
F

V
e
S
a

b

c

d

e

A

K
V
T
S
B

1

p
i
o
h
i
i
s
s
l
h
v

q

h
R

Information Fusion 126 (2026) 103584

A
1

Contents lists available at ScienceDirect

Information Fusion

journal homepage: www.elsevier.com/locate/inffus

ull length article

ariable-length time series classification: Benchmarking, analysis and

ffective spectral pooling strategy
hiling Wu a,b,1, Siyang Song e,1, Songhe Deng a,b , Weicheng Xie a,b,c , Linlin Shen a,b,c,d ,∗

Computer Vision Institute, School of Artificial Intelligence, Shenzhen University, Shenzhen, Guangdong, 518060, China
National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, Guangdong, 518060, China
Guangdong Provincial Key Laboratory of Intelligent Information Processing, Shenzhen University, Shenzhen, Guangdong, 518172, China
Department of Computer Science, University of Nottingham Ningbo China, Ningbo, Zhejiang, 315100, China
University of Exeter, Stocker road, Exeter, Devon, EX4 4PY, United Kingdom

 R T I C L E I N F O

eywords:
ariable-length time series
ime series classification
pectral pooling
enchmark

 A B S T R A C T

Real-world time series classification (TSC) is challenging as time series collected in real-world conditions
usually exhibit variations in their lengths, which makes standard deep learning (DL) models being difficult
to directly process them (i.e., multiple variable-length time series (VTS)). Despite the existence of many pre-
processing and pooling-based methods for achieving length normalization for VTS, there lacks a comprehensive
and fair comparison across these methods through a uniform benchmark (e.g., standard backbones, datasets and
evaluation strategies). To address this gap, we conduct the first comprehensive benchmark for variable-length
time series classification tasks, evaluating the effectiveness of 22 previously widely-used length normalization
methods across 14 publicly available VTS datasets and 8 backbones. Since these existing methods lead
to varying degrees of information loss and distortion of the input VTS, we also propose a novel spectral
pooling (SP) for variable-length time series classification (VTS classification) tasks, which is a plugin layer
that can be inserted at any location within various DL models. Our SP allows DL models to process VTS
or their variable-length representations in an end-to-end manner within mini-batches, without distortion
or significant information loss. Experimental results demonstrate that the end-to-end length normalization
methods generally outperformed pre-processing-based methods for VTS classification, where our SP achieved
state-of-the-art performance across eight backbones over all existing 22 methods. Our code is publicly available
at https://github.com/CVI-SZU/VTS_benchmark.
. Introduction

Time series is a series of consecutive data points ordered in the tem-
oral dimension, whose classification (time series classification (TSC))
nvolves assigning a categorical label based on its shape, trends, and
ther relevant temporal patterns. In the past decades, TSC solutions
ave been widely explored across different real-world applications,
ncluding financial investment [1], healthcare [2,3] and load device
dentification [4]. However, a common challenge of real-world time
eries is that they often exhibit variations in lengths caused by different
ampling frequencies, acquisition duration or other factors. While the
ength variation issues caused by irregular sampling or missing data
ave been well studied [5–7], the problem of length variation due to
arying recording duration remains under-explored.
Traditional hand-crafted time-series feature extraction methods fre-

uently address such variable-length time series classification (VTS

∗ Corresponding author.
E-mail address: llshen@szu.edu.cn (L. Shen).

1 Equal contribution.

classification) tasks by employing specific measurements to compute
distances between each pair of variable-length time series (VTS) (e.g.,
dynamic time warping [8] and longest common subsequence [9]).
Based on such distances, each time series can be then predicted using
various distance-related classifiers (e.g., nearest neighbor classification
[10] and support vector machines [11]). Alternatively, other hand-
crafted approaches also extract equal-length representations (i.e., using
symbolic aggregation approximation [12], statistics [13] or identity-
vector [14]) to represent VTS, which subsequently can be classified by
standard machine learning techniques [12,14]. However, these hand-
crafted feature-based methods usually heavily rely on the domain
knowledge, making them less generalizable across different TSC tasks
and datasets.

Recent deep learning (DL) models are more flexible and effective
for learning task-specific features from various types of time series
ttps://doi.org/10.1016/j.inffus.2025.103584
eceived 24 August 2024; Received in revised form 17 May 2025; Accepted 26 Jul
vailable online 8 August 2025
566-2535/© 2025 Published by Elsevier B.V.
y 2025

https://www.elsevier.com/locate/inffus
https://www.elsevier.com/locate/inffus
https://orcid.org/0009-0005-9843-2083
https://orcid.org/0000-0001-8946-7472
https://orcid.org/0000-0003-1420-0815
https://github.com/CVI-SZU/VTS_benchmark
mailto:llshen@szu.edu.cn
https://doi.org/10.1016/j.inffus.2025.103584
https://doi.org/10.1016/j.inffus.2025.103584
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2025.103584&domain=pdf

S. Wu et al. Information Fusion 126 (2026) 103584
Fig. 1. Comparison between different length normalization strategies on a VTS dataset containing 𝐷 examples  =
{

