PSx (i.e., F(x) 2 PF), d(x) is equal to zero. In contrast, if
x R PSx , there exists x� 2 PSx such that x⁄ � x, i.e., 0 = d(x⁄) < d(x). Thus, this results in d(x) = 0 if and only if x 2 PSx . h

Fig. 5. The objective space Sy of RMOP (4) for a two-dimensional case. Here M2 is a number equal to or less than the infimum of y2. The Pareto front can be
denoted as G = {y = (y1,y2) 2 Sy;y2 = h2(y1)}, where D2, the definition domain of h2, is the projection of S2. Any point in S2 can be included in Gh2 ðC2Þ ¼ fy ¼
ðy1; y2Þ 2 Sy; y2 ¼ h2ðy1Þ þ C2g for some given non-negative number C2, but all points in T 2 cannot be included in Gh2

ðC2Þ ¼ fy ¼ ðy1;

y2Þ 2 Sy; y2 ¼ h2ðy1Þ þ C2g for any given non-negative number C2. If we extend h2 to H2 according to (6), then any point in Sy can be included in
GH2 ðC2Þ ¼ fy ¼ ðy1; y2Þ 2 Sy; y2 ¼ H2ðy1Þ þ C2g for one and only one given non-negative number C2.
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Then the convergence metric of MOEAs can be achieved by (2). In the following section, we investigate the MOEA that
guarantees convergence to a B-Pareto set of the RMOP (4).

3.2. Description of the MOEA

We apply the MOEA described in Algorithm 1 to solve RMOP (4), where the ‘‘Generate ()’’ and ‘‘ArchiveUpdate ()’’ functions
are illustrated with Algorithms 2 and 3, respectively.

Algorithm 2. ‘‘Generate ()’’ Function

1: Input: n;
2: Set g = ;;
3: for all x 2 n
4: x0 = mutate(x);
5: g = g [ {x0};
6: end for
7: Output g

Algorithm 3. ‘‘ArchiveUpdate ()’’ function

1: Input: A;g;
2: for all non-dominated solutions x0 in g do
3: for all x 2 A do
4: if x0 � x then
5: A ¼ A [ fx0g n fxg;
6: BREAK; {‘BREAK’ means it will end the inner loop}
7: end if
8: end for
9: if 9= x 2 A : x � x0 then
10: if 9x 2 A : x0 / x then
11: A ¼ A [ fx0g n fxg;
12: end if
13: end if
14: end for
15: if rand() < p then
16: Set A0 ¼ ;;
17: for all x 2 A do
18: A0 ¼ A0 [mutateðxÞ;
19: end for
20: if A0 / A then
21: A ¼ A0;
22: end if
23: end if
24 Output A

1. In Algorithm 2, g is the intermediate population consisting of candidates generated by function ‘‘mutate ()’’ with the
mutation operator

x0 ¼ xþ z; ð8Þ

where the continuous joint density function of z is denoted as u(z,x). Although the ‘‘Generate ()’’ functions of most state-
of-the-art MOEAs consist of both crossover and mutation operators, it is appropriate to consider one merely consisting of
a mutation operator because some crossover operators (particularly for real-coded MOEAs such as linear crossover [12]
and simulated binary crossover (SBX) [11]) can be thought of as mutation operators performed on any one of the individ-
uals included in the crossover operations.
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2. Algorithm 3 describes the archive-updating strategies utilized in this study by which the archive Aðtþ1Þ is obtained from
AðtÞ and g(t). Example 1 shows that the determination of weak d-ball dominance is more complicated than Pareto dom-
inance and �-dominance, and thus, in the algorithm, the B-Pareto set is generated using a composed updating strategy
without the computation of weak d-ball dominance. Here, x0 / x means that for two feasible solutions x and x0, it holds that

dðx0Þ < dðxÞ

and

min
y2FðAnfxgÞ

kFðx0Þ � yk2 > min
y2FðAnfxgÞ

kFðxÞ � yk2:

A0 / A indicates that

DðA0Þ < DðAÞ

and

DIVðA0Þ > DIVðAÞ

hold at the same time. SizeðAÞ returns the cardinality of A, and rand() returns a random number uniformly distributed in
(0,1). Three different updating strategies of archives are as follows:

S1 If there exist in A some individuals dominated by the newly generated candidate x0, one of the dominated individuals
is deleted from the archive and x0 is added to the archive.

S2 If the new candidate x0 is non-dominated with all individuals in A, an individual x 2 A will be updated by x0 if x0/x.
S3 With a given probability p, an intermediate archive A0 is generated by the mutations performed on all the individuals

in A. A0 will replace A if A0 /A.

