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 A B S T R A C T

Real-world time series classification (TSC) is challenging as time series collected in real-world conditions 
usually exhibit variations in their lengths, which makes standard deep learning (DL) models being difficult 
to directly process them (i.e., multiple variable-length time series (VTS)). Despite the existence of many pre-
processing and pooling-based methods for achieving length normalization for VTS, there lacks a comprehensive 
and fair comparison across these methods through a uniform benchmark (e.g., standard backbones, datasets and 
evaluation strategies). To address this gap, we conduct the first comprehensive benchmark for variable-length 
time series classification tasks, evaluating the effectiveness of 22 previously widely-used length normalization 
methods across 14 publicly available VTS datasets and 8 backbones. Since these existing methods lead 
to varying degrees of information loss and distortion of the input VTS, we also propose a novel spectral 
pooling (SP) for variable-length time series classification (VTS classification) tasks, which is a plugin layer 
that can be inserted at any location within various DL models. Our SP allows DL models to process VTS 
or their variable-length representations in an end-to-end manner within mini-batches, without distortion 
or significant information loss. Experimental results demonstrate that the end-to-end length normalization 
methods generally outperformed pre-processing-based methods for VTS classification, where our SP achieved 
state-of-the-art performance across eight backbones over all existing 22 methods. Our code is publicly available 
at https://github.com/CVI-SZU/VTS_benchmark.
. Introduction

Time series is a series of consecutive data points ordered in the tem-
oral dimension, whose classification (time series classification (TSC)) 
nvolves assigning a categorical label based on its shape, trends, and 
ther relevant temporal patterns. In the past decades, TSC solutions 
ave been widely explored across different real-world applications, 
ncluding financial investment [1], healthcare [2,3] and load device 
dentification [4]. However, a common challenge of real-world time 
eries is that they often exhibit variations in lengths caused by different 
ampling frequencies, acquisition duration or other factors. While the 
ength variation issues caused by irregular sampling or missing data 
ave been well studied [5–7], the problem of length variation due to 
arying recording duration remains under-explored.
Traditional hand-crafted time-series feature extraction methods fre-

uently address such variable-length time series classification (VTS 
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classification) tasks by employing specific measurements to compute 
distances between each pair of variable-length time series (VTS) (e.g., 
dynamic time warping [8] and longest common subsequence [9]). 
Based on such distances, each time series can be then predicted using 
various distance-related classifiers (e.g., nearest neighbor classification 
[10] and support vector machines [11]). Alternatively, other hand-
crafted approaches also extract equal-length representations (i.e., using 
symbolic aggregation approximation [12], statistics [13] or identity-
vector [14]) to represent VTS, which subsequently can be classified by 
standard machine learning techniques [12,14]. However, these hand-
crafted feature-based methods usually heavily rely on the domain 
knowledge, making them less generalizable across different TSC tasks 
and datasets.

Recent deep learning (DL) models are more flexible and effective 
for learning task-specific features from various types of time series 
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Fig. 1. Comparison between different length normalization strategies on a VTS dataset containing 𝐷 examples  =
{

(𝑋1 , 𝑇 1), (𝑋2 , 𝑇 2),… , (𝑋𝐷 , 𝑇𝐷)
}

, where 𝑋𝑑 (𝑑 = 1, 2,… , 𝐷) has 
the length 𝑇 𝑑 . (a) The original time series 𝑋𝑑 ; (b) Zero Pad (Post): padding zeros at the end of the 𝑋𝑑 to make it having the length 𝑇max, where 𝑇max denotes the length of the 
longest example in  ; (c) Edge Pad (Post): padding the end element of the 𝑋𝑑 to make it have the length 𝑇max; (d) STRP Pad: resampling 𝑇 𝑑 time steps to 𝑇max length, where 
the sampled 𝑇max − 𝑇 𝑑 time steps are defined as zeros; (e) Zoom Pad: resampling 𝑇 𝑑 time steps to 𝑇max length, where each of the sampled 𝑇max − 𝑇 𝑑 time steps are defined by the 
nearest neighboring time step; (f) Truncate (Post): truncating the last components of 𝑋𝑑 to make it have the length 𝑇min, where 𝑇min denotes the length of the shortest example 
in  ; (g) Nearest Guided Warping-𝛼: applying dynamic time warping to warp 𝑋𝑑 according to its most similar prototypical series of the length 𝑇max; (h) Adaptive average 
pooling: first adaptively calculating the window length based on a pre-defined length 𝑇  and the length of input time series, and then calculating the mean value of elements 
within each window to define the corresponding component of the output time series. However, this strategy still requires data padding for batch training, and cannot exclude 
the noise caused by padded data. (i) Spectral pooling: Our SP truncates 𝑋𝑑 in its frequency domain according to the pre-defined length 𝑇 , which can exclude the padded data 
used for batch training. It avoids information distortion ((b)–(e) and (h))/significant information loss ((f)). The Kullback–Leibler (KL) divergence measures the difference between 
the probability distribution of original time series 𝑋𝑑 and their normalized ones, where the smaller the KL divergence, the more similar between them.
for different TSC tasks [15–18]. However, while typical DL layers 
(e.g., convolution, pooling, and activation layers) can handle multiple 
variable-length inputs, the Multi-layer Perceptron (i.e., fully connected 
(FC) layers)-based classifier/regressor used in standard DL models is 
limited to process equal-length representations, making standard DL 
models difficult to directly process multiple VTS. A common solution 
to address this problem is pre-processing (e.g., truncation, padding, 
resampling, or warping) multiple VTS to normalize them [19,20] to the 
target length. However, each of these length normalization strategies 
has been primarily evaluated on specific datasets/tasks based on task-
specific model architectures, making it unclear about not only their 
performances for standard VTS classification, but also how well they 
generalize to different backbones. In other words, there lacks a com-
prehensive and fair comparison/investigation among existing length 
normalization strategies (Research gap 1). Although some methods—
such as adaptive average or max pooling [21–23] are model-agnostic 
and can already effectively normalize the lengths of input VTS within 
DL models end-to-end, they usually lead to varying degrees of informa-
tion loss or distortion (Research gap 2). For example, adaptive pool-
ing methods, (e.g., adaptive average or max pooling) usually require 
padding all input VTS within a batch to a uniform length when batch 
training is necessary [23,24]. Consequently, the padded data points 
(e.g., padded zeros) are typically included in the pooling operation, 
leading to the information distortion of the obtained representations. In 
addition, these pooling operations only capture local (short-term) sta-
tistical information within the window without considering long-term 
shape/trend cues of the input VTS.

To comprehensively and fairly investigate the effectiveness of ex-
isting strategies for DL-based VTS classification, this paper presents 
the first benchmark evaluation and analysis of existing length nor-
malization strategies based on eight widely-used DL architectures and 
14 publicly available VTS classification datasets [25,26]. Targeting 
the limitations of existing length normalization strategies for variable-
length time series (VTS) analysis, we propose a generic, flexible, and 
effective spectral pooling (SP) layer that can be seamlessly integrated 
2 
into deep learning models. Our SP consists of two main components: (1) 
a Length Tracking and Undistorted Spectral Representation Generation 
(LSG) strategy, which encodes variable-length VTS into undistorted 
spectral representations in a batch manner; and (2) an Adaptive Length 
Normalization (ALN) mechanism, which transforms these spectral rep-
resentations back into equal-length time-domain representations by 
selectively truncating less informative high-frequency components. Our 
SP reduces information distortion by excluding padded data points 
while reducing information loss by truncating less informative high-
frequency components in the frequency domain. Fig.  1 illustrates the 
performance of various length normalization methods, clearly demon-
strating SP’s superior ability in preserving the original data distribution. 
The main novelties and contributions of this paper are summarized as:

• To the best of our knowledge, this is the first VTS classification 
benchmark which comprehensively evaluates the effectiveness of 
our SP layer and 22 existing widely-used length normalization 
strategies, across a total of eight backbones including Multi-
layer Perceptron (MLP) [15], Long-short-term-memory Network 
(LSTM) [27], Convolutional Neural Networks (CNNs) [15,28,29], 
and Transformers [30,31].

• We propose an effective SP layer for DL-based VTS classification 
tasks, allowing multiple VTS to be jointly processed by DL models 
in a mini-batch manner reducing information loss/distortion.

• Our benchmark reveals that end-to-end pooling-based length 
normalization strategies outperformed the pre-processing-based 
strategies, which facilitate the DL model to obtain a more aggre-
gated feature distribution, where our SP achieved the state-of-
the-art performances across all eight backbones among all length 
normalization strategies.

2. Related work

This section first reviews previous time series classification (TSC) 
methods (including equal-length TSC) in Section 2.1, and then specif-
ically discuss widely-used length normalization strategies for variable-
length TSC analysis (Section 2.2).
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2.1. Time series classification

Over the last two decades, TSC algorithms have flourished as 
TSC has been considered as one of the most challenging problems in 
data mining [32]. Early traditional approaches have widely employed 
distance-based methods [33], with dynamic time warping (DTW) fre-
quently used to measure the distance between series. Zhao et al. [34] 
introduced shapeDTW, which considers point-wise local structural in-
formation during series warping to avoid matching points with distinct 
neighborhood structures. Liu et al. [35] proposed a DTW-based time 
distortion coefficient where the time distortion coefficients are com-
puted based on the compression, stretching, or matching alignment 
of each point in the series and comprehensively considers both the 
DTW distance and the time distortion coefficient for nearest-neighbor 
classification. Alternatively, feature-based approaches for time series 
classification utilize shapelets to identify distinctive parts of the se-
ries [36], or employ auto-correlation to measure dependence between 
neighboring data points [37]. These extracted features are then fed to 
various types of classifiers, including support vector machines [38], 
decision trees [39], and naive bayes [40], for TSC.