(𝑋1 , 𝑇 1), (𝑋2 , 𝑇 2),… , (𝑋𝐷 , 𝑇𝐷)
}

, where 𝑋𝑑 (𝑑 = 1, 2,… , 𝐷) has
the length 𝑇 𝑑 . (a) The original time series 𝑋𝑑 ; (b) Zero Pad (Post): padding zeros at the end of the 𝑋𝑑 to make it having the length 𝑇max, where 𝑇max denotes the length of the
longest example in  ; (c) Edge Pad (Post): padding the end element of the 𝑋𝑑 to make it have the length 𝑇max; (d) STRP Pad: resampling 𝑇 𝑑 time steps to 𝑇max length, where
the sampled 𝑇max − 𝑇 𝑑 time steps are defined as zeros; (e) Zoom Pad: resampling 𝑇 𝑑 time steps to 𝑇max length, where each of the sampled 𝑇max − 𝑇 𝑑 time steps are defined by the
nearest neighboring time step; (f) Truncate (Post): truncating the last components of 𝑋𝑑 to make it have the length 𝑇min, where 𝑇min denotes the length of the shortest example
in  ; (g) Nearest Guided Warping-𝛼: applying dynamic time warping to warp 𝑋𝑑 according to its most similar prototypical series of the length 𝑇max; (h) Adaptive average
pooling: first adaptively calculating the window length based on a pre-defined length 𝑇 and the length of input time series, and then calculating the mean value of elements
within each window to define the corresponding component of the output time series. However, this strategy still requires data padding for batch training, and cannot exclude
the noise caused by padded data. (i) Spectral pooling: Our SP truncates 𝑋𝑑 in its frequency domain according to the pre-defined length 𝑇 , which can exclude the padded data
used for batch training. It avoids information distortion ((b)–(e) and (h))/significant information loss ((f)). The Kullback–Leibler (KL) divergence measures the difference between
the probability distribution of original time series 𝑋𝑑 and their normalized ones, where the smaller the KL divergence, the more similar between them.
for different TSC tasks [15–18]. However, while typical DL layers
(e.g., convolution, pooling, and activation layers) can handle multiple
variable-length inputs, the Multi-layer Perceptron (i.e., fully connected
(FC) layers)-based classifier/regressor used in standard DL models is
limited to process equal-length representations, making standard DL
models difficult to directly process multiple VTS. A common solution
to address this problem is pre-processing (e.g., truncation, padding,
resampling, or warping) multiple VTS to normalize them [19,20] to the
target length. However, each of these length normalization strategies
has been primarily evaluated on specific datasets/tasks based on task-
specific model architectures, making it unclear about not only their
performances for standard VTS classification, but also how well they
generalize to different backbones. In other words, there lacks a com-
prehensive and fair comparison/investigation among existing length
normalization strategies (Research gap 1). Although some methods—
such as adaptive average or max pooling [21–23] are model-agnostic
and can already effectively normalize the lengths of input VTS within
DL models end-to-end, they usually lead to varying degrees of informa-
tion loss or distortion (Research gap 2). For example, adaptive pool-
ing methods, (e.g., adaptive average or max pooling) usually require
padding all input VTS within a batch to a uniform length when batch
training is necessary [23,24]. Consequently, the padded data points
(e.g., padded zeros) are typically included in the pooling operation,
leading to the information distortion of the obtained representations. In
addition, these pooling operations only capture local (short-term) sta-
tistical information within the window without considering long-term
shape/trend cues of the input VTS.

To comprehensively and fairly investigate the effectiveness of ex-
isting strategies for DL-based VTS classification, this paper presents
the first benchmark evaluation and analysis of existing length nor-
malization strategies based on eight widely-used DL architectures and
14 publicly available VTS classification datasets [25,26]. Targeting
the limitations of existing length normalization strategies for variable-
length time series (VTS) analysis, we propose a generic, flexible, and
effective spectral pooling (SP) layer that can be seamlessly integrated
2
into deep learning models. Our SP consists of two main components: (1)
a Length Tracking and Undistorted Spectral Representation Generation
(LSG) strategy, which encodes variable-length VTS into undistorted
spectral representations in a batch manner; and (2) an Adaptive Length
Normalization (ALN) mechanism, which transforms these spectral rep-
resentations back into equal-length time-domain representations by
selectively truncating less informative high-frequency components. Our
SP reduces information distortion by excluding padded data points
while reducing information loss by truncating less informative high-
frequency components in the frequency domain. Fig. 1 illustrates the
performance of various length normalization methods, clearly demon-
strating SP’s superior ability in preserving the original data distribution.
The main novelties and contributions of this paper are summarized as:

• To the best of our knowledge, this is the first VTS classification
benchmark which comprehensively evaluates the effectiveness of
our SP layer and 22 existing widely-used length normalization
strategies, across a total of eight backbones including Multi-
layer Perceptron (MLP) [15], Long-short-term-memory Network
(LSTM) [27], Convolutional Neural Networks (CNNs) [15,28,29],
and Transformers [30,31].

• We propose an effective SP layer for DL-based VTS classification
tasks, allowing multiple VTS to be jointly processed by DL models
in a mini-batch manner reducing information loss/distortion.

• Our benchmark reveals that end-to-end pooling-based length
normalization strategies outperformed the pre-processing-based
strategies, which facilitate the DL model to obtain a more aggre-
gated feature distribution, where our SP achieved the state-of-
the-art performances across all eight backbones among all length
normalization strategies.

2. Related work

This section first reviews previous time series classification (TSC)
methods (including equal-length TSC) in Section 2.1, and then specif-
ically discuss widely-used length normalization strategies for variable-
length TSC analysis (Section 2.2).

S. Wu et al. Information Fusion 126 (2026) 103584
2.1. Time series classification

Over the last two decades, TSC algorithms have flourished as
TSC has been considered as one of the most challenging problems in
data mining [32]. Early traditional approaches have widely employed
distance-based methods [33], with dynamic time warping (DTW) fre-
quently used to measure the distance between series. Zhao et al. [34]
introduced shapeDTW, which considers point-wise local structural in-
formation during series warping to avoid matching points with distinct
neighborhood structures. Liu et al. [35] proposed a DTW-based time
distortion coefficient where the time distortion coefficients are com-
puted based on the compression, stretching, or matching alignment
of each point in the series and comprehensively considers both the
DTW distance and the time distortion coefficient for nearest-neighbor
classification. Alternatively, feature-based approaches for time series
classification utilize shapelets to identify distinctive parts of the se-
ries [36], or employ auto-correlation to measure dependence between
neighboring data points [37]. These extracted features are then fed to
various types of classifiers, including support vector machines [38],
decision trees [39], and naive bayes [40], for TSC.