3.3. Convergence to the B-Pareto set of RMOP (4)

Based on the above preliminary work, the convergence theorems of MOEAs can be obtained. The following results are
introduced and subsequently proven.

Lemma 4. Let /(z,x) > 0 be a continuous function defined in Rn � Sx. "d > 0,x, x⁄ 2 Sx,

Ldðx�; xÞ ¼
Z

xþz2Uðx� ;dÞ\Sx

/ðz; xÞdz

is continuous in Sx � Sx, where Uðx�; dÞ ¼ fx 2 Rn; kx� x�k 6 dg.

Proof. See Appendix B for the proof. h

Lemma 5. "e > 0,x 2 Sx, the new feasible solution x0 generated by (8) is located in U(x⁄,e) with a positive probability, i.e.,

Peðx�; xÞ , Pfx0 2 Uðx�; eÞ \ Sxg > 0;

where Uðx�; eÞ ¼ fx0 2 Rn; kx0 � x�k2 6 eg is the neighborhood of any feasible solution x⁄.

Proof. Because the feasible space Sx of RMOP (4) is a hypercube in Rn, Sx \ U(x⁄,e) is a compact set with a positive Lebesgue
measure. Because u(z,x) > 0 is continuous in Sx, we see that its minimum value exists in Sx \ U(x⁄,e) and is greater than zero.
Thus, we conclude that

Peðx�; xÞ ¼ Pfx0 2 Sx \ Uðx�; eÞg ¼
Z

z2Sx\Uðx� ;eÞ�x
uðz; xÞdz > 0

for all x, x⁄ 2 Sx, where Sx \ U(x⁄,e) � x = {y;y + x 2 Sx \ U(x⁄,e)}. h

Remark. "x 2 Sx, x0 = x + z 2 Sx, u(z,x) > 0 means that the probability density function of the newly generated candidate x0,
which is a random vector in Rn, is always greater than zero when x0 2 Sx. The joint density function /(z,x) satisfying this con-
dition is usually utilized in real-coded EAs. For example, in evolutionary programmings (EPs), z is usually set as a random
vector with a Gaussian distribution, the joint density function of which is continuous and positive for all z 2 Rn. In addition,
some other distributions, such as the Lev́y distribution, also have joint density functions satisfying the condition of Lemmas 4
and 5.

Proposition 1. Suppose that the size of the archive is N. "e > 0, t > 0, there exists a real number M(e) located in (0,1] such that
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PfDðAðtþ1ÞÞ < ejDðAðtÞÞ > egP MðeÞ

if the continuous joint density function u(z,x) in (8) is greater than zero for all x 2 Sx, z 2 Sx � x.

Proof. Of the three strategies S1, S2 and S3, only S1 and S2 could possibly influence convergence. Therefore, only strategy S1
is considered in this proof because strategies S2 and S3 both ensure that the convergence metric value DðAðtÞÞ is non-
increasing.

If DðAðtÞÞ > e, there exists at least one individual x 2 AðtÞ with d(x) > e. By Lemma 3, we know that x is not a Pareto
solution. Thus, there exists a Pareto solution x� 2 PSx such that F(x⁄) � F(x). From the regularity of the RMOPs, there exists a
d > 0 such that d(x0) < e, "x0 2 U(x⁄,d) \ Sx. Moreover, Lemma 5 shows that the new individual x0 generated from x by (8)
satisfies

Pdðx�; xÞ , Pfx0 2 Uðx�; dÞ \ Sxg > 0:

That is, according to S1, an individual x 2 AðtÞ with d(x) > e is updated by a candidate solution x0 2 g(t) with probability

Pdðx�; xÞ , Pfx0 2 Uðx�; dÞ \ Sxg > 0;

where d(x0) < e. Moreover, 8x� 2 P�B, Lemma 4 shows that Pd(x⁄,x) is continuous, and as a result, its positive minimum value Pd

exists. Let l be the number of individuals in AðtÞ with d(x) > e. Then, updating strategy S1 ensures that with a probability
greater than (Pe)l, all the individuals x in A(t+1) satisfy d(x) < e. Therefore, if all three updating strategies S1, S2 and S3 are
included in the updating process,

PfDðAðtþ1ÞÞ < ejDðAðtÞÞ > egP Pl
e ,MðeÞ > 0

always holds. Because Pe is the positive minimum value of P{x0 2 U(x⁄,e)}, we have 0 < Pe 6 1. Accordingly, MðeÞ , Pl
e is lo-

cated in (0,1]. h

Proposition 1 shows that if the convergence metric value of the archive is greater than a given positive value e, then the
next archive will have a convergence metric of e with a positive probability. Then, by the non-increasing DðAðtÞÞ, we come to
the conclusion that DðAðtÞÞ converges almost surely to zero, i.e., the MOEA consisting of Algorithms 1, 2 and 3 converges al-
most surely to the Pareto set. To show this result, an elementary probability lemma is introduced [34].