In recent years, various deep learning network architectures have 
been explored for TSC tasks. Wang et al. [15] introduced three sim-
ple architectures—multilayer perceptron (MLP), fully convolutional 
network (FCN), and ResNet—as baselines for TSC. Kao et al. [27] 
employed LSTM for acoustic event classification, while Karim et al. [41] 
combined LSTM and FCN to construct a two-branch network for mul-
tivariate TSC. To achieve reliable TSC performance, Fawaz et al. [28] 
incorporated the ensemble idea based on the Inception network, where 
the proposed InceptionTime consists of five Inception ensembles with 
the same architecture but different initialization parameters. By com-
bining these networks equally, InceptionTime can effectively reduce the 
bias frequently occurred in single Inception networks. TimesNet [29] 
achieved excellent TSC performances by transforming the original 1D 
time series into a set of 2D tensors based on multiple periods, which 
are then processed using 2D convolutional kernels. The Transformer 
introduced by Vaswani et al. [30] has led to further improvements in 
time series classification (TSC) compared to CNNs. Specifically, recently 
proposed TSC Transformers have introduced novel attention mech-
anisms. For example, Informer [31] proposed ProbSparse attention, 
which focuses on computing attention for a selected subset of important 
positions to improve efficiency. On the other hand, Pyraformer [42] 
proposed pyramidal attention, which constructs a multi-resolution C-
ary tree to form a pyramidal graph and applies the attention mechanism 
within this graph. These approaches improve the computational ef-
ficiency of self-attention, aiming to optimize temporal and spatial 
complexity while enhancing the performance of time series analysis 
tasks.

2.2. Length normalization strategies

Standard DL models usually cannot directly process VTS, as their 
FC layer-based classifiers/regressors require inputs to have the same 
size [43]. Existing approaches frequently address this problem by intro-
ducing various pre-processing strategies to ensure that all time series 
have the same length before feeding them to DL models [19]. These 
pre-processing strategies include various padding methods (e.g., zero 
padding [20], noise padding [44], stratified (STRF) padding that dis-
tributes zeros evenly [20], random padding that randomly places ze-
ros [20], and zoom padding that duplicates neighboring values [20]), 
truncation [45], interpolation [44], and nearest guided warping which 
warps time series to the length of the most similar time series via 
DTW [19]. Fourier transform-based methods have gained increasing 
attention in time series analysis. In FEDformer [46], randomly chosen 
frequency components are used to reduce computations for long time 
series. Wu et al. [29] and Cai et al. [47] use the Fourier transform to 
detect main periodicities and reshape time series accordingly. Similarly, 
3 
Song et al. [3,13] applied the Fourier transform to select consistent 
frequency components across different series lengths to obtain equal-
length representations, which has been further followed by several 
time-series analysis studies [48–51].

Alternatively, other studies normalize the length of time series 
within DL models, where pooling layers have been commonly used [24,
52]. For example, Fawazd et al. utilizes global average pooling to 
handle variable-length transfer learning [53], and Yu et al. [23] pro-
poses a temporal pyramid pooling which uses multiple pooling layers 
with different output sizes for multi-scale feature extraction. Xception-
Time [21] applies adaptive average pooling to retain more information 
through larger output dimensions. Malekzadeh et al. [22] proposes 
a DANA network to process variable-length multivariate sensor data 
based on adaptive pooling. As discussed before, models equipped with 
these pooling layers still require pre-processing-based length normaliza-
tion to achieve batch training and cannot exclude the noise caused by 
pre-processing, which distorts the pooled feature maps to be distorted.

3. The proposed benchmarking framework

In this paper, we propose the first benchmarking framework that 
aims to provide a rigorous and reproducible evaluation of the existing 
length normalization strategies for variable-length time series classi-
fication (VTS classification) tasks on eight widely-used deep learning 
(DL) backbones. Specifically, this section introduces our benchmarking 
framework by presenting: (i) its coding infrastructure including em-
ployed DL backbones and their settings (Section 3.1); (ii) benchmarked 
length normalization strategies (Section 3.2); as well as (iii) the datasets 
used for evaluation (Section 3.3). The pipeline of the proposed VTS 
benchmarking framework is also illustrated in Fig.  2

3.1. Coding infrastructure

The goal of our benchmark is to fairly compare the capabilities of 
existing widely-used length normalization strategies for VTS classifica-
tion as previous studies failed to provide fair comparison among them 
as: (i) previous studies evaluated their length normalization strategies 
on different datasets; (ii) their evaluation was only carried out on 
task/dataset-specific backbone architectures, lacking assessment of gen-
eralization performance across different standard DL backbones; and 
(iii) different training strategies and model hyperparameter settings 
have been employed, which also lead to effectiveness differences.

To facilitate a fair comparison among existing length normalization 
strategies for VTS classification, our benchmark emphasizes a uni-
fied framework. Specifically, it is built on PyTorch [54] with unified 
implementation of the data pipeline, model initialization, training, val-
idation, evaluation, and coding platform/libraries. The only differences 
in experiments lies in the length normalization strategies and model 
architectures of the employed DL models.

3.1.1. Data pipeline
Our benchmark utilizes three different data pipelines at the training 

phase depending on the evaluated length normalization strategies: (i) 
Pre-processing strategies: each original time series is first normalized 
in length using the target pre-processing strategy, and then fed into 
DL models in a mini-batch manner; and (ii) Other pooling-based 
strategies: all original time series are first zero padded to have the 
same length 𝑇pad, which are then fed to DL models in a mini-batch 
manner. (iii) Our spectral pooling: all original time series are first 
zero padded to have the same length 𝑇pad and the original lengths of 
the input time series also be saved as a vector 𝐓 = (𝑇 1, 𝑇 2,… , 𝑇 𝐵), 
which are fed to DL models in a mini-batch manner together.

3.1.2. Employed deep learning backbones
The goal of this paper is to explore length normalization strate-

gies for deep learning-based VTS classification. To fairly evaluate the 
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Fig. 2. Illustration of our variable-length time series classification benchmark framework.
generalization capability of these strategies, we utilized eight typical 
neural networks commonly used for TSC tasks [15,27,28,30], includ-
ing Multi-layer Perceptron (MLP), Long-short-term-memory Network 
(LSTM), Convolution Neural Networks (CNNs) and Transformers, which 
are detailed as follows:

• MLP [15] consists of three fully-connected (FC) layers with 256, 
512 and 256 neurons, respectively, where each FC layer is fol-
lowed by a Gaussian Error Linear Unit (GELU) activation. Finally, 
a classification layer, i.e., a FC layer where the number of neurons 
is equal to the number of categories in the dataset and the 
activation function is Softmax, is attached at the end of this MLP. 
This is a typical classifier that has been widely used for TSC 
tasks [16,55].

• LSTM [27] is made up of two LSTM layers with each containing 
128 hidden units. A feature-wise global max pooling is then 
applied across the sequence output, which summarizes patterns 
from the entire input time series. The pooled representation is 
finally fed into a final FC layer with the number of neurons equal 
to the number of categories in the dataset to output the pre-
dicted probabilities for each category. As a natural sequential data 
analysis model, LSTM also has been widely-used for tasks [56,57].

• FCN [15] consists of three convolutional layers (convs) with 128, 
256 and 128 kernels of kernel sizes equaling to 7, 5, and 3 re-
spectively. A GELU activation is attached after each convolutional 
layer without batch normalization (BN), as the padded zeros 
would cause incorrect batch normalization. A global average 
pooling is then deployed after the final convolutional layer to 
summarize features before classification. This standard CNN has 
been employed as baselines in TSC task [58,59].

• ResNet [15] is made up of 3 repeated residual blocks. Each 
block contains 3 convolutional layers with the kernel sizes 7, 
5, and 3, and 64, 128, and 128 kernels, respectively. A global 
average pooling layer is employed after the last residual block 
to summarize features before classification. Residual connection 
was introduced on the basis of FCN, which aims to avoid gradient 
vanishing. This has been presented to be superior to many other 
DL models in TSC task [60,61].

• Inception [28] consists of 2 residual blocks, where each con-
tains 3 inception modules that pass the input through parallel 
convolutions with 32 kernels and kernel sizes of 9, 19, and 39, 
4 
respectively, which is followed by a max pooling with a fixed 
window, aiming to concatenate the outputs before sending to the 
next module. A global average pooling and a FC-based classifica-
tion layer are attached at the end of the network. Inception also 
uses to residual connections and introduces parallel convolution 
on that basis and increases the convolution kernel size. This is 
widely used to extract multi-scale features in TSC task [29,62].

• Transformer [30] encodes the input and incorporates positional 
encoding to represent it as a 128-dimensional embedding. This 
embedding is then processed through 3 encoder layers, each 
containing 8-headed attention. Subsequently, global max pooling 
is applied to the encoder output, summarizing sequence features 
prior to being fed into the classification output layer. Transformer 
is attention-based network architectures, which have been widely 
influential in deep learning in recent years [18,63].

• Informer [31] encodes the input and incorporates a positional 
encoding to represent it as a 128-dimensional embedding. This 
embedding is then processed through 3 encoder layers, each 
containing 8-headed ProbSparse self-attention. A global average 
pooling and a FC-based classification layer are attached at the end 
of the network. This is the Top-3 model on TSC task according to 
the Time-Series-Library repository.2

• TimesNet [29] encodes the input and incorporates positional 
encoding to represent it as a 128-dimensional embedding. This 
embedding is then processed through 3 TimesBlock with 𝑘 =
3 and each TimesBlock consists of two inception convolution 
blocks, each containing six 2D convolutional layers with increas-
ing kernel sizes. A global average pooling and a FC-based classi-
fication layer are attached at the end of the network. TimesNet 
transforms the original 1D time series into a set of 2D tensors 
based on multiple periods, which are then processed using 2D 
convolutional kernels. This is the Top-1 model on TSC task as 
show in the Time-Series-Library repository.