In recent years, various deep learning network architectures have
been explored for TSC tasks. Wang et al. [15] introduced three sim-
ple architectures—multilayer perceptron (MLP), fully convolutional
network (FCN), and ResNet—as baselines for TSC. Kao et al. [27]
employed LSTM for acoustic event classification, while Karim et al. [41]
combined LSTM and FCN to construct a two-branch network for mul-
tivariate TSC. To achieve reliable TSC performance, Fawaz et al. [28]
incorporated the ensemble idea based on the Inception network, where
the proposed InceptionTime consists of five Inception ensembles with
the same architecture but different initialization parameters. By com-
bining these networks equally, InceptionTime can effectively reduce the
bias frequently occurred in single Inception networks. TimesNet [29]
achieved excellent TSC performances by transforming the original 1D
time series into a set of 2D tensors based on multiple periods, which
are then processed using 2D convolutional kernels. The Transformer
introduced by Vaswani et al. [30] has led to further improvements in
time series classification (TSC) compared to CNNs. Specifically, recently
proposed TSC Transformers have introduced novel attention mech-
anisms. For example, Informer [31] proposed ProbSparse attention,
which focuses on computing attention for a selected subset of important
positions to improve efficiency. On the other hand, Pyraformer [42]
proposed pyramidal attention, which constructs a multi-resolution C-
ary tree to form a pyramidal graph and applies the attention mechanism
within this graph. These approaches improve the computational ef-
ficiency of self-attention, aiming to optimize temporal and spatial
complexity while enhancing the performance of time series analysis
tasks.

2.2. Length normalization strategies

Standard DL models usually cannot directly process VTS, as their
FC layer-based classifiers/regressors require inputs to have the same
size [43]. Existing approaches frequently address this problem by intro-
ducing various pre-processing strategies to ensure that all time series
have the same length before feeding them to DL models [19]. These
pre-processing strategies include various padding methods (e.g., zero
padding [20], noise padding [44], stratified (STRF) padding that dis-
tributes zeros evenly [20], random padding that randomly places ze-
ros [20], and zoom padding that duplicates neighboring values [20]),
truncation [45], interpolation [44], and nearest guided warping which
warps time series to the length of the most similar time series via
DTW [19]. Fourier transform-based methods have gained increasing
attention in time series analysis. In FEDformer [46], randomly chosen
frequency components are used to reduce computations for long time
series. Wu et al. [29] and Cai et al. [47] use the Fourier transform to
detect main periodicities and reshape time series accordingly. Similarly,
3
Song et al. [3,13] applied the Fourier transform to select consistent
frequency components across different series lengths to obtain equal-
length representations, which has been further followed by several
time-series analysis studies [48–51].

Alternatively, other studies normalize the length of time series
within DL models, where pooling layers have been commonly used [24,
52]. For example, Fawazd et al. utilizes global average pooling to
handle variable-length transfer learning [53], and Yu et al. [23] pro-
poses a temporal pyramid pooling which uses multiple pooling layers
with different output sizes for multi-scale feature extraction. Xception-
Time [21] applies adaptive average pooling to retain more information
through larger output dimensions. Malekzadeh et al. [22] proposes
a DANA network to process variable-length multivariate sensor data
based on adaptive pooling. As discussed before, models equipped with
these pooling layers still require pre-processing-based length normaliza-
tion to achieve batch training and cannot exclude the noise caused by
pre-processing, which distorts the pooled feature maps to be distorted.

3. The proposed benchmarking framework

In this paper, we propose the first benchmarking framework that
aims to provide a rigorous and reproducible evaluation of the existing
length normalization strategies for variable-length time series classi-
fication (VTS classification) tasks on eight widely-used deep learning
(DL) backbones. Specifically, this section introduces our benchmarking
framework by presenting: (i) its coding infrastructure including em-
ployed DL backbones and their settings (Section 3.1); (ii) benchmarked
length normalization strategies (Section 3.2); as well as (iii) the datasets
used for evaluation (Section 3.3). The pipeline of the proposed VTS
benchmarking framework is also illustrated in Fig. 2

3.1. Coding infrastructure

The goal of our benchmark is to fairly compare the capabilities of
existing widely-used length normalization strategies for VTS classifica-
tion as previous studies failed to provide fair comparison among them
as: (i) previous studies evaluated their length normalization strategies
on different datasets; (ii) their evaluation was only carried out on
task/dataset-specific backbone architectures, lacking assessment of gen-
eralization performance across different standard DL backbones; and
(iii) different training strategies and model hyperparameter settings
have been employed, which also lead to effectiveness differences.

To facilitate a fair comparison among existing length normalization
strategies for VTS classification, our benchmark emphasizes a uni-
fied framework. Specifically, it is built on PyTorch [54] with unified
implementation of the data pipeline, model initialization, training, val-
idation, evaluation, and coding platform/libraries. The only differences
in experiments lies in the length normalization strategies and model
architectures of the employed DL models.

3.1.1. Data pipeline
Our benchmark utilizes three different data pipelines at the training

phase depending on the evaluated length normalization strategies: (i)
Pre-processing strategies: each original time series is first normalized
in length using the target pre-processing strategy, and then fed into
DL models in a mini-batch manner; and (ii) Other pooling-based
strategies: all original time series are first zero padded to have the
same length 𝑇pad, which are then fed to DL models in a mini-batch
manner. (iii) Our spectral pooling: all original time series are first
zero padded to have the same length 𝑇pad and the original lengths of
the input time series also be saved as a vector 𝐓 = (𝑇 1, 𝑇 2,… , 𝑇 𝐵),
which are fed to DL models in a mini-batch manner together.