Lemma 6. Let {X(t), t = 1,2, . . .} be an r.v.s. If

Xþ1
t¼1

P jXðtÞjP 1
l

� 	
< þ1

for every positive integer l, then P{X(t)9 0} = 0, where X(t)9 0 indicates that X(t) does not converge to zero when t tends to
infinity.

Theorem 1. The MOEA consisting of Algorithms 1, 2 and 3 converges almost surely to the Pareto set of RMOP (4) if the continuous
joint density function u(z,x) is greater than zero for all x 2 Sx, z 2 Sx � x.

Proof. Let fAðtÞ; t ¼ 1;2; . . .g be the archive sequence of the MOEA consisting of Algorithms 1, 2 and 3. Proposition 1 shows
that "e > 0,t > 0, there exists a real number 0 < M(e) 6 1 such that

PfDðAðtþ1ÞÞ < ejDðAðtÞÞ > egP MðeÞ:

Because the convergence metric value DðAðtÞÞ does not increase in the evolving process, we have

P DðAðtþ1ÞÞP 1
l

� 	
¼ P DðAðtÞÞP 1

l

� 	
� P DðAðtþ1ÞÞP 1

l
jDðAðtÞÞP 1

l

� 	

¼ P DðAðt�1ÞÞP 1
l

� 	
� P DðAðtÞÞP 1

l
jDðAðt�1ÞÞP 1

l

� 	
� P DðAðtþ1ÞÞP 1

l
jDðAðtÞÞP 1

l

� 	
¼ � � �

6 P DðAð1ÞÞP 1
l

� 	
� 1�M

1
l


 �
 �t

for every positive integer l. Thus

Xþ1
t¼1

P DðAðtþ1ÞÞP 1
l

� 	
¼ P DðAð1ÞÞP 1

l

� 	
�
Xþ1
t¼1

1�M
1
l


 �
 �t

< þ1
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holds for every positive integer l. From Lemma 6, PfDðAðtþ1ÞÞ90g ¼ 0, which is equivalent to PfDðAðtþ1ÞÞ ! 0g ¼ 1, and so,
Pflimt!1DðAðtþ1ÞÞ ¼ 0g ¼ 1. Thus, the MOEA consisting of Algorithms 1, 2 and 3 converges almost surely to the Pareto set of
RMOP (4). h

Theorem 1 shows the convergence of the MOEA consisting of Algorithms 1, 2 and 3 without respect to diversity.
However, the diversity of the final results can be well maintained and even converges almost surely to the B-Pareto set
of the RMOP (4).

Theorem 2. If the continuous joint density function u(z, t) in (8) is greater than zero for all x 2 Sx, z 2 Sx � x, the MOEA consisting
of Algorithms 1, 2 and 3 converges almost surely to the B-Pareto set of RMOP (4) of size N, where N is the size of the archive equal to
that of the population.

Proof. Let fAðtÞ; t ¼ 1;2; . . .g be the archive sequence of the MOEA consisting of Algorithms 1, 2 and 3. We distinguish three
different update strategies.

S1 If the new intermediate individual x0 generated by Algorithm 2 dominates x 2 AðtÞ, it will replace x in Aðtþ1Þ. However,
this update may lead to a decrease in DIVðAðtÞÞ because distðx0;AðtÞ n fxgÞ may be less than distðx;AðtÞ n fxgÞ.

S2 When x0 is generated by Algorithm 2 such that

dðx0Þ < dðxÞ

and

min
y2FðAnfxgÞ

kFðx0Þ � yk2 > min
y2FðAnfxgÞ

kFðxÞ � yk2;

x 2 AðtÞ will also be updated by x0. Because this substitution does not reduce the minimum distance between two individ-
uals in the archive,

DIVðAðtþ1ÞÞP DIVðAðtÞÞ

always holds after this update.
S3 The third replacement strategy updates the entire population with a given probability p. If the intermediate archive
A0ðtÞ generated by performing mutations on all individuals in AðtÞ satisfies

DðA0ðtÞÞ < DðAðtÞÞ

and

DIVðA0ðtÞÞ > DIVðAðtÞÞ;

then Aðtþ1Þ is set to A0ðtÞ. Similar to the second strategy, the value of DIVðAðtÞÞ does not decrease after this update.