3.1.3. Training and testing protocol
We employ the same training and testing protocol for all bench-

marked length normalization strategies. Specifically, each model is 

2 https://github.com/thuml/Time-Series-Library.

https://github.com/thuml/Time-Series-Library
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Table 1
Training hyper-parameter settings for all experiments.
 Learning rate Optimizer Beta1 (Adam) Beta2 (Adam) Batch size Epochs Loss function 
 0.001 Adam 0.9 0.999 64 100 Cross-entropy 
trained using the training set, and the reported results denote the best 
variant achieved on the test set. This setting is consistent with previous 
studies [19,29], where no validation has been conducted. Training 
hyper-parameters (detailed provided in Table  1) were kept consistent 
across all experiments, despite that the possibility that different length 
normalization methods and their associated models might benefit from 
varied optimal settings. This decision was made due to the vast range 
of possible training parameters and the impracticality of conducting 
individual parameter experiments for each of the numerous length 
normalization methods. Instead, we opted for a widely-used training 
configuration [21,29] combined with a learning rate decay strategy. 
In this strategy, the learning rate is reduced to 10% of its current 
value if the training loss does not decrease for 10 consecutive epochs, 
with a minimum learning rate of 1e–5. This allows for reducing the 
learning rate when training becomes challenging, aiming to ensure fair 
comparison. All experiments were conducted on a single V100 GPU.

3.1.4. Evaluation metrics
Our benchmark follows previous TSC studies [19,29] to employ 

classification accuracy as the metrics to evaluate the performance of 
benchmarked approaches as: 

ACC = 1
𝑁

𝑁
∑

𝑖=1
[𝑦𝑖 = 𝑦̂𝑖] (1)

where 𝑁 denotes the total number of evaluated time-series samples; 𝑦𝑖
denotes the label of the 𝑖th time-series sample; 𝑦̂𝑖 denotes the prediction 
for 𝑖th time-series sample; and [𝑦𝑖 = 𝑦̂𝑖] represents an indicator function 
that equals 1 if 𝑦𝑖 = 𝑦̂𝑖, else 0. In addition, we also provide statistical 
analysis using the Bayesian Wilcoxon signed-rank test [64] compare 
two length normalization strategies.

3.2. Benchmarked length normalization strategies

In this paper, we benchmark 20 pre-processing strategies and two 
pooling-based strategies, as well as our proposed spectral pooling strat-
egy based on 6 widely-used deep learning (DL) backbones and the 
state-of-the-art Informer [31] and TimesNet [29].

3.2.1. Inclusion and exclusion criteria
Inclusion criteria: To fairly benchmark the most widely-used and 
representative length normalization methods, this paper chooses the 
benchmarked length normalization methods based on the following 
criteria:

• (1) The main criterion for choosing length normalization methods 
for our benchmark is that they have been evaluated and compared 
on at least one variable-length time series dataset in the UCR 
archive [25], which is a well-known and widely used publicly 
available time series classification archive.

• (2) The second criterion is that the chosen methods must have 
been proposed for addressing the variable-length time series anal-
ysis problem within the last four years (from 2020 to 2024) [3,
19,20].

• (3) The third criterion is that we choose the typical length nor-
malization methods that do not have learnable parameters, and 
have been defined and widely discussed in previous studies [16,
20,44,45,65], including zero-padding, truncation, as well as adap-
tive maximum pooling and adaptive average pooling that have 
been frequently used as baselines when comparing other pooling 
methods.
5 
Exclusion criteria: In this benchmark, we excluded length normaliza-
tion methods based on the following criteria:

• (1) We exclude pre-processing-based length normalization meth-
ods that require domain-specific post-processing or require do-
main knowledge to set specific parameters (e.g., window-based 
methods [26,66] and shapelet-based methods [67,68]), as these 
methods may not generalize for TSC on different datasets.

• (2) We exclude pooling-based length normalization methods that 
have trainable parameters, such as dynamic temporal pooling 
[58], which introduces hidden vectors in the pooling layer, thus 
creating an unfair comparison.

3.2.2. Benchmarked length normalization strategies
Existing length normalization methods can be divided into two main 

categories: pre-processing-based length normalization and pooling-
based length normalization. Among the pre-processing methods, we 
present 20 pre-processing strategies that can be classified into four 
categories padding, truncation, resampling, and warping. Padding in-
troduces series information that did not exist originally. Truncation 
loses a substantial amount of series information. Resampling based on 
linear interpolation slows the degree of change in the series, although it 
maintains the original shape as much as possible. Similarly, resampling 
in the frequency domain identifies the same frequency components 
across different series, solving the frequency misalignment problem but 
incurring a loss of low-frequency information crucial for classification 
tasks. The warping method utilizes DTW to distort according to most 
similar series to match the length of a reference series. The judgement 
and selection of the most similar series is related to the accuracy of 
classification. Additionally, we include two pooling-based strategies for 
normalizing the length inside the models and does not add additional 
training parameters.
Padding: Padding strategies extend all time series to match the length 
of the longest series by applying various padding techniques.

• Zero Pad [20]: The most commonly used padding approach, 
where zeros are filled at the start (Pre), middle (Mid), end (Post), 
or both ends (Outer) of the time series. This padding technique 
has been applied in various domains, including functional protein 
prediction [20], segmenting series into fixed periods and padding 
the remaining series length to the same length [29], and ensuring 
consistency between input and output lengths in convolutional 
operations through the use of zero padding [69].

• Noise Pad [44]: Random noise sampled from a low-amplitude 
distribution is used for padding at the start (Pre), end (Post), or 
both ends (Outer) of the time series. Noise pad is also a common 
use in the classification of variable series [44,70,71].

• Edge Pad [19]: Original values from the time series are du-
plicated for padding. The first (Pre) or last (Post) element is 
duplicated, or both (Outer) ends are duplicated. Edge pad is 
employed in emotion recognition for variable speech series [72] 
and prediction of battery capacity [73].

• STRP Pad and Random Pad [20]: These methods aim to enhance 
padding diversity. STRP Pad pads the series with zeros in an inter-
polated order so that the zeros are evenly distributed in the series, 
while Random Pad introduces zeros at random positions within 
the time series. STRP Pad and Random Pad were proposed for 
protein series padding by Lopez-del Rio et al. [20], but they have 
also been used as an attack to test the robustness of models [74].
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• Zoom Pad [20]: The time steps of the original series are resam-
pled, and then the added time steps are padded using neighboring 
time step elements. This is also the benchmarked padding method 
in [20].

Truncate: This is a method for addressing variable-length time series, 
where longer series in the training set are shortened to match the 
length of the shortest series. Truncation can be performed based on the 
position, such as Truncation (Pre) removing values from the start, Trun-
cation (Post) removing values from the end, and Truncation (Outer) 
removing values from both ends. Cerqueira et al. utilized truncation to 
unify series lengths and speed up computation [75], a technique also 
employed in unifying the lengths of human activity series [76].
Resampling: This method matches a time series to a specified length by 
interpolating or extracting values at intervals from the original series.

• Linear Interpolation [19]: New points are interpolated along the 
linear slope between existing points in the time series. Linear in-
terpolation is also a frequently used method for filling in missing 
data [77,78].

• Select Common Frequency [3]: Time series are converted to the 
frequency domain via Fourier transform, and an equal number 
of common frequency components are selected across all series, 
resulting in transformed representations with a consistent length. 
This method was proposed by Song et al. for length normalization 
of video series in depression detection.

Wrapping: Based on the most similar sequence, the original sequence 
is warped to match the length of the most similar series.

• Nearest Guided Warping [19]: This method utilizes dynamic 
time warping (DTW) to warp time series to a consistent length. 
It selects prototype series using the hyper-parameter 𝛼 and then 
resamples them to equal lengths set by the hyper-parameter 𝛽. 
The remaining series are then compared to the prototypes via 
DTW and warped based on the most similar prototype. DTW 
is widely used in variable-length time series for alignment and 
similarity calculation between two series [79]

Pooling-based Length normalization can also be achieved within the 
model architecture through pooling implementations.

• Adaptive max pooling [80]: Adjusts its window size and stride 
based on the length of the input time series to produce a fixed 
output length. It finds the maximum value in each window and 
discards the other elements to generate the output. Adaptive max 
pooling is widely used in the downsampling phase of deep learn-
ing, leveraging its ability to receive inputs of arbitrary length and 
transform them to a fixed length without parameter training [81–
83].

• Adaptive average pooling: This method adjusts its window size 
and stride based on the length of the input time series to produce 
a fixed output length. It calculates the average value in each 
window and discards all elements in the window to generate 
the output. Adaptive average pooling is similar to adaptive max 
pooling, except that it uses an averaging operation on the data 
within the window [21,84].

3.3. Datasets

All benchmarked systems are evaluated on 14 multi-class variable-
length time series datasets recorded for three types of tasks: (1) 10 
gesture recognition datasets provided by the UCR archive [25], 
which mainly collect acceleration and hand trajectory data during hand 
movements. These time series exhibit low degrees of fluctuation. The 
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length of most dataset’s series ranges from tens to hundreds, and all are 
multi-categorical datasets, with the GestureMidAir dataset containing 
the most categories (26 kinds of hand movements); (2) 1 device iden-
tification datasets provided by the UCR archive [25], which contain 
both steady-state operation and startup transient current and voltage 
measurements labeled by eleven appliance categories. These time series 
are characterized by regular and repetitive changes, whose lengths 
range from one hundred to over a thousand frames; and (3) 3 asphalt 
pavement datasets provided by [26], which collect the acceleration 
of a car when it runs in different situations, i.e., the collected time 
series involve frequent and sharp fluctuations. Specifically, these three 
datasets were provided for pavement condition classification, pavement 
type classification, and pavement obstacle classification, with cate-
gories ranging from 2 to 4. The dataset with the largest length range 
(i.e., AsphaltRegularity) spans from tens to thousands of data points. 
For all datasets, the officially defined training and test splits are used 
for models’ training and evaluation and Table  2 lists detailed statistics 
of all benchmarked datasets.

4. Spectral pooling strategy

This section introduces our proposed spectral pooling (SP), in-
cluding its overview (Section 4.1) and key modules (Section 4.2 and 
Section 4.3).