3.1.2. Employed deep learning backbones
The goal of this paper is to explore length normalization strate-

gies for deep learning-based VTS classification. To fairly evaluate the

S. Wu et al. Information Fusion 126 (2026) 103584
Fig. 2. Illustration of our variable-length time series classification benchmark framework.
generalization capability of these strategies, we utilized eight typical
neural networks commonly used for TSC tasks [15,27,28,30], includ-
ing Multi-layer Perceptron (MLP), Long-short-term-memory Network
(LSTM), Convolution Neural Networks (CNNs) and Transformers, which
are detailed as follows:

• MLP [15] consists of three fully-connected (FC) layers with 256,
512 and 256 neurons, respectively, where each FC layer is fol-
lowed by a Gaussian Error Linear Unit (GELU) activation. Finally,
a classification layer, i.e., a FC layer where the number of neurons
is equal to the number of categories in the dataset and the
activation function is Softmax, is attached at the end of this MLP.
This is a typical classifier that has been widely used for TSC
tasks [16,55].

• LSTM [27] is made up of two LSTM layers with each containing
128 hidden units. A feature-wise global max pooling is then
applied across the sequence output, which summarizes patterns
from the entire input time series. The pooled representation is
finally fed into a final FC layer with the number of neurons equal
to the number of categories in the dataset to output the pre-
dicted probabilities for each category. As a natural sequential data
analysis model, LSTM also has been widely-used for tasks [56,57].

• FCN [15] consists of three convolutional layers (convs) with 128,
256 and 128 kernels of kernel sizes equaling to 7, 5, and 3 re-
spectively. A GELU activation is attached after each convolutional
layer without batch normalization (BN), as the padded zeros
would cause incorrect batch normalization. A global average
pooling is then deployed after the final convolutional layer to
summarize features before classification. This standard CNN has
been employed as baselines in TSC task [58,59].

• ResNet [15] is made up of 3 repeated residual blocks. Each
block contains 3 convolutional layers with the kernel sizes 7,
5, and 3, and 64, 128, and 128 kernels, respectively. A global
average pooling layer is employed after the last residual block
to summarize features before classification. Residual connection
was introduced on the basis of FCN, which aims to avoid gradient
vanishing. This has been presented to be superior to many other
DL models in TSC task [60,61].

• Inception [28] consists of 2 residual blocks, where each con-
tains 3 inception modules that pass the input through parallel
convolutions with 32 kernels and kernel sizes of 9, 19, and 39,
4
respectively, which is followed by a max pooling with a fixed
window, aiming to concatenate the outputs before sending to the
next module. A global average pooling and a FC-based classifica-
tion layer are attached at the end of the network. Inception also
uses to residual connections and introduces parallel convolution
on that basis and increases the convolution kernel size. This is
widely used to extract multi-scale features in TSC task [29,62].

• Transformer [30] encodes the input and incorporates positional
encoding to represent it as a 128-dimensional embedding. This
embedding is then processed through 3 encoder layers, each
containing 8-headed attention. Subsequently, global max pooling
is applied to the encoder output, summarizing sequence features
prior to being fed into the classification output layer. Transformer
is attention-based network architectures, which have been widely
influential in deep learning in recent years [18,63].

• Informer [31] encodes the input and incorporates a positional
encoding to represent it as a 128-dimensional embedding. This
embedding is then processed through 3 encoder layers, each
containing 8-headed ProbSparse self-attention. A global average
pooling and a FC-based classification layer are attached at the end
of the network. This is the Top-3 model on TSC task according to
the Time-Series-Library repository.2

• TimesNet [29] encodes the input and incorporates positional
encoding to represent it as a 128-dimensional embedding. This
embedding is then processed through 3 TimesBlock with 𝑘 =
3 and each TimesBlock consists of two inception convolution
blocks, each containing six 2D convolutional layers with increas-
ing kernel sizes. A global average pooling and a FC-based classi-
fication layer are attached at the end of the network. TimesNet
transforms the original 1D time series into a set of 2D tensors
based on multiple periods, which are then processed using 2D
convolutional kernels. This is the Top-1 model on TSC task as
show in the Time-Series-Library repository.

3.1.3. Training and testing protocol
We employ the same training and testing protocol for all bench-

marked length normalization strategies. Specifically, each model is

2 https://github.com/thuml/Time-Series-Library.

https://github.com/thuml/Time-Series-Library

S. Wu et al. Information Fusion 126 (2026) 103584
Table 1
Training hyper-parameter settings for all experiments.
 Learning rate Optimizer Beta1 (Adam) Beta2 (Adam) Batch size Epochs Loss function
 0.001 Adam 0.9 0.999 64 100 Cross-entropy
trained using the training set, and the reported results denote the best
variant achieved on the test set. This setting is consistent with previous
studies [19,29], where no validation has been conducted. Training
hyper-parameters (detailed provided in Table 1) were kept consistent
across all experiments, despite that the possibility that different length
normalization methods and their associated models might benefit from
varied optimal settings. This decision was made due to the vast range
of possible training parameters and the impracticality of conducting
individual parameter experiments for each of the numerous length
normalization methods. Instead, we opted for a widely-used training
configuration [21,29] combined with a learning rate decay strategy.
In this strategy, the learning rate is reduced to 10% of its current
value if the training loss does not decrease for 10 consecutive epochs,
with a minimum learning rate of 1e–5. This allows for reducing the
learning rate when training becomes challenging, aiming to ensure fair
comparison. All experiments were conducted on a single V100 GPU.