Now archive AðtÞ can be represented by the sum of two different parts, i.e.,

AðtÞ ¼ XðtÞ þ DXðtÞ;

where XðtÞ denotes the non-increasing part of the archive sequence, and DXðtÞ is the disturbance generated by S1. Then, if the
AðtÞ is updated by S2 and S3, we have

AðtÞ ¼ XðtÞ and DXðtÞ ¼ 0;

where 0 is the set of N zero vectors in Rn. If AðtÞ is updated by S1, then XðtÞ ¼ Aðt�1Þ and DXðtÞ – 0. When the population does
not change at generation t, both XðtÞ ¼ Aðt�1Þ and DXðtÞ ¼ 0 hold. Now let us analyze the respective properties of XðtÞ and
DXðtÞ.

1. fDIVðXðtÞÞ; t ¼ 1;2; . . .g is a bounded and monotonically increasing sequence that converges to a finite value, denoted
DIVðXð1ÞÞ. Suppose that

DIVðXð1ÞÞ < DIVðP�BÞ:

Then from the continuity of k�k2, there exists a neighborhood of the B-Pareto set P�B, denoted

UðP�B; eÞ ,
Y

x�2P�B

Uðx�; eÞ \ Sx ¼
Y

x�2P�B

fx 2 Sx; kx� x�k2 < eg;
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such that 8X 2 UðP�B; eÞ,

DðXðtÞÞ > DðXÞ > DðP�BÞ ¼ 0; 81 < t <1

and

DIVðXðtÞÞ < DIVðXÞ < DIVðP�BÞ; 81 < t <1;

where
Q

x�2P�B
Uðx�; eÞ is the Cartesian product of U(x⁄,e). Moreover, Lemma 5 implies that with a positive probability

P{x0 2 U(x⁄,e)}, the intermediate individual x0 generated by mutation (8) is located in the neighborhood U(x⁄,e), and so
Xðtþ1Þ is in UðP�B; eÞ with a positive probability

Q
x�2P�B

Pfx0 2 Uðx�; eÞg. Similar to the proof of Theorem 1, we conclude that

DIVðP�BÞ � DIVðXðtÞÞ!a:s: 0;

i.e.,

DIVðXðtÞÞ!a:s: DIVðP�BÞ:

2. If the archive is updated by S1, then

DXðtÞ ¼ f0; . . . ; x0ðtÞ � xðtÞ; . . . ;0g – 0;

where xðtÞ 2 AðtÞ, and x0(t) is the intermediate individual generated satisfying x0(t) � x(t). Moreover, Theorem 1 shows that

DðAðtÞÞ!a:s: 0

and so,

x0ðtÞ � xðtÞ !a:s: 0

also holds.
In conclusion,

DIVðAðtÞÞ ¼ DIVðXðtÞ þ DXðtÞÞ

converges almost surely to DIVðP�BÞ. Combined with the result proven in Theorem 1 that DðAðtÞÞ!a:s: 0, we prove that the MOEA
consisting of Algorithms 1, 2 and 3 converges almost surely to the B-Pareto set of RMOP (4) of size N. h

3.4. Comparisons with other fixed population size methods

There are also other efficient EMO methods that work with a fixed population (or archive) size. To demonstrate the effi-
ciency of the proposed method, we compare it with two excellent representatives of these methods, namely, the hypervo-
lume-based approaches [55,16,2] and SPEA2 [54]. The test problem is the ZDT1 problem [53], and population size and
archive size are both set to three. The Pareto front of the ZDT1 problem is fy ¼ ðy1; y2Þ; y2 ¼ 1� ffiffiffiffiffi

y1
p

; y1 2 ½0;1�g.

3.4.1. Comparison with hypervolume-based approaches
Hypervolume-based approaches [55,16,2] aim to obtain a population (or archive) with the greatest dominated hypervo-

lume. Let the reference point be (1,1), and denote the three points on the Pareto front as y(1), y(2) and y(3), where
yðiÞ ¼ ðyðiÞ1 ; y

ðiÞ
2 Þ; i ¼ 1;2;3. Then (y(1),y(2),y(3)) is the optimal solution of the maximum problem

max f ðyð1Þ; yð2Þ; yð3ÞÞ ¼ ð1� yð1Þ1 Þð1� yð1Þ2 Þ þ ðy
ð1Þ
2 � yð3Þ2 Þð1� yð3Þ1 Þ þ ðy

ð1Þ
2 � yð2Þ2 Þðy

ð3Þ
1 � yð2Þ1 Þ

s:t: yðiÞ2 ¼ 1�
ffiffiffiffiffiffiffi
yðiÞ1

q
;

yðiÞ1 2 ½0;1�; i ¼ 1;2;3:

8>>><
>>>:

From the differentiability of f(y(1),y(2),y(3)), the optimal solution is located on one of the stationary points. We obtain approx-
imate values of y(1), y(2) and y(3), which are (0.1182,0.6562), (0.3547,0.4044) and (0.6546,0.1909), respectively. The method
proposed in this paper forces the convergence of the archive to the B-Pareto front of size three, which contains three points
y(1) = (0,1), y(2) 	 (0.3820,0.3819) and y(3) = (1,0).