Finding and motivation: We conducted a frequency analysis on 
117 equal-length datasets provided by the UCR archive. As shown in 
Figs.  11, 12, and 13, only 8 out of 117 datasets (three of them are 
simulated datasets) exhibited high amplitude values on high frequency 
components, accounting for only 7% of all datasets. Furthermore, Fig. 
3(a) and (b) show that adding random Gaussian noise to original time 
series significantly increases their high frequency amplitude values.
These indicate that low and middle frequency components usually 
represent the main patterns while high frequency components 
usually represent noises for most natural time series. Inspired by 
these, we propose a novel spectral pooling strategy for VTS classifi-
cation, which removes high frequency components to achieve length 
normalization (detailed in Section 4.1). It can prevent significant in-
formation loss while denoising the given time series for their length 
normalization. Different from truncation-based strategies [44,45] that 
directly remove frames, our spectral pooling truncate time series in 
the frequency domain, which largely reduces the information loss. On 
the other hand, compared to padding methods [20,45] and adaptive 
max/average pooling [81,83] which introduce data points that do not 
exist, ours can exclude the negative influences of padded data points, 
and thus avoid information distortion.

4.1. The overview of spectral pooling

Spectral pooling (SP) layer is an effective and plugin layer that 
facilitates DL models to end-to-end process a batch of VTS reducing 
information loss/distortion. Our SP layer can be inserted between any 
layers within standard DL models and jointly optimized with the rest 
layers in an end-to-end manner. As illustrated in Fig.  4, given a batch of 
(𝐵) VTS 𝐵 = {𝑋1, 𝑋2,… , 𝑋𝐵}, the proposed SP layer processes them 
using on a two-step strategy.

• Step 1: Length Tracking and Undistorted Spectral Representa-
tion Generation (LSG) first represents the original lengths (frame 
numbers) of all VTS in 𝐵 as 𝐓 = (𝑇 1, 𝑇 2,… , 𝑇 𝐵), and then 
pads zeros to each original time series 𝑋𝑏 accordingly, which 
is done in pre-processing. This results in all padded time series 
𝐗pad = {𝑋1

pad, 𝑋
2
pad,… , 𝑋𝐵

pad} having the same length 𝑇pad to 
be input to the model. Based on the obtained 𝐓, the LSG then 
computes an undistorted spectral representation 𝑋𝑏

freq from each 
padded time series 𝑋𝑏

pad by excluding the zero padded data points 
in the transform process, which is done in model.
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Table 2
Statistics of 14 employed variable-length time series classification (TSC) training datasets from provided by UCR and Souza et al. . Class 
represents the number of label classes provided by the dataset. Min. and Max. denote the shortest and the lengths of the longest time series in 
the dataset. Ave. and Med. are the average and median lengths computed from all time series in the dataset. Cv. represents the coefficient of 
variation [85], calculated as the standard deviation divided by the mean, quantifies variability in lengths within the dataset.
 Application Dataset name Class Min. Max. Ave. Med. Cv. (%) 
 Gesture AllGestureWiimoteX 10 11 385 124 118 52  
 Gesture AllGestureWiimoteY 10 8 369 128 116 54  
 Gesture AllGestureWiimoteZ 10 33 326 125 116 52  
 Gesture GestureMidAirD1 26 80 360 166 171 38  
 Gesture GestureMidAirD2 26 80 360 166 171 38  
 Gesture GestureMidAirD3 26 80 360 166 171 38  
 Gesture GesturePebbleZ1 6 115 455 233 197 35  
 Gesture GesturePebbleZ2 6 100 455 223 200 39  
 Gesture PickupGestureWiimoteZ 10 29 361 145 136 53  
 Gesture ShakeGestureWiimoteZ 10 41 385 171 158 51  
 Device PLAID 11 100 1344 323 300 44  
 Pavement AsphaltObstacles 4 111 736 297 227 38  
 Pavement AsphaltPavementType 3 96 1543 396 413 40  
 Pavement AsphaltRegularity 2 95 4201 387 335 65  
Fig. 3. (a) shows the original time series in the time and frequency domains; and (b) shows the original time series with added random Gaussian noise, in the time and frequency 
domains. The left part of each sub-graph displays the original time series in the time domain, while the right part shows the corresponding amplitude map in the frequency 
domain, with only half shown due to conjugate symmetry.
Fig. 4. Illustration of the proposed spectral pooling (SP). The LSG module (Section 4.2) first encodes the padded VTS as a set of undistorted spectral representations. Then, the 
ALN module (Section 4.3) further transforms them as a set of equal-length time domain representations.
• Step 2: Adaptive Length Normalization (ALN) is then carried 
out to remove several high frequency components from each 
undistorted spectral representation 𝑋𝑏

freq to ensure that all pro-
cessed spectral representations have the same length. Then, it 
converts these spectral representations back to the time domain, 
avoiding frequency misalignment (explained in Section 4.3),
i.e., the output of the SP layer is a set of equal-length time domain 
representations 𝐗𝑡 = {𝑋1

𝑡 , 𝑋
2
𝑡 ,… , 𝑋𝐵

𝑡 }, which retain the major of 
undistorted information of these input VTS.

In summary, our SP layer converts a set of VTS 𝐵 to a set of 
equal-length time series 𝐗𝑡 based on time-frequency transformation, 
which allows DL models to directly end-to-end batch process VTS 
reducing information loss/distortion. Importantly, applying our SP does 
not introduce additional model weights optimization burden, with its 
time complexity of 𝑂(𝑇 log(𝑇 )).
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4.2. Length tracking and undistorted spectral representation generation

The LSG enables DL models to batch process a set of VTS while 
preventing information distortion in an end-to-end manner. As illus-
trated in Fig.  5, LSG first records the length of all given time series 
(Step (i)) and applies zero-padding (Step (ii)) to pad all input variable-
length time series as equal-length time-series, facilitating the network 
layers prior to our SP to batch process them. Then, the LSG leverages 
the recorded series lengths to exclude padded data points (Step (iii)) 
and performs the Discrete Fourier Transform (DFT) to generate spectral 
representations (Step (iv)). Since the padded zeros are not involved in 
the final DFT, the obtained spectral representations are undistorted. 
For a given batch of VTS 𝐵 = {𝑋1, 𝑋2,… , 𝑋𝐵}, the LSG first records 
their lengths in a vector 𝐓 =

(

𝑇 1, 𝑇 2,… , 𝑇 𝐵). Then, each time series 
𝑋𝑏 ∈ 𝐵 is being padded with zeros at the end, making all padded 
time series 𝑋𝑏  having the same length 𝑇 . This zero-padding and 
pad pad
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Fig. 5. Illustration of the entire LSG step of our SP, from the pre-processing stage to the generation of undistorted spectral representations.
length vector recording process is carried out in the pre-processing 
stage, enabling batch training of the network layers prior to the SP 
layer as well. Theoretically, 𝑇pad can be an arbitrary length, where in 
subsequent experiments we follow a previous study [41] to set 𝑇pad as 
the longest length in the training set as: 
𝑋𝑏
pad =

(

𝑥𝑏0, 𝑥
𝑏
1,… , 𝑥𝑏

𝑇 𝑏−1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑋𝑏

, 𝑥0
𝑇 𝑏 ,… , 𝑥0𝑇pad−1

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
padded zero data points

)

(2)

where 𝑥0
𝑇 𝑏 ,… , 𝑥0𝑇pad−1  denote the padded zero data points. Note that 

larger 𝑇pad values just introduce more invalid padded data points, 
which do not enhance the performance. This way, all padded time 
series can be combined as a batch of equal-length time series 𝐗pad =
{𝑋1

pad, 𝑋
2
pad,… , 𝑋𝐵

pad} to be batch processed by DL models along with 
𝐓. At the inference stage, the test sample of an arbitrary length can be 
individually processed without padding or removing frames.

We then apply the DFT to encode each padded time series 𝑋𝑏
pad as 

a spectral representation 𝑋𝑏
freq =

(

𝑥𝑏freq(0), 𝑥
𝑏
freq(1),… , 𝑥𝑏freq(𝑇

𝑏 −1)
) that 

contains 𝑇 𝑏 rather than 𝑇pad frequency components from the padded 
time series 𝑋𝑏

pad, where the recorded length 𝑇 𝑏 ∈ 𝐓 is utilized. Specif-
ically, each frequency component 𝑥𝑏freq(𝑘) ∈ 𝑋𝑏

freq is only computed 
based on the data points of the original time series 𝑋𝑏 (i.e., the data 
points from 𝑥𝑏0 to 𝑥𝑏𝑇 𝑏−1

 in 𝑋𝑏
pad), which avoids information distortion 

caused by the padded data points. This can be formulated as: 

𝑥𝑏freq(𝑘) =
𝑇 𝑏−1
∑

𝑗=0
𝑥𝑏pad(𝑗)𝑒

−𝑖 2𝜋
𝑇 𝑏

𝑗𝑘

= Re(𝑥𝑏freq(𝑘)) + 𝑖Im(𝑥𝑏freq(𝑘))

(3)

where 𝑘 = 0, 1,… , 𝑇 𝑏 − 1; Re(𝑥𝑏freq(𝑘)) and Im(𝑥𝑏freq(𝑘)) represent the 
real and imaginary parts of the 𝑘th frequency component 𝑥𝑏freq(𝑘), 
respectively. Here, each frequency component 𝑥𝑏freq(𝑘) is computed 
from the entire time series 𝑋𝑏, capturing global temporal patterns 
at a specific frequency scale—where lower frequencies correspond to 
gradual, long-term trends, and higher frequencies capture sharp, short-
term fluctuations. Consequently, the resulting spectral representation 
𝑋𝑏
freq encodes multi-scale temporal dynamics of the original series, 

making the frequency domain a natural space for performing temporal 
information fusion.