3.1.4. Evaluation metrics
Our benchmark follows previous TSC studies [19,29] to employ

classification accuracy as the metrics to evaluate the performance of
benchmarked approaches as:

ACC = 1
𝑁

𝑁
∑

𝑖=1
[𝑦𝑖 = 𝑦̂𝑖] (1)

where 𝑁 denotes the total number of evaluated time-series samples; 𝑦𝑖
denotes the label of the 𝑖th time-series sample; 𝑦̂𝑖 denotes the prediction
for 𝑖th time-series sample; and [𝑦𝑖 = 𝑦̂𝑖] represents an indicator function
that equals 1 if 𝑦𝑖 = 𝑦̂𝑖, else 0. In addition, we also provide statistical
analysis using the Bayesian Wilcoxon signed-rank test [64] compare
two length normalization strategies.

3.2. Benchmarked length normalization strategies

In this paper, we benchmark 20 pre-processing strategies and two
pooling-based strategies, as well as our proposed spectral pooling strat-
egy based on 6 widely-used deep learning (DL) backbones and the
state-of-the-art Informer [31] and TimesNet [29].

3.2.1. Inclusion and exclusion criteria
Inclusion criteria: To fairly benchmark the most widely-used and
representative length normalization methods, this paper chooses the
benchmarked length normalization methods based on the following
criteria:

• (1) The main criterion for choosing length normalization methods
for our benchmark is that they have been evaluated and compared
on at least one variable-length time series dataset in the UCR
archive [25], which is a well-known and widely used publicly
available time series classification archive.

• (2) The second criterion is that the chosen methods must have
been proposed for addressing the variable-length time series anal-
ysis problem within the last four years (from 2020 to 2024) [3,
19,20].

• (3) The third criterion is that we choose the typical length nor-
malization methods that do not have learnable parameters, and
have been defined and widely discussed in previous studies [16,
20,44,45,65], including zero-padding, truncation, as well as adap-
tive maximum pooling and adaptive average pooling that have
been frequently used as baselines when comparing other pooling
methods.
5
Exclusion criteria: In this benchmark, we excluded length normaliza-
tion methods based on the following criteria:

• (1) We exclude pre-processing-based length normalization meth-
ods that require domain-specific post-processing or require do-
main knowledge to set specific parameters (e.g., window-based
methods [26,66] and shapelet-based methods [67,68]), as these
methods may not generalize for TSC on different datasets.

• (2) We exclude pooling-based length normalization methods that
have trainable parameters, such as dynamic temporal pooling
[58], which introduces hidden vectors in the pooling layer, thus
creating an unfair comparison.

3.2.2. Benchmarked length normalization strategies
Existing length normalization methods can be divided into two main

categories: pre-processing-based length normalization and pooling-
based length normalization. Among the pre-processing methods, we
present 20 pre-processing strategies that can be classified into four
categories padding, truncation, resampling, and warping. Padding in-
troduces series information that did not exist originally. Truncation
loses a substantial amount of series information. Resampling based on
linear interpolation slows the degree of change in the series, although it
maintains the original shape as much as possible. Similarly, resampling
in the frequency domain identifies the same frequency components
across different series, solving the frequency misalignment problem but
incurring a loss of low-frequency information crucial for classification
tasks. The warping method utilizes DTW to distort according to most
similar series to match the length of a reference series. The judgement
and selection of the most similar series is related to the accuracy of
classification. Additionally, we include two pooling-based strategies for
normalizing the length inside the models and does not add additional
training parameters.
Padding: Padding strategies extend all time series to match the length
of the longest series by applying various padding techniques.

• Zero Pad [20]: The most commonly used padding approach,
where zeros are filled at the start (Pre), middle (Mid), end (Post),
or both ends (Outer) of the time series. This padding technique
has been applied in various domains, including functional protein
prediction [20], segmenting series into fixed periods and padding
the remaining series length to the same length [29], and ensuring
consistency between input and output lengths in convolutional
operations through the use of zero padding [69].

• Noise Pad [44]: Random noise sampled from a low-amplitude
distribution is used for padding at the start (Pre), end (Post), or
both ends (Outer) of the time series. Noise pad is also a common
use in the classification of variable series [44,70,71].

• Edge Pad [19]: Original values from the time series are du-
plicated for padding. The first (Pre) or last (Post) element is
duplicated, or both (Outer) ends are duplicated. Edge pad is
employed in emotion recognition for variable speech series [72]
and prediction of battery capacity [73].

• STRP Pad and Random Pad [20]: These methods aim to enhance
padding diversity. STRP Pad pads the series with zeros in an inter-
polated order so that the zeros are evenly distributed in the series,
while Random Pad introduces zeros at random positions within
the time series. STRP Pad and Random Pad were proposed for
protein series padding by Lopez-del Rio et al. [20], but they have
also been used as an attack to test the robustness of models [74].

S. Wu et al. Information Fusion 126 (2026) 103584
• Zoom Pad [20]: The time steps of the original series are resam-
pled, and then the added time steps are padded using neighboring
time step elements. This is also the benchmarked padding method
in [20].

Truncate: This is a method for addressing variable-length time series,
where longer series in the training set are shortened to match the
length of the shortest series. Truncation can be performed based on the
position, such as Truncation (Pre) removing values from the start, Trun-
cation (Post) removing values from the end, and Truncation (Outer)
removing values from both ends. Cerqueira et al. utilized truncation to
unify series lengths and speed up computation [75], a technique also
employed in unifying the lengths of human activity series [76].
Resampling: This method matches a time series to a specified length by
interpolating or extracting values at intervals from the original series.

• Linear Interpolation [19]: New points are interpolated along the
linear slope between existing points in the time series. Linear in-
terpolation is also a frequently used method for filling in missing
data [77,78].