Fig. 6 illustrates the results of the two compared methods. Fig. 6(a) shows that the distance between y(1) and y(2) are not
equal to the distance between y(2) and y(3), and this is because the curvature of the Pareto front of ZDT1 differs at distinct
positions. Thus, we conclude that the results of the hypervolume-based methods are sensitive to the shape of the Pareto
front. Moreover, the reference point also influences the results of hypervolume-based methods. With the reference point
(1,1), the results of the hypervolume-based methods cannot reach the boundary points of the Pareto front. Although the left
boundary point of ZDT1 can be included if the reference point is selected appropriately, the right extreme point of the Pareto
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front cannot be obtained regardless of the reference point [1]. Even if the extreme point could be obtained by setting the
reference point in a certain manner, the reference point is hard to obtain when the properties of the investigated MOP
are not clear. However, Fig. 6(b) shows that the method proposed in this paper obtains the B-Pareto front of the MOP, which
always contains the boundary points of the Pareto front and is uniformly distributed on the Pareto front.

3.4.2. Comparison with SPEA2
SPEA2 [54], also a high performance MOEA with a fixed archive size, is able to obtain an approximation of the Pareto front

with both high precision and good diversity. SPEA2 compares individuals according to their fitness values, and the runtime of
the fitness assignment procedure is dominated by a density estimator with complexity OðM2 log MÞ, where M is the sum of
the population size and archive size [54]. When the population and the archive are of the same size N, the complexity of the
fitness assignment procedure is OðN2 log NÞ.

The method proposed in this paper contains both a convergence metric computation procedure and a diversity compu-
tation procedure. At each iteration, the convergence metric computation is of the order OðNÞ. Because the determination of
relation ‘/’ includes computations of the distance between the candidate and all individuals in the archive, the complexity of
the diversity computation is OðN2Þ. Thus, the total complexity of the updating procedure is OðN2Þ, which is less than the
complexity of SPEA2.

4. Numerical results

To demonstrate the appropriateness of the new definition of B-Pareto set and the effect of the new archive-updating strat-
egy, numerical experiments are presented in this paper. The comparison is based on a well-known MOEA, namely, NSGAII
[13], which has been successfully applied in specific scientific and engineering fields. Using the new updating strategy pro-
posed in this paper, the intermediate population of newly generated individuals is introduced to update the extra archive
attached to the NSGAII procedure at each generation. Because the elements in the archive are not included in the process
of recombination, the same candidate individuals were generated for different updating strategies, which are the selection
strategy of NSGAII and the new proposed archive-updating strategy. Other influencing factors are excluded in the compar-
ison. The numerical results have been presented to confirm the theoretical results by performing the experiments on the test
problems ZDT1, ZDT2 [53] and DTLZ2 [14].

4.1. Two-dimensional cases

At first, the comparison was performed using the 30-dimensional ZDT1 and ZDT2 problems. To obtain a sparsely distrib-
uted finite representation of the Pareto front to observe its uniformity, the population size and the archive size were set to
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Fig. 6. Comparison between the hypervolume-based methods and the method proposed in this paper. When the archive size and the population size are
both three, the best representation of the Pareto front obtained by the hypervolume-based methods is illustrated by (a), and the best representation of the
Pareto front obtained by the method proposed in this paper is illustrated by (b). With a given reference point (1,1), results of the hypervolume-based
methods cannot obtain the boundary point of the Pareto front, whereas the results obtained in this paper is a B-Pareto front of the ZDT1 problem, in which
all points are distributed uniformly on the Pareto front. (a) The best results obtained by the hypervolume-based methods. (b) The best results obtained by
the method proposed in this paper.
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50, and the two parameters in NSGAII, namely, the distribution indices gc and gm, were set to 15 and 20, respectively. After
300 iterations of the algorithms, the final results are illustrated in Figs. 7 and 8.

Because the diversity of the population can be well-preserved in the procedure of NSGAII, the SBX crossover and Polyno-
mial mutation [13] operators can be looked upon as a mutation operator that can be described in terms of (8) such that the
joint density function u(z,x) is continuous and greater than zero. ZDT1 and ZDT2 have bounded and simply connected Pareto
fronts; thus, the conditions of Theorem 2 are satisfied.