4.3. Adaptive length normalization

The ALN step normalizes all obtained variable-length spectral rep-
resentations 𝑋𝑏

freq (𝑏 = 1, 2,… , 𝐵) in order to make them have the 
same length 𝑇  while avoiding significant information loss/distortion. 
Here, 𝑇  is set as the frame number corresponding to the shortest 
training time series. Specifically, for each spectral representation 𝑋𝑏

freq
that has no less than 𝑇  frequency components (i.e., 𝑇 𝑏 ≥ 𝑇 ), our 
SP layer truncates its high frequency components to only retain 𝑇
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lowest frequency components that consist of: (i) the DC component 
𝑥𝑏freq(0); (ii) the first 𝑇 ∕2 lowest frequency components corresponding 
to 𝑥𝑏freq(𝑘), 𝑘 = 1, 2,… , 𝑇 ∕2; and (iii) the conjugate symmetric frequency 
components corresponding to 𝑥𝑏freq(𝑘), 𝑘 = 𝑇 𝑏 − 𝑇 ∕2 + 1,… , 𝑇 𝑏 − 1. This 
can be formulated as: 

𝑥̂𝑏freq(𝑘) =

{

𝑥𝑏freq(𝑘), 0 ≤ 𝑘 ≤ 𝑇 ∕2

𝑥𝑏freq(𝑇
𝑏 − (𝑇 − 𝑘)), 𝑇 ∕2 < 𝑘 < 𝑇

(4)

As a result, a batch of equal-length spectral representations 𝐗̂freq =
{𝑋̂1

freq, 𝑋̂
2
freq,… , 𝑋̂𝐵

freq} are obtained.
However, the spectral representations truncated from different VTS 

do not describe the same set of frequency components (i.e., if 𝑇 1 ≠
𝑇 2, the 𝑘th frequency components of the spectral representation 𝑋1

freq
and 𝑋2

freq correspond to 2𝜋𝑘∕𝑇 1 and 2𝜋𝑘∕𝑇 2, respectively, and thus 
2𝜋𝑘∕𝑇 1 ≠ 2𝜋𝑘∕𝑇 2.). As demonstrated in Eq. (3), this would result 
in frequency misalignment for the truncated spectral representations, 
and further lead to potential confusion for DL models’ training and 
reasoning. To address this issue, we apply the Inverse Discrete Fourier 
Transform (IDFT) to decode the truncated equal-length spectral rep-
resentations 𝐗̂freq to equal-length time domain representations 𝐗𝑡 =
{𝑋1

𝑡 , 𝑋
2
𝑡 ,… , 𝑋𝐵

𝑡 } as: 

𝑥𝑏𝑡 (𝑛) =
1
𝑇

𝑇−1
∑

𝑘=0
𝑥̂𝑏freq(𝑘)𝑒

𝑖 2𝜋𝑇 𝑛𝑘 (5)

where 𝑛 = 0, 1,… , 𝑇 − 1, and we set Im(𝑥̂𝑏freq(𝑇 ∕2)) = 0 to ensure 
the conjugate symmetry of each spectral representation. This way, 
the twiddle factor 𝑒𝑖 2𝜋𝑇 𝑛𝑘 [86] in Eq. (5) are consistent for all equal-
length spectral representations during the IDFT. To better illustrate 
the implementation of ALN, we visualize the complete process in Fig. 
6. First, the 𝑇  lowest frequency components are selected from the 
original spectral representation 𝑋𝑏

freq based on Eq. (4). These retained 
components include the DC component, the lowest 𝑇 ∕2 frequency 
components, and their conjugate symmetric frequency components. 
Next, conjugate symmetry is enforced by setting Im(𝑥̂𝑏freq(𝑇 ∕2)) = 0, 
ensuring that the reconstructed time-domain representation obtained 
via IDFT remains real-valued. This process enables the transformation 
of spectral representations into equal-length and comparable time-
domain representations that preserve the dominant information of the 
original variable-length inputs. In summary, the obtained time domain 
representations not only summarize the majority information of their 
corresponding VTS (i.e., from their low and middle frequency com-
ponents), but also are encoded to the same length without distortion 
(i.e., the encoding process does not involve any re-shape/interpolation 
nor affected by padded information). More importantly, this IDFT 
operation avoid the frequency misalignment issue in directly processing 
these equal-length spectral representations.

However, directly defining 𝑇  based on the shortest time series in 
the training set can cause excessive information loss (i.e., removed 
frequency components). Therefore, we introduce a trade-off factor 𝛼
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Fig. 6. Illustration of the entire ALN step in our SP, from retaining the lowest 𝑇  frequency components to enforcing conjugate symmetry and applying IDFT to generate equal-length 
time domain representations. For clarity, only the imaginary part of the spectral representation is shown.
Table 3
Average test ACC results (%) over 14 variable-length datasets achieved by the benchmarked length normalization strategies for eight DL 
models. Spectral pooling (p) and Spectral pooling (m) denote that applying SP as the pre-processing and pooling layer, respectively. Bold 
values indicate the best results while the underlined values indicate the second best systems.

Methods MLP LSTM FCN Resnet Inception Transformer Informer TimesNet

Pr
e-
pr
oc
es
sin
g

Padding
Zero pad (Pre) [45] 62.82 62.98 68.80 72.25 77.27 70.96 63.08 69.66
Zero pad (Post) [45] 62.50 62.74 68.80 70.47 77.57 70.28 61.93 70.53
Zero pad (Outer) [20] 65.66 63.48 68.76 72.96 75.91 70.57 64.69 70.49
Zero pad (Mid) [20] 63.39 62.12 67.38 71.42 73.70 69.07 64.07 70.00
Zero pad Avg. 63.59 62.83 68.43 71.77 76.11 70.22 63.44 70.17
Noise pad (Pre) [20] 62.88 65.32 68.79 73.14 77.10 70.81 63.98 69.64
Noise pad (Post) [44] 62.57 61.19 68.77 72.23 77.80 69.75 63.05 69.43
Noise pad (Outer) [44] 65.51 62.94 68.85 72.07 76.17 70.07 64.87 70.97
Noise pad Avg. 63.65 63.15 68.80 72.48 77.02 70.21 63.96 70.01
Edge pad (Pre) 60.59 61.65 58.37 64.32 70.91 61.53 62.16 68.00
Edge pad (Post) 60.04 63.00 60.10 64.57 71.72 61.05 59.65 66.81
Edge pad (Outer) 64.46 58.22 58.75 61.78 69.93 60.92 59.50 67.75
Edge pad Avg. 61.69 60.95 59.07 63.55 70.85 61.16 60.43 67.52
STRF pad [20] 55.07 60.93 62.49 65.92 71.37 70.92 69.73 69.13
Random pad [20] 64.72 58.71 59.00 64.74 71.55 68.94 66.39 69.84
Zoom pad [20] 64.32 58.91 63.62 65.02 71.10 63.57 69.17 66.82
Avg. 62.65 61.70 64.80 68.53 74.00 67.57 64.02 69.15
Truncation
Truncate (Pre) [45] 47.91 48.37 52.52 53.60 53.90 50.07 48.85 49.94
Truncate (Post) [45] 43.65 45.77 48.16 50.32 52.14 46.37 47.67 48.11
Truncate (Outer) [44] 53.12 51.47 55.41 55.48 57.95 52.70 54.23 55.80
Avg. 48.22 48.53 52.03 53.13 54.66 49.71 50.25 51.28
Resampling
Linear interpolate 63.83 59.34 63.71 65.95 70.45 64.50 68.88 65.92
Frequency selection [3] 54.58 53.88 59.41 60.72 59.72 51.81 48.82 54.97
Avg. 59.20 56.61 61.56 63.33 65.08 58.15 58.55 60.44
Warping
Nearest guided warping- 𝛼 [19] 58.96 55.57 59.03 61.47 62.49 60.39 58.47 61.82
Nearest guided warping- 𝛼𝛽 [19] 66.67 61.95 65.42 67.14 68.45 63.77 63.33 66.39
Avg. 62.81 58.76 62.22 64.30 65.47 62.08 60.90 64.10
Spectral pooling (p) (Ours) 67.08 67.65 72.22 74.90 78.74 69.55 70.98 71.23

Po
ol
in
g

Pooling
Adaptive max pooling – 70.85 73.50 77.11 79.45 70.37 57.95 69.07
Adaptive average pooling – 63.64 71.67 74.48 78.66 70.33 65.67 69.29
Spectral pooling (m) (Ours) – 75.50 77.10 78.44 80.10 73.18 74.47 71.80
Avg. – 69.99 74.09 76.67 79.40 71.29 66.03 70.05
 
 
 

 
 
 
 
 

to define 𝑇 , i.e., it sets 𝑇  as the length of the 𝛼-percentile shortest
time series in the training set. In this case, each time series 𝑋𝑏 that
has less than 𝑇  frames (i.e. 𝑇 𝑏 < 𝑇 ), its time domain representation
𝑋𝑏

𝑡  is simply equaling the first 𝑇  frames of its padded time series 𝑋𝑏
pad

(i.e., 𝑋𝑏
𝑡 = {𝑥𝑏pad(0), 𝑥

𝑏
pad(1),… , 𝑥𝑏pad(𝑇−1)}. Each time series 𝑋𝑏 that has

more than 𝑇  frames is still processed based on previously introduced
LSG and ALN steps. While this strategy would introduce distortion for
time series whose length is less than 𝑇 , it reduces information loss for
longer ones, i.e., 𝛼 decides the trade-off between distortion/information
loss during training (evaluated in Section 5.2.2).
9 
5. Experiment

In this section, we first present the performances of the 22 bench-
marked length normalization methods achieved for 14 widely-used 
datasets based on 8 benchmarked network architectures in Section 5.1. 
We then demonstrate the effectiveness and ablation analysis of our 
proposed spectral pooling (SP) method in Section 5.2.