• Select Common Frequency [3]: Time series are converted to the
frequency domain via Fourier transform, and an equal number
of common frequency components are selected across all series,
resulting in transformed representations with a consistent length.
This method was proposed by Song et al. for length normalization
of video series in depression detection.

Wrapping: Based on the most similar sequence, the original sequence
is warped to match the length of the most similar series.

• Nearest Guided Warping [19]: This method utilizes dynamic
time warping (DTW) to warp time series to a consistent length.
It selects prototype series using the hyper-parameter 𝛼 and then
resamples them to equal lengths set by the hyper-parameter 𝛽.
The remaining series are then compared to the prototypes via
DTW and warped based on the most similar prototype. DTW
is widely used in variable-length time series for alignment and
similarity calculation between two series [79]

Pooling-based Length normalization can also be achieved within the
model architecture through pooling implementations.

• Adaptive max pooling [80]: Adjusts its window size and stride
based on the length of the input time series to produce a fixed
output length. It finds the maximum value in each window and
discards the other elements to generate the output. Adaptive max
pooling is widely used in the downsampling phase of deep learn-
ing, leveraging its ability to receive inputs of arbitrary length and
transform them to a fixed length without parameter training [81–
83].

• Adaptive average pooling: This method adjusts its window size
and stride based on the length of the input time series to produce
a fixed output length. It calculates the average value in each
window and discards all elements in the window to generate
the output. Adaptive average pooling is similar to adaptive max
pooling, except that it uses an averaging operation on the data
within the window [21,84].

3.3. Datasets

All benchmarked systems are evaluated on 14 multi-class variable-
length time series datasets recorded for three types of tasks: (1) 10
gesture recognition datasets provided by the UCR archive [25],
which mainly collect acceleration and hand trajectory data during hand
movements. These time series exhibit low degrees of fluctuation. The
6
length of most dataset’s series ranges from tens to hundreds, and all are
multi-categorical datasets, with the GestureMidAir dataset containing
the most categories (26 kinds of hand movements); (2) 1 device iden-
tification datasets provided by the UCR archive [25], which contain
both steady-state operation and startup transient current and voltage
measurements labeled by eleven appliance categories. These time series
are characterized by regular and repetitive changes, whose lengths
range from one hundred to over a thousand frames; and (3) 3 asphalt
pavement datasets provided by [26], which collect the acceleration
of a car when it runs in different situations, i.e., the collected time
series involve frequent and sharp fluctuations. Specifically, these three
datasets were provided for pavement condition classification, pavement
type classification, and pavement obstacle classification, with cate-
gories ranging from 2 to 4. The dataset with the largest length range
(i.e., AsphaltRegularity) spans from tens to thousands of data points.
For all datasets, the officially defined training and test splits are used
for models’ training and evaluation and Table 2 lists detailed statistics
of all benchmarked datasets.

4. Spectral pooling strategy

This section introduces our proposed spectral pooling (SP), in-
cluding its overview (Section 4.1) and key modules (Section 4.2 and
Section 4.3).

Finding and motivation: We conducted a frequency analysis on
117 equal-length datasets provided by the UCR archive. As shown in
Figs. 11, 12, and 13, only 8 out of 117 datasets (three of them are
simulated datasets) exhibited high amplitude values on high frequency
components, accounting for only 7% of all datasets. Furthermore, Fig.
3(a) and (b) show that adding random Gaussian noise to original time
series significantly increases their high frequency amplitude values.
These indicate that low and middle frequency components usually
represent the main patterns while high frequency components
usually represent noises for most natural time series. Inspired by
these, we propose a novel spectral pooling strategy for VTS classifi-
cation, which removes high frequency components to achieve length
normalization (detailed in Section 4.1). It can prevent significant in-
formation loss while denoising the given time series for their length
normalization. Different from truncation-based strategies [44,45] that
directly remove frames, our spectral pooling truncate time series in
the frequency domain, which largely reduces the information loss. On
the other hand, compared to padding methods [20,45] and adaptive
max/average pooling [81,83] which introduce data points that do not
exist, ours can exclude the negative influences of padded data points,
and thus avoid information distortion.

4.1. The overview of spectral pooling

Spectral pooling (SP) layer is an effective and plugin layer that
facilitates DL models to end-to-end process a batch of VTS reducing
information loss/distortion. Our SP layer can be inserted between any
layers within standard DL models and jointly optimized with the rest
layers in an end-to-end manner. As illustrated in Fig. 4, given a batch of
(𝐵) VTS 𝐵 = {𝑋1, 𝑋2,… , 𝑋𝐵}, the proposed SP layer processes them
using on a two-step strategy.

• Step 1: Length Tracking and Undistorted Spectral Representa-
tion Generation (LSG) first represents the original lengths (frame
numbers) of all VTS in 𝐵 as 𝐓 = (𝑇 1, 𝑇 2,… , 𝑇 𝐵), and then
pads zeros to each original time series 𝑋𝑏 accordingly, which
is done in pre-processing. This results in all padded time series
𝐗pad = {𝑋1

pad, 𝑋
2
pad,… , 𝑋𝐵

pad} having the same length 𝑇pad to
be input to the model. Based on the obtained 𝐓, the LSG then
computes an undistorted spectral representation 𝑋𝑏

freq from each
padded time series 𝑋𝑏

pad by excluding the zero padded data points
in the transform process, which is done in model.