In this case, the vectors in the B-Pareto front were distributed uniformly along the Pareto front, and the numerical results
verified the theoretical results obtained in this paper, i.e., the archive sequence of the MOEA converges almost surely to a B-
Pareto set of RMOP (4) with size 50. Numerical results also show that the gaps did not appear in regions where the Pareto
front is ‘‘flat’’. The Pareto fronts of ZDT1 and ZDT2 are convex and concave, respectively, and the curvatures of the Pareto
fronts of ZDT1 and ZDT2 were not equal at different parts, which can influence the distribution of final results for some exist-
ing updating strategies, such as the strategy proposed in [43], according to which some gaps may occur in regions where the
Pareto front is ‘‘flat’’ due to the nature of �-dominance [44]. However, the new archive-updating strategy proposed in this
paper ignores the differences in different parts of the Pareto front, and the B-Pareto front, which is a uniformly distributed
representation of the Pareto front of RMOP (4), was obtained in the end.
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Fig. 7. Illustrations of the final results of problem ZDT1. (a) The final population of NSGAII, and (b) the final archive obtained by the proposed updating
strategy.
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Fig. 8. Illustrations of the final results of problem ZDT2. (a) The final population of NSGAII, and (b) the final archive obtained by the proposed updating
strategy.
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4.2. A three-dimensional case

The theoretical results can also be extended to the m-dimensional case (m P 3). A three-dimensional case, the 3-D DTLZ2
problem, was investigated to evaluate the efficiency of the new updating strategy. In this case, the population size and ar-
chive size were both set to 100, and the values of gc and gm were set to 15 and 20, respectively. Numerical results obtained
from 300 iterations of the algorithm were illustrated in Figs. 9 and 10.

Obviously, the results obtained using the proposed archive-updating strategy were closer to the Pareto front, and were
distributed more uniformly along the Pareto front than the final results of NSGAII. Accordingly, we can draw the conclusion
that the new updating strategy greatly improves the final result. In contrast, the final results of NSGAII were not satisfactory,
and the B-Pareto front was not generated. This is because all vectors generated by NSGAII were not distributed regularly in
the objective space, and consequently, after a finite number of iterations, the selected individuals could not be scattered uni-
formly along the Pareto front. Therefore, new strategies for the candidate generation should be designed to obtain a good
approximation of the B-Pareto front after more iterations of the MOEAs.

5. Discussions

In this study, we focused on the theoretical research, which is difficult in multi-objective evolutionary algorithms. We
proposed a new definition for the finite representation of the Pareto front, namely, the B-Pareto front (and correspondingly,

Fig. 9. The final results of NSGAII for problem DTLZ2.

Fig. 10. The final results of the new proposed updating strategy for problem DTLZ2.
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the B-Pareto set in the feasible space) and a convergence metric of MOEAs by combining the convergence with diversity. In
contrast to the concept of �-Pareto set, the B-Pareto set can always maintain a fixed size N, and gaps do not appear in regions
where the Pareto front is ‘‘flat’’, which makes it more appropriate for use in the theoretical analysis of an MOEA.

There are also other efficient EMO methods that work with a fixed population size, e.g., SPEA2 [54] and the
hypervolume-based approaches [55,16,2]. The goal of our approach and these methods are the same: to consider both
convergence and diversity. To the best of our knowledge, however, no report has theoretically proved the convergence
of the hypervolume-based methods and SPEA2. Moreover, comparisons of them through a simple example indicate that
the hypervolume-based methods sometimes cannot reach the boundary points of the Pareto front, which can be
reached by our proposed method. In addition, the time complexity of SPEA2 is higher than that of our proposed
method.

In this study, the non-negative function d(�) has only been defined for the case that the Pareto front is simply connected,
which should be extended in further works. Moreover, runtime analysis of real-coded MOEAs is also one of our future goals
because other than runtime analysis of discrete multi-objective optimization problems, a rigorous analysis of runtime of
real-coded MOEAs has not been explored [20,33,7,36,19,23,24]. Numerical results show that our new updating strategy
can improve the efficiency of NSGAII, and thus, designing an efficient MOEA based on the theoretical results presented here
would be an important future work. Although the results presented in this study can be improved, they can serve as a sig-
nificant foundation for new algorithm design and for theoretical analysis.