5.1. Benchmarking results

Table  3 reports the results achieved by all benchmarked length 
normalization strategies, based on which we provide the following 
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Fig. 7. t-SNE visualizations of features output from different length normalization strategies on the variable-length AsphaltPavementType dataset, where two deep learning models 
are individually employed. Top row: Inception-based models. Bottom row: FCN-based models. Each point represents a sample in the 2D projected feature space, with colors denoting 
class labels.
discussions. Based on the discussion below, we concluded that end-
to-end pooling-based length normalization strategies are superior to 
pre-processing-based strategies, as pooling-based length normalization 
strategies facilitate DL models to obtain a more aggregated feature 
distribution, where our proposed SP achieves state-of-the-art results 
across various model architectures and datasets. Meanwhile, choosing 
different padding locations according to model architectures can im-
prove the performance of padding methods. It is also interesting to note 
that models performing well on equal-length series classification are 
unlikely to perform well on VTS classification.
Comparison between pre-processing and pooling-based length nor-
malization strategies: As shown in Fig.  7, pooling-based length nor-
malization strategies (integrated within the deep learning models) 
consistently yield clearer and more compact feature representations 
compared to various pre-processing-based strategies. The t-SNE visu-
alizations clearly illustrate that features learned by end-to-end pooling 
strategies form tighter clusters within each class and exhibit clearer 
separation between classes, which indicates more effective preservation 
of task-specific information. In contrast, features learned via pre-
processing methods (e.g., zero-padding or truncation) are generally less 
compact and show more overlap between classes, reflecting potential 
loss or distortion of discriminative information. This advantage arises 
because model training inherently and jointly optimizes these pooling 
operations in coordination with other model layers, i.e., end-to-end 
optimization.

Comparison among different pooling strategies: Our SP can effec-
tively encode global information across all time points and consistently 
outperformed adaptive max/avg pooling that only summarize local 
time domain patterns, which cannot avoid the influence of the padded 
data points, while the average and max pooling beat each other depend-
ing on the model. In particular, our SP achieved significantly higher 
accuracy compared to max/avg pooling when integrating them into 
LSTM, FCN, and Informer models.
Comparison among different pre-processing strategies: Except the 
SP, the average performances of padding strategies are generally su-
perior to the other three types of solutions. Among all pre-processing 
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strategies, truncation-based methods achieved the worst average per-
formance, as directly removing a large part of data points lead to sub-
stantial information loss, while resampling strategies either introduce 
non-existent time points or discard some low and middle frequency 
components. Although warping-based strategies can partially address 
the distortion problem and achieved better performances, they have a 
quadratic time complexity. Also, padding time series with either zeros 
or low-amplitude noise at their beginning or end, achieved superior 
results than other padding strategies, where noise padding frequently 
exhibits greater robustness with marginally improved results over the 
simple zero padding. In contrast, random and STRF pad performed less 
effectively, as distributing padded zeros into time series would distort 
their shape. Furthermore, zoom pad that duplicates neighboring values, 
outperformed the edge pad which relies on edge values of time series. 
Importantly, the optimal padding locations are different across various 
backbones. For example, MLP performed best with padding at both 
ends (denoted as ‘Outer’), while LSTM is less affected by pre-padding 
due to its sequential processing. Similarly, the padding location has 
limited impacts on CNNs (e.g., FCN, ResNet, Inception and TimesNet) 
and Transformer’s performances. Results also reveal that information 
described by the middle segments (Truncate (Outer)) in the VTS is more 
valuable than the information represented by the front/end (Truncate 
(Pre)/(Truncate (Post))). Consequently, separately truncating both ends 
of VTS is more effective.
Comparison of the benchmarked results achieved on datasets 
whose time series are mainly represented by low-frequency com-
ponents and high-frequency components: Fig.  8 shows that the time 
series in 11 out of the 14 employed VTS datasets have clearly less 
information at high frequency components compared to low/middle 
frequency components, while the high frequency components represent 
more information for VTS in three pavement classification datasets. We 
compare the average accuracy results of eight benchmarked backbones 
achieved for each of these two types of datasets. As we can see from the 
left part of Table  4, the results of all benchmarked length normalization 
methods (except our SP) achieved for each sub-frequency type are simi-
lar to their corresponding results achieved on all 14 datasets, where the 
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Fig. 8. The amplitude maps of 14 variable-length series datasets, only half of which are shown due to conjugate symmetry, with the names of the datasets where the high-frequency 
components have information labeled in purple.
Table 4
Average test accuracy (%) across eight backbone models on variable-length datasets categorized by frequency content and 
length variation: the left part summarizes results on 11 datasets with few high-frequency information (Few-hf) and 
3 datasets with more high-frequency information (More-hf), while the right part presents results on 4 datasets with 
different levels of length variation, where AsphaltRegularity (Asphalt-R) and AllGestureWiimoteY (Gesture-Y) exhibit larger 
variation in series length, and GesturePebbleZ1 (Gesture-Z1) and AsphaltObstacles (Asphalt-O) show smaller variation. SP 
(p) and SP (m) refer to applying spectral pooling as a pre-processing method and as a model-integrated pooling layer, 
respectively. Bold values indicate the best results, and underlined values indicate the second-best.

Methods Few-hf More-hf Gesture-Z1 Gesture-Y Asphalt-O Asphalt-R

Pr
e-
pr
oc
es
sin
g

Padding
Zero pad (Pre) [45] 62.51 90.37 80.97 63.65 84.27 96.71
Zero pad (Post) [45] 62.12 90.02 81.63 63.43 84.62 95.71
Zero pad (Outer) [20] 63.22 90.51 82.53 63.81 84.55 96.91
Zero pad (Mid) [20] 61.70 89.44 79.88 63.77 81.97 96.43
Noise pad (Pre) [20] 63.13 90.34 81.56 63.56 83.96 96.86
Noise pad (Post) [44] 62.07 90.22 81.87 63.48 83.75 97.06
Noise Pad (Outer) [44] 63.04 90.54 81.85 64.07 84.96 96.98
Edge pad (Pre) 56.31 89.58 64.33 64.67 83.51 96.58
Edge pad (Post) 56.25 89.45 71.91 64.23 82.90 96.90
Edge pad (Outer) 55.26 89.80 60.63 64.98 83.71 97.26
STRF pad [20] 59.54 88.26 87.75 57.91 83.12 94.43
Random pad [20] 58.79 90.03 85.85 61.18 84.55 97.32
Zoom pad [20] 59.00 88.48 83.43 60.31 82.45 95.68
Truncation
Truncate (Pre) [45] 42.32 81.19 69.86 30.28 69.78 92.47
Truncate (Post) [45] 39.43 78.36 46.47 30.07 62.03 95.98
Truncate (Outer) [44] 46.54 83.80 81.62 28.65 78.27 91.97
Resampling
Linear interpolate 58.94 88.60 84.70 60.15 83.33 95.78
Frequency selection[3] 48.30 81.87 52.27 52.65 64.87 98.02
Warping
Nearest guided warping- 𝛼 [19] 54.43 79.37 79.67 62.66 73.55 90.10
Nearest guided warping- 𝛼𝛽 [19] 60.04 85.00 82.42 68.23 81.06 95.37
Spectral pooling (p) (Ours) 66.71 89.28 91.44 65.36 84.81 98.81

Po
ol
in
g Pooling

Adaptive max pooling 65.27 92.87 85.10 64.14 88.57 98.32
Adaptive average pooling 64.21 93.72 64.21 58.15 88.38 99.01
Spectral pooling (m) (Ours) 70.81 94.10 86.82 71.60 89.10 99.34
C
a
r
t
s
s
o
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wo pre-processing methods, zero pad and noise pad, achieved decent 
erformances, while the truncation-based methods are least effective. 
hile the above benchmarked result are not sensitive to the dominant 
requency components of the processed time series, our proposed SP 
trategy demonstrates superiority on datasets whose time series have 
learly less information at high frequency components, i.e., both SP (p)
or pre-processing and SP (m) for pooling achieved the highest average 
ccuracy, with pre-processing-based SP (p) even outperforming the 
nd-to-end adaptive max/average pooling. Importantly, our end-to-end 
P (m) attains the highest accuracy on both types of datasets.
 d

11 
omparison among datasets with different degrees of length vari-
tion: The right part of Table  4 shows that the average accuracy 
esults achieved by eight backbones for different length normaliza-
ion strategies on datasets with different length variations. The re-
ults demonstrate that almost all benchmarked length normalization 
trategies are robust to this factor. However, for truncation meth-
ds, truncating only the beginning or the end of the time series per-
orms better than truncating both ends on datasets with large distri-
utional differences. The frequency selection method is suitable for 
atasets spanning a wide range of lengths, e.g., it achieves sub-optimal 
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Table 5
Average test ACC (%) over 14 datasets achieved by different poolings equipped with (w) and without (w/o) our length tracking.
 LSTM FCN Resnet Inception Transformer Informer TimesNet 
 Spectral pooling (m) w/o length tracking 73.53 74.57 77.35 78.37 70.74 63.07 69.28  
 w/ length tracking 75.50 77.10 78.44 80.10 73.18 74.47 71.80  
 Adaptive max pooling w/o length tracking 70.85 73.50 77.11 79.45 70.37 57.95 69.07  
 w/ length tracking 70.80 75.51 77.00 78.85 72.81 70.19 70.89  
 Adaptive average pooling w/o length tracking 63.64 71.67 74.48 78.66 70.33 65.67 69.29  
 w/ length tracking 68.57 73.50 75.30 79.65 71.63 73.92 70.24  
performance among pre-processing methods on Asphalt-R, but per-
forms poorly on other datasets with narrower length ranges. SP (p)
is consistently top/second-performing, even exceeding based-pooling 
on the GesturePebbleZ1 dataset. SP (m) is consistently top-performing 
compared to the pooling-based methods across all four datasets.
Performances of existing TSC DL models on VTS classification: It 
can be observed that the Inception achieved the best performances 
on VTS classification when employing different benchmarked pre-
processing and pooling-based length normalization strategies. How-
ever, the state-of-the-art TimesNet for equal-length time series classi-
fication only achieved middle-ranking VTS classification results among 
all benchmarked competitors. We explain this as the TimesNet attempts 
to treat each time series as a periodical signal, where padding data 
points would strongly affect its performance in defining the period 
division. In contrast, the attention mechanism of the Transformer 
effectively manages interference from the padded data points, and 
thus achieved promising results. While the ProbSparse self-attention in 
Informer degrades the attention to reduce time complexity, it fails to 
demonstrate this advantage.