S. Wu et al. Information Fusion 126 (2026) 103584
Table 2
Statistics of 14 employed variable-length time series classification (TSC) training datasets from provided by UCR and Souza et al. . Class
represents the number of label classes provided by the dataset. Min. and Max. denote the shortest and the lengths of the longest time series in
the dataset. Ave. and Med. are the average and median lengths computed from all time series in the dataset. Cv. represents the coefficient of
variation [85], calculated as the standard deviation divided by the mean, quantifies variability in lengths within the dataset.
 Application Dataset name Class Min. Max. Ave. Med. Cv. (%)
 Gesture AllGestureWiimoteX 10 11 385 124 118 52
 Gesture AllGestureWiimoteY 10 8 369 128 116 54
 Gesture AllGestureWiimoteZ 10 33 326 125 116 52
 Gesture GestureMidAirD1 26 80 360 166 171 38
 Gesture GestureMidAirD2 26 80 360 166 171 38
 Gesture GestureMidAirD3 26 80 360 166 171 38
 Gesture GesturePebbleZ1 6 115 455 233 197 35
 Gesture GesturePebbleZ2 6 100 455 223 200 39
 Gesture PickupGestureWiimoteZ 10 29 361 145 136 53
 Gesture ShakeGestureWiimoteZ 10 41 385 171 158 51
 Device PLAID 11 100 1344 323 300 44
 Pavement AsphaltObstacles 4 111 736 297 227 38
 Pavement AsphaltPavementType 3 96 1543 396 413 40
 Pavement AsphaltRegularity 2 95 4201 387 335 65
Fig. 3. (a) shows the original time series in the time and frequency domains; and (b) shows the original time series with added random Gaussian noise, in the time and frequency
domains. The left part of each sub-graph displays the original time series in the time domain, while the right part shows the corresponding amplitude map in the frequency
domain, with only half shown due to conjugate symmetry.
Fig. 4. Illustration of the proposed spectral pooling (SP). The LSG module (Section 4.2) first encodes the padded VTS as a set of undistorted spectral representations. Then, the
ALN module (Section 4.3) further transforms them as a set of equal-length time domain representations.
• Step 2: Adaptive Length Normalization (ALN) is then carried
out to remove several high frequency components from each
undistorted spectral representation 𝑋𝑏

freq to ensure that all pro-
cessed spectral representations have the same length. Then, it
converts these spectral representations back to the time domain,
avoiding frequency misalignment (explained in Section 4.3),
i.e., the output of the SP layer is a set of equal-length time domain
representations 𝐗𝑡 = {𝑋1

𝑡 , 𝑋
2
𝑡 ,… , 𝑋𝐵

𝑡 }, which retain the major of
undistorted information of these input VTS.

In summary, our SP layer converts a set of VTS 𝐵 to a set of
equal-length time series 𝐗𝑡 based on time-frequency transformation,
which allows DL models to directly end-to-end batch process VTS
reducing information loss/distortion. Importantly, applying our SP does
not introduce additional model weights optimization burden, with its
time complexity of 𝑂(𝑇 log(𝑇)).
7
4.2. Length tracking and undistorted spectral representation generation

The LSG enables DL models to batch process a set of VTS while
preventing information distortion in an end-to-end manner. As illus-
trated in Fig. 5, LSG first records the length of all given time series
(Step (i)) and applies zero-padding (Step (ii)) to pad all input variable-
length time series as equal-length time-series, facilitating the network
layers prior to our SP to batch process them. Then, the LSG leverages
the recorded series lengths to exclude padded data points (Step (iii))
and performs the Discrete Fourier Transform (DFT) to generate spectral
representations (Step (iv)). Since the padded zeros are not involved in
the final DFT, the obtained spectral representations are undistorted.
For a given batch of VTS 𝐵 = {𝑋1, 𝑋2,… , 𝑋𝐵}, the LSG first records
their lengths in a vector 𝐓 =

(

𝑇 1, 𝑇 2,… , 𝑇 𝐵). Then, each time series
𝑋𝑏 ∈ 𝐵 is being padded with zeros at the end, making all padded
time series 𝑋𝑏 having the same length 𝑇 . This zero-padding and
pad pad

S. Wu et al. Information Fusion 126 (2026) 103584
Fig. 5. Illustration of the entire LSG step of our SP, from the pre-processing stage to the generation of undistorted spectral representations.
length vector recording process is carried out in the pre-processing
stage, enabling batch training of the network layers prior to the SP
layer as well. Theoretically, 𝑇pad can be an arbitrary length, where in
subsequent experiments we follow a previous study [41] to set 𝑇pad as
the longest length in the training set as:
𝑋𝑏
pad =

(

𝑥𝑏0, 𝑥
𝑏
1,… , 𝑥𝑏

𝑇 𝑏−1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑋𝑏

, 𝑥0
𝑇 𝑏 ,… , 𝑥0𝑇pad−1

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
padded zero data points

)

(2)

where 𝑥0
𝑇 𝑏 ,… , 𝑥0𝑇pad−1 denote the padded zero data points. Note that

larger 𝑇pad values just introduce more invalid padded data points,
which do not enhance the performance. This way, all padded time
series can be combined as a batch of equal-length time series 𝐗pad =
{𝑋1

pad, 𝑋
2
pad,… , 𝑋𝐵

pad} to be batch processed by DL models along with
𝐓. At the inference stage, the test sample of an arbitrary length can be
individually processed without padding or removing frames.