6. Conclusions

In this paper, we present a new concept of the B-Pareto front by combining convergence with diversity, and theoretically
show how to obtain the B-Pareto front of an RMOP. The convergence of the MOEA was guaranteed by the compound-updat-
ing strategy, which is based on a new fitness function of individuals and a method for preserving diversity. Numerical results
confirm the appropriateness of theoretical results. Moreover, comparisons with NSGAII, the hypervolume-based approaches
and SPEA2 show that the new archive-updating strategy is quite efficient. In conclusion, the theoretical analysis, numerical
experiments and comparisons with other methods show that our method is competitive.
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Appendix A. Proof of Lemma 2

Proof. Denote

yð1Þ ¼ Fðxð1ÞÞ ¼ ðf1ðxð1ÞÞ; . . . ; fmðxð1ÞÞÞ ¼ ðyð1Þ1 ; . . . ; yð1Þm Þ

and

yð2Þ ¼ Fðxð2ÞÞ ¼ ðf1ðxð2ÞÞ; . . . ; fmðxð2ÞÞÞ ¼ ðyð2Þ1 ; . . . ; yð2Þm Þ:

If y(1) � y(2), then $j1, . . . , jl 2 {1,2, . . . ,m}, where

yð1Þjt
< yð2Þjt

; t ¼ 1; . . . ; l

and it holds that yð1Þk ¼ yð2Þk when "k – jt, t = 1, . . . , l.
By Lemma 1, "i 2 {1,2, . . . ,m}, there exists an implicit function

yi ¼ hiðy1; . . . ; yi�1; yiþ1; . . . ; ymÞ

specified by the Pareto front PF. Defining Hi according to (6), a class of hypersurfaces

GHi
ðCiÞ ¼ fy ¼ ðy1; . . . ; ymÞ 2 Sy; yi ¼ Hiðy1; . . . ; yi�1; yiþ1; . . . ; ymÞ þ Cig

can be derived. Divide the objective space Sy of RMOP (4) into two parts:

1. Si, all points in which are located on Ghi
ðCiÞ for some given non-negative number Ci;

2. T i, all points in which cannot be located on Ghi
ðCiÞ for any non-negative number Ci,where Ghi

is defined by (5). Then, two
different cases can be distinguished.

1. If there exists one and only one j 2 {1,2, . . . ,m} such that yð1Þj < yð2Þj , then for all i 2 {1,2, . . . ,m}, one of the followings is true.
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(a) yð1Þ 2 Si; yð2Þ 2 Si.
i. If i = j, we have

Hi yð1Þ1 ; . . . ; yð1Þi�1; y
ð1Þ
iþ1; . . . ; yð1Þm

� �
¼ Hi yð2Þ1 ; . . . ; yð2Þi�1; y

ð2Þ
iþ1; . . . ; yð2Þm

� �
;

because yð1Þk ¼ yð2Þk always holds when k – j. So, from

di yðlÞ1 ; . . . ; yðlÞm

� �
¼ yðlÞi � Hi yðlÞ1 ; . . . ; yðlÞi�1; y

ðlÞ
iþ1; . . . ; yðlÞm

� �
; l ¼ 1;2;

then

di yð1Þ1 ; . . . ; yð1Þm

� �
< di yð2Þ1 ; . . . ; yð2Þm

� �
ðA:1Þ

when i = j.
ii. When i – j, hypothesize that

di yð1Þ1 ; . . . ; yð1Þm

� �
> di yð2Þ1 ; . . . ; yð2Þm

� �
: ðA:2Þ

From

yðlÞi � di yðlÞ1 ; . . . ; yðlÞm

� �
¼ Hi yðlÞ1 ; . . . ; yðlÞi�1; y

ðlÞ
iþ1; . . . ; yðlÞm

� �
¼ hi yðlÞ1 ; . . . ; yðlÞi�1; y

ðlÞ
iþ1; . . . ; yðlÞm

� �
; l ¼ 1;2; ðA:3Þ

it follows that

yðlÞ1 ; . . . ; yðlÞi�1; y
ðlÞ
i � diðyðlÞ1 ; . . . ; yðlÞm Þ; y

ðlÞ
iþ1; . . . ; yðlÞm

� �
2 PF; l ¼ 1;2: ðA:4Þ

Note that (A.2) implies yð1Þi � di yð1Þ1 ; . . . ; yð1Þm

� �
< yð2Þi � di yð2Þ1 ; . . . ; yð2Þm

� �
, which leads to the fact that

yð1Þ1 ; . . . ; yð1Þi�1; y
ð1Þ
i � di yð1Þ1 ; . . . ; yð1Þm

� �
; yð1Þiþ1; . . . ; yð1Þm

� �
� yð2Þ1 ; . . . ; yð2Þi�1; y

ð2Þ
i � diðyð2Þ1 ; . . . ; yð2Þm Þ; y

ð2Þ
iþ1; . . . ; yð2Þm

� �
:

This contradicts (A.4). Thus, when i – j,

di yð1Þ1 ; . . . ; yð1Þm

� �
6 di yð2Þ1 ; . . . ; yð2Þm

� �
: ðA:5Þ

By (A.1) and (A.5),

diðyð1Þ1 ; . . . ; yð1Þm Þ 6 diðyð2Þ1 ; . . . ; yð2Þm Þ

always holds when yð1Þ 2 Si; yð2Þ 2 Si.