5.2. Results achieve by our spectral pooling

5.2.1. Comparison with benchmarked strategies
The proposed SP layer can be used either as a pooling layer inside 

DL models or attached at the top of them as a pre-processing layer. It is 
clear that our SP-based pre-processing strategies outperformed all other 
pre-processing strategies on 7/8 backbones, which achieved the fourth 
best performance on the remaining backbone. Meanwhile, our SP-based 
pooling is also superior to other pooling strategies across all backbones, 
and it performs well on datasets with different frequency types and 
varying degrees of length variation, suggesting that our SP layer is 
a robust and state-of-the-art length normalization strategy for 
variable time series classification (TSC) tasks. This can be explained 
by the facts: (i) when employing our SP as a pre-processing layer, it 
causes much less information loss/distortion compared to existing pre-
processing truncation/wrapping/resampling strategies; (ii) when SP is 
employed as a pooling layer, it retains global information and thus 
effectively captures the trend of the input time series. This is different 
from adaptive pooling layers focusing on modeling local information; 
and (iii) our length tracking ensures the SP to process time series in-
dependent of the padded data points, which avoids the introduction of 
non-existent information. Table  5 shows that this strategy significantly 
enhanced performances.

To further evaluate the robustness and superiority of our SP, we 
conducted a comprehensive statistical analysis using the Bayesian 
Wilcoxon signed-rank test [64]. As shown in Figs.  14 and 15, our 
SP consistently outperformed most baseline strategies with high con-
fidence. When using our SP as a pre-processing method (SP (p)), it 
achieved near-certain superiority (i.e., posterior probability close to 
100%) over truncation, resampling, and warping methods across all 
backbones (except for Nearest Guided Warping-𝛼𝛽 on MLP). Among 
padding-based strategies, only the noise pad (pre) in LSTM slightly 
surpasses SP (p). Additionally, due to the inherent robustness of the 
Transformer’s self-attention mechanism, half of the evaluated padding 
methods exhibit marginally higher probability than SP (p) in that 
12 
model (in 7 out of 13 padding variants). When applying our SP as a 
pooling layer (SP (m)), it achieved clearly advantages over both adap-
tive average pooling and adaptive max pooling with high confidence—
exceeding 70% across all backbones and reaching over 90% in most 
cases. The only exception is on Inception, where SP (m) performs com-
parably to adaptive max pooling, with a 53% probability of practical 
equivalence.

5.2.2. Ablation studies
This section first analyzes the impact of length tracking and adap-

tive length normalization (ALN) of the proposed SP method on VTS 
classification, and then demonstrates how the performance varies with 
different values of the hyperparameter 𝛼 and with the SP layer placed 
at various positions within the model.
Influence of the length tracking: Table  5 demonstrates that the 
proposed length tracking clearly improved the average performances 
on most cases (18/21). Particularly, it largely impacted on our SP layer. 
This is because the length tracking prevent all frequency components 
in DFT from distorted by the padded data points. Besides, excluding 
padded data points in generating outputs also lead more benefits to av-
erage pooling than max pooling, as padded data points would certainly 
impact the average value but may not change the local max value. 
When without utilizing our length tracking, the SP still consistently 
outperformed the other two pooling strategies.
Influence of the ALN: Our ALN consists of two main stages: (1) trun-
cating high frequency components from the variable-length spectral 
representations; and (2) inversely converting the truncated spectral 
representations back to time domain representations. Table  6 shows 
that the first stage of truncating the signal in frequency domain and us-
ing the truncated spectral representation for classification, significantly 
improves the average performance compared to direct truncating in the 
time domain, except for Transformer and Informer. The second stage 
which converts the truncated spectral representation back to the time 
domain results in further performance gain, suggesting that our strategy 
can effectively address the frequency misalignment issue.
Influence of different 𝛼: Table  7 suggests that DL models’ perfor-
mances are also influenced by 𝛼 values, where the best result of some 
models are achieved when 𝛼 ≠ 0. This suggests that retaining more 
information at the cost of certain degrees of distortion could improve 
the SP’s performance. However, if a large part of VTS are distorted 
(𝛼 ≥ 0.4), the additionally retained information cannot compensate 
their negative impacts, i.e., the best results are achieved when 𝛼 = 0 or 
𝛼 = 0.2 for most cases.
Influence of different 𝛼 from different task: We further investigated 
the selection of 𝛼 in terms of different classification tasks. For gesture 
recognition datasets, Table  8 suggests that most models (except Trans-
former) achieved their best performances when 𝛼 = 0.2. The amplitude 
maps (Fig.  8) indicate that the energy distribution for gesture datasets 
is predominantly concentrated in the low-frequency region, with rel-
atively little information represented by middle and high-frequency 
bands. Therefore, during the length normalization, a smaller 𝛼 value 
is more appropriate, as truncating middle and high-frequency compo-
nents would not only retain almost all crucial information but also 
remove irrelevant noises. For device identification dataset PLAID, 
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Table 6
Average test ACC (%) over 14 datasets achieved with different ALN settings. Trunc-t. represents directly truncating VTS in time domain; Trunc-f. represents truncating high 
frequencies (Eq. (4)); and Conv. represents converting to time domain (Eq. (5)).
Trunc-t. Trunc-f. Conv. MLP LSTM FCN ResNet Inception Transformer Informer TimesNet

p m p m p m p m p m p m p m p m

3 43.65 – 59.02 46.42 48.16 48.91 50.32 50.82 73.57 70.92 64.98 72.44 59.68 71.82 58.12 54.97
3 61.09 – 56.06 75.30 65.35 77.00 67.25 78.16 67.01 77.28 59.68 71.87 52.68 70.08 62.13 65.20
3 3 67.08 – 67.65 75.50 72.22 77.10 74.90 78.44 78.74 80.10 69.55 73.18 70.98 74.47 71.23 71.80
Table 7
Average test ACC (%) achieved for different trade-off factor 𝛼 value with our SP as pre-processing (p) and pooling layer (m).
 MLP LSTM FCN ResNet Inception Transformer Informer TimesNet

 p m p m p m p m p m p m p m p m  
 𝛼 = 0 67.08 – 67.57 75.50 72.22 77.10 74.90 78.44 76.07 78.83 63.97 72.87 69.15 74.17 69.26 71.80 
 𝛼 = 0.2 66.98 – 67.65 71.89 71.25 75.52 74.00 77.40 77.05 80.10 66.83 73.18 70.98 74.47 71.23 71.07 
 𝛼 = 0.4 66.88 – 65.87 70.84 71.19 73.67 72.77 76.00 78.74 78.51 69.55 73.12 70.65 73.62 69.89 67.57 
 𝛼 = 0.6 64.39 – 65.21 69.60 71.52 72.98 73.07 75.44 78.37 77.36 69.19 73.35 68.00 73.66 69.62 67.00 
 𝛼 = 0.8 64.15 – 65.59 66.86 70.53 72.99 74.02 74.87 77.77 77.27 69.87 73.55 67.94 73.25 69.41 65.32 
 𝛼 = 1 62.50 – 62.74 – 68.80 70.47 – 77.57 – 70.28 – 61.93 – 70.53 –  
Table 8
Average test ACC (%) achieved for different trade-off factor 𝛼 value with our SP as pre-processing (p) and pooling layer (m) on gesture datasets.
 MLP LSTM FCN ResNet Inception Transformer Informer TimesNet

 p m p m p m p m p m p m p m p m  
 𝛼 = 0 63.27 – 61.50 71.28 67.38 72.28 70.38 74.24 70.58 73.56 56.32 67.06 63.98 69.67 64.20 66.23 
 𝛼 = 0.2 66.98 – 67.65 71.90 71.25 75.52 74.00 77.40 77.05 80.10 59.74 67.45 66.44 69.88 65.05 65.21 
 𝛼 = 0.4 62.50 – 60.20 66.31 65.42 68.35 66.85 70.75 73.45 72.74 63.32 67.39 65.85 68.71 63.63 60.28 
 𝛼 = 0.6 59.59 – 58.99 64.44 65.59 67.50 67.25 70.12 73.35 71.26 62.53 67.72 62.08 68.75 63.26 59.99 
 𝛼 = 0.8 59.37 – 59.60 61.14 64.26 67.72 68.27 68.83 72.37 71.34 63.24 68.03 61.72 68.38 63.06 57.26 
 𝛼 = 1 58.57 – 56.08 – 62.96 – 66.01 – 71.85 – 64.00 – 55.10 – 63.58 –  
Table 9
Average test ACC (%) achieved for different trade-off factor 𝛼 value with our SP as pre-processing (p) and pooling layer (m) on device datasets.
 MLP LSTM FCN ResNet Inception Transformer Informer TimesNet

 p m p m p m p m p m p m p m p m  
 𝛼 = 0 65.50 – 59.70 63.10 65.30 69.20 73.10 70.20 82.60 78.30 69.00 72.90 64.20 64.20 62.90 64.40 
 𝛼 = 0.2 66.20 – 54.30 50.00 61.80 66.10 72.20 73.10 83.90 85.80 71.80 72.80 65.70 65.70 74.80 66.60 
 𝛼 = 0.4 66.80 – 46.50 51.20 65.70 62.50 73.50 74.40 87.80 84.90 72.40 73.70 65.10 65.50 72.90 67.50 
 𝛼 = 0.6 66.10 – 48.00 52.80 64.60 63.50 72.40 72.00 80.20 84.30 72.40 75.00 57.30 65.10 68.70 63.80 
 𝛼 = 0.8 65.90 – 48.40 52.10 64.80 61.00 72.80 74.80 80.80 84.10 71.80 73.50 57.70 64.80 68.70 70.00 
 𝛼 = 1 65.10 – 47.60 – 52.50 – 45.90 – 82.80 – 69.40 – 50.40 – 72.00 –  
where the energy of time series in this dataset is distributed relatively 
even across their low, middle and high frequency bands (illustrated in 
Fig.  8), the optimal 𝛼 values for different backbones generally range 
from 0 to 0.4 (demonstrated in Table  9). These results suggest that the 
optimal choice of 𝛼 depend on both the model architecture and the spe-
cific location where our spectral pooling is applied within the model. 
For pavement dataset, which contains richer high-frequency informa-
tion, Table  10 shows that the optimal 𝛼 values are consistently greater 
than 0.5 when our spectral pooling is applied as a pre-processing step. 
This suggests that, for datasets with substantial high-frequency content, 
padding is preferable to truncation, as it effectively preserves critical 
high-frequency information in these time-series. However, when our 
spectral pooling is integrated as a pooling layer within the model, 
the optimal 𝛼 values tend toward zero but the results achieved by 𝛼
values ranging from 0 to 0.4 are stable. This occurs because the models 
have already captured the essential features predominantly residing in 
the lower frequency range at early feature extraction layers. Further 
detailed analysis of this phenomenon is provided in the subsequent 
sections.