(b) yð1Þ 2 Si; yð2Þ 2 T i.If i = j, then yð1Þi < yð2Þi . Then both y(1) and y(2) are located in Si. In this case, i – j by necessity. From (6),
it follows that

di yð1Þ1 ; . . . ; yð1Þm

� �
< di yð2Þ1 ; . . . ; yð2Þm

� �
;

(c) yð1Þ 2 T i; yð2Þ 2 T i. Because y(1) � y(2), then diðyð1Þ1 ; . . . ; yð1Þm Þ 6 diðyð2Þ1 ; . . . ; yð2Þm Þ, and diðyð1Þ1 ; . . . ; yð1Þm Þ < diðyð2Þ1 ; . . . ; yð2Þm Þ holds
if and only if i = j.Based on (a), (b) and (c), we have

di yð1Þ1 ; . . . ; yð1Þm

� �
6 di yð2Þ1 ; . . . ; yð2Þm

� �
;

where the strict inequality

di yð1Þ1 ; . . . ; yð1Þm

� �
< di yð2Þ1 ; . . . ; yð2Þm

� �

holds if i = j. Thus,

yð1Þ � yð2Þ ) dðxð1ÞÞ < dðxð2ÞÞ

when there exists one and only one j 2 {1,2, . . . ,m} such that yð1Þj < yð2Þj .

2. When there exist l indices j1 , . . . , jl 2 {1,2, . . . ,m} such that

yð1Þjt
< yð2Þjt

; t ¼ 1;2 . . . ; l;
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without loss of generality, it is assumed that 1 6 j1 < j2 < � � � < jl�1 < jl 6m. Denoting that

yðj1Þ ¼ yð1Þ þ 0; . . . ;0; yð2Þj1
� yð1Þj1

;0; . . . ;0
� �

;

. . .

yðjl�1Þ ¼ yðjl�2Þ þ 0; . . . ;0; yð2Þjl�1
� yð1Þjl�1

;0; . . . ;0
� �

;

yð2Þ ¼ yðjl�1Þ þ 0; . . . ; 0; yð2Þjl
� yð1Þjl

;0; . . . ; 0
� �

;

then we have

dðxð1ÞÞ ¼
Xm

i¼1

diðyð1ÞÞ <
Xm

i¼1

diðyðj1ÞÞ < � � � <
Xm

i¼1

diðyðjk�1ÞÞ <
Xm

i¼1

diðyð2ÞÞ ¼ dðxð2ÞÞ:

In conclusion, if y(1) � y(2), then d(x(1)) < d(x(2)). h

Appendix B. Proof of Lemma 4

Proof. "x 2 Sx, suppose that x + z and x + Dx + z are both in U(x⁄,d) \ Sx. Then

Ldðx�; xþ DxÞ ¼
Z
ðxþDxÞþz2Uðx� ;dÞ\Sx

/ðz; xÞdz:

Thus

kLdðx�; xþ DxÞ � Ldðx�; xÞk ¼
Z
ðxþDxÞþz2Uðx� ;dÞ\Sx

/ðz; xÞdz�
Z

xþz2Uðx� ;dÞ\Sx

/ðz; xÞdz




¼
Z

z2Uðx� ;dÞ\Sx�ðxþDxÞ
/ðz; xÞdz�

Z
z2Uðx� ;dÞ\Sx�x

/ðz; xÞdz




¼
Z

z2Uðx� ;dÞ\Sx�ðxþDxÞnðUðx� ;dÞ\Sx�xÞ
/ðz; xÞdz�

Z
z2Uðx� ;dÞ\Sx�xnðUðx� ;dÞ\Sx�ðxþDxÞÞ

/ðz; xÞdz




6

Z
z2Uðx� ;dÞ\Sx�ðxþDxÞnUðx� ;dÞ\Sx�x

/ðz; xÞdz


þ

Z
z2Uðx� ;dÞ\Sx�xnUðx� ;dÞ\Sx�ðxþDxÞ

/ðz; xÞdz


:

Because the Lebesgue measures of U(x⁄,d) \ Sx � (x + Dx)n(U(x⁄,d) \ Sx � x) and U(x⁄,d) \ Sx � xn(U(x⁄,d) \ Sx � (x + Dx)) con-
verge to zero when kDxk tends to 0, we have

kLdðx�; xþ DxÞ � Ldðx�; xÞk ! 0;

when kDxk tends to 0. Thus, Ld(x⁄,x) is continuous for all x 2 Sx. Similarly, we can prove that Ld(x⁄,x) is continuous about x⁄ as
well. h
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