Impacts of the SP layer’s location in the model: Table  11 shows that 
integrating our SP layer into models is more beneficial than employing 
it as a pre-processing step, which again suggests the effectiveness of 
end-to-end normalizing over pre-normalizing. This can be explained 
by the fact that deep learning models often prioritize learning lower 
frequency components first, regardless of whether higher frequency 
13 
components or lower frequency components have larger amplitudes in 
the original time series (as illustrated in Fig.  9), a phenomenon known 
as spectral bias [87]. This explains why pooling-based SP outperformed 
pre-processing-based SP, i.e., since the crucial cues of the extracted 
feature already concentrated in low and middle frequency components 
compared to the original series which contain more high frequency 
contents, placing SP in the model means less information loss when 
truncating high frequency components. Fig.  10 further employs t-SNE 
to visualize the intermediate feature representations extracted from 
each block, both with and without the use of our SP. It shows a clear 
transition from a compact feature distribution (Fig.  10(b)) to a scattered 
distribution (Fig.  10(d)), suggesting that deeper layers without SP may 
generate features with larger intra-class distances. In contrast, applying 
SP at earlier stages helps refine feature representations, enhancing both 
intra-class compactness and inter-class separability of the extracted 
features. Moreover, Fig.  10(e), (f), and (g) highlight that the optimal 
position for placing SP varies depends on the model architecture. 
Specifically, SP achieved optimal performances when placing it im-
mediately after the block that initially generates the most compact 
intra-class features (i.e., after the first block for FCN and after the 
second block for Informer).

6. Conclusion

This paper presents the first comprehensive benchmark for VTS 
classification, evaluating 22 existing length normalization strategies 
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Table 10
Average test ACC (%) achieved for different trade-off factor 𝛼 value with our SP as pre-processing (p) and pooling layer (m) on pavement datasets.
 MLP LSTM FCN ResNet Inception Transformer Informer TimesNet

p m p m p m p m p m p m p m p m  
𝛼 = 0 80.33 – 90.43 93.66 90.66 95.80 90.60 95.23 92.20 96.60 87.83 92.26 88.06 92.50 88.26 92.93 
𝛼 = 0.2 82.10 – 91.33 92.56 92.00 95.00 91.60 94.13 93.06 96.06 88.83 92.43 87.90 92.70 90.66 92.10 
𝛼 = 0.4 81.53 – 91.20 92.50 92.26 95.13 92.30 94.06 93.36 95.63 89.40 92.06 88.50 92.70 89.76 91.90 
𝛼 = 0.6 79.83 – 91.70 92.40 93.63 94.43 92.70 94.33 94.53 95.40 90.30 91.60 91.33 92.90 91.16 91.46 
𝛼 = 0.8 79.50 – 91.30 90.86 93.36 94.56 93.60 95.03 94.80 94.76 91.36 92.00 92.10 92.33 90.83 90.66 
𝛼 = 1 74.73 – 90.00 – 93.70 – 93.53 – 94.90 – 91.53 – 88.56 – 93.23 –  
Table 11
Average test ACC (%) achieved by placing SP at different locations (after different layers) in DL models.
 LSTM FCN Resnet Inception Transformer Informer TimesNet 
 Pre 67.65 72.22 74.90 78.74 69.55 70.98 71.23  
 1 75.50 77.10 78.44 80.10 72.20 73.30 71.80  
 2 71.85 73.96 77.67 78.22 73.18 74.47 71.29  
 3 – 68.38 71.82 – 72.12 72.36 67.50  
ig. 9. Comparison between the Fourier domain amplitude maps representing: (a) original time series; (b) features extracted by the FCN-based system; and (c) features extracted 
y the Informer-based system.
ig. 10. t-SNE visualizations of intermediate feature representations learned from FCN (left) and Informer (right) models, illustrating the effect of spectral pooling (SP) on improving 
eatures’ intra-class compactness and inter-class separability. In the FCN, each block contains a convolutional layer followed by a GELU activation. In the Informer, each block 
onsists of 8-headed ProbSparse self-attention and layer normalization.
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cross 14 VTS datasets using 8 representative DL models. In addition, 
e propose a novel and effective SP-based normalization method, 
hich can be flexibly used either as a pre-processing step or integrated 
s a pooling layer within end-to-end DL architectures. The experimen-
al results lead to several key findings: (i) End-to-end pooling-based 
trategies generally outperform pre-processing-based ones, facilitating 
he DL model to obtain a more aggregated feature distribution; (ii) 
ero padding and noise padding are relatively robust pre-processing 
trategies, though the optimal padding position is model-dependent; 
iii) Truncation methods yield the poorest results due to significant 
m

14 
nformation loss, with symmetric truncation typically performing better 
han one-sided truncation; (iv) Most normalization methods show con-
istent performance across different dataset types and degrees of length 
ariation; (v) DL models tend to focus on low-frequency components for 
lassification, even when the original data contains rich high-frequency 
ontent; (vi) Models performing well on equal-length series classifica-
ion are unlikely to perform well on VTS classification; and (vii) our 
roposed SP effectively reduces information loss and distortion during 
ormalization, achieving state-of-the-art performance across multiple 
odels and datasets.
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Fig. 11. The amplitude maps of 40 equal-length series datasets in UCR, only half of which are shown due to conjugate symmetry, with the names of the datasets where the 
high-frequency components have information labeled in purple.
The proposed spectral pooling (SP) method have several advantages 
over existing strategies in processing VTS; (i) It can be flexibly used 
as either a pre-processing operation or a pooling layer integrated 
into standard deep learning models; (ii) as a pre-processing step 
(SP (p)), it fundamentally differs from widely used truncation-based 
methods that directly discard data points in the time domain. Instead, 
our SP performs truncation in the frequency domain, preserving main 
information by maintaining dominant spectral components. On datasets 
where information is concentrated in low-frequency components, our 
SP (p) even outperformed traditional adaptive pooling approaches; 
(iii) When used as a pooling layer (SP(m)) within deep learning 
models, SP effectively captures global temporal patterns, surpassing 
conventional adaptive pooling methods that focus on local information. 
Moreover, the selective truncation of high-frequency components aligns 
well with the spectral bias observed in deep networks, thereby mitigat-
ing information loss during length normalization; and (iv) our length-
tracking mechanism ensures accurate processing of valid (unpadded) 
15 
regions, thereby avoiding misleading information introduced through
padding.

Despite these advantages, our SP also has several limitations. When 
used as a pre-processing strategy (SP(p)), its performance may de-
cline on datasets dominated by high-frequency information due to the 
truncation of potentially information. In such cases, we recommend 
using SP(m), which incorporates spectral pooling into the model for 
end-to-end optimization to align well with the spectral bias. More-
over, since SP inherently suppresses high-frequency components, it 
may be fundamentally less suitable for tasks that rely heavily on such 
information—such as short-term time-series forecasting or anomaly 
detection.

In terms of scope, the current benchmark focuses exclusively on uni-
variate raw time-series data, aiming to establish a clear and standard-
ized foundation for variable-length time-series classification. However, 
our approach is naturally extensible to multivariate and multi-modal 
time series. For multivariate time series, our SP can be applied in-
dependently to each variable or jointly across variables to capture 
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Fig. 12. The amplitude maps of 40 equal-length series datasets in UCR, only half of which are shown due to conjugate symmetry, with the names of the datasets where the 
high-frequency components have information labeled in purple.
inter-dimensional dependencies. For multi-modal data, our SP can be 
used to temporally normalize variable-length time series (e.g., different 
numbers of audio frames and visual frames) from different modalities 
to the same length, enabling straightforward fusion. In addition, our 
framework supports benchmarking both early fusion (e.g., integrating 
features from different modalities at the input level) and late fusion 
(e.g., aggregating predictions from modality-specific branches) strate-
gies for multi-modal time series, which we plan to explore in future 
work.
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Fig. 13. The amplitude maps of 37 equal-length series datasets in UCR, only half of which are shown due to conjugate symmetry, with the names of the datasets where the 
high-frequency components have information labeled in purple.
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Fig. 14. Statistical analysis (based on Bayesian Wilcoxon signed-rank test) between our spectral pooling (used as a pre-processing step (SP (p))) and various padding-based length 
normalization methods across 14 VTS classification datasets and eight backbone models (columns). Each triangle illustrates the probability that SP (p) outperforms the compared 
method (left corner), the compared method outperforms SP (p) (right corner), or their performance is practically equivalent (top corner, accuracy difference < 1%). Higher density 
toward the left corner indicates larger advantages achieved by our SP (p).
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Fig. 15. Bayesian statistical comparisons of spectral pooling (SP) as a pre-processing strategy (SP (p)) and as a model-integrated pooling layer (SP (m)) against a broader set 
of benchmarks. SP (p) is compared with random padding, zoom padding, truncation, resampling, and warping strategies; SP (m) is compared with adaptive average and max 
pooling. Each triangle illustrates the probability that SP outperforms the compared method (left corner), the compared method outperforms SP (right corner), or their performance 
is practically equivalent (top corner, accuracy difference < 1%). Higher density toward the left corner indicates larger advantages achieved by our SP.
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