We then apply the DFT to encode each padded time series 𝑋𝑏
pad as

a spectral representation 𝑋𝑏
freq =

(

𝑥𝑏freq(0), 𝑥
𝑏
freq(1),… , 𝑥𝑏freq(𝑇

𝑏 −1)
) that

contains 𝑇 𝑏 rather than 𝑇pad frequency components from the padded
time series 𝑋𝑏

pad, where the recorded length 𝑇 𝑏 ∈ 𝐓 is utilized. Specif-
ically, each frequency component 𝑥𝑏freq(𝑘) ∈ 𝑋𝑏

freq is only computed
based on the data points of the original time series 𝑋𝑏 (i.e., the data
points from 𝑥𝑏0 to 𝑥𝑏𝑇 𝑏−1

 in 𝑋𝑏
pad), which avoids information distortion

caused by the padded data points. This can be formulated as:

𝑥𝑏freq(𝑘) =
𝑇 𝑏−1
∑

𝑗=0
𝑥𝑏pad(𝑗)𝑒

−𝑖 2𝜋
𝑇 𝑏

𝑗𝑘

= Re(𝑥𝑏freq(𝑘)) + 𝑖Im(𝑥𝑏freq(𝑘))

(3)

where 𝑘 = 0, 1,… , 𝑇 𝑏 − 1; Re(𝑥𝑏freq(𝑘)) and Im(𝑥𝑏freq(𝑘)) represent the
real and imaginary parts of the 𝑘th frequency component 𝑥𝑏freq(𝑘),
respectively. Here, each frequency component 𝑥𝑏freq(𝑘) is computed
from the entire time series 𝑋𝑏, capturing global temporal patterns
at a specific frequency scale—where lower frequencies correspond to
gradual, long-term trends, and higher frequencies capture sharp, short-
term fluctuations. Consequently, the resulting spectral representation
𝑋𝑏
freq encodes multi-scale temporal dynamics of the original series,

making the frequency domain a natural space for performing temporal
information fusion.

4.3. Adaptive length normalization

The ALN step normalizes all obtained variable-length spectral rep-
resentations 𝑋𝑏

freq (𝑏 = 1, 2,… , 𝐵) in order to make them have the
same length 𝑇 while avoiding significant information loss/distortion.
Here, 𝑇 is set as the frame number corresponding to the shortest
training time series. Specifically, for each spectral representation 𝑋𝑏

freq
that has no less than 𝑇 frequency components (i.e., 𝑇 𝑏 ≥ 𝑇), our
SP layer truncates its high frequency components to only retain 𝑇
8
lowest frequency components that consist of: (i) the DC component
𝑥𝑏freq(0); (ii) the first 𝑇 ∕2 lowest frequency components corresponding
to 𝑥𝑏freq(𝑘), 𝑘 = 1, 2,… , 𝑇 ∕2; and (iii) the conjugate symmetric frequency
components corresponding to 𝑥𝑏freq(𝑘), 𝑘 = 𝑇 𝑏 − 𝑇 ∕2 + 1,… , 𝑇 𝑏 − 1. This
can be formulated as:

𝑥̂𝑏freq(𝑘) =

{

𝑥𝑏freq(𝑘), 0 ≤ 𝑘 ≤ 𝑇 ∕2

𝑥𝑏freq(𝑇
𝑏 − (𝑇 − 𝑘)), 𝑇 ∕2 < 𝑘 < 𝑇

(4)

As a result, a batch of equal-length spectral representations 𝐗̂freq =
{𝑋̂1

freq, 𝑋̂
2
freq,… , 𝑋̂𝐵

freq} are obtained.
However, the spectral representations truncated from different VTS

do not describe the same set of frequency components (i.e., if 𝑇 1 ≠
𝑇 2, the 𝑘th frequency components of the spectral representation 𝑋1

freq
and 𝑋2

freq correspond to 2𝜋𝑘∕𝑇 1 and 2𝜋𝑘∕𝑇 2, respectively, and thus
2𝜋𝑘∕𝑇 1 ≠ 2𝜋𝑘∕𝑇 2.). As demonstrated in Eq. (3), this would result
in frequency misalignment for the truncated spectral representations,
and further lead to potential confusion for DL models’ training and
reasoning. To address this issue, we apply the Inverse Discrete Fourier
Transform (IDFT) to decode the truncated equal-length spectral rep-
resentations 𝐗̂freq to equal-length time domain representations 𝐗𝑡 =
{𝑋1

𝑡 , 𝑋
2
𝑡 ,… , 𝑋𝐵

𝑡 } as:

𝑥𝑏𝑡 (𝑛) =
1
𝑇

𝑇−1
∑

𝑘=0
𝑥̂𝑏freq(𝑘)𝑒

𝑖 2𝜋𝑇 𝑛𝑘 (5)

where 𝑛 = 0, 1,… , 𝑇 − 1, and we set Im(𝑥̂𝑏freq(𝑇 ∕2)) = 0 to ensure
the conjugate symmetry of each spectral representation. This way,
the twiddle factor 𝑒𝑖 2𝜋𝑇 𝑛𝑘 [86] in Eq. (5) are consistent for all equal-
length spectral representations during the IDFT. To better illustrate
the implementation of ALN, we visualize the complete process in Fig.
6. First, the 𝑇 lowest frequency components are selected from the
original spectral representation 𝑋𝑏

freq based on Eq. (4). These retained
components include the DC component, the lowest 𝑇 ∕2 frequency
components, and their conjugate symmetric frequency components.
Next, conjugate symmetry is enforced by setting Im(𝑥̂𝑏freq(𝑇 ∕2)) = 0,
ensuring that the reconstructed time-domain representation obtained
via IDFT remains real-valued. This process enables the transformation
of spectral representations into equal-length and comparable time-
domain representations that preserve the dominant information of the
original variable-length inputs. In summary, the obtained time domain
representations not only summarize the majority information of their
corresponding VTS (i.e., from their low and middle frequency com-
ponents), but also are encoded to the same length without distortion
(i.e., the encoding process does not involve any re-shape/interpolation
nor affected by padded information). More importantly, this IDFT
operation avoid the frequency misalignment issue in directly processing
these equal-length spectral representations.

However, directly defining 𝑇 based on the shortest time series in
the training set can cause excessive information loss (i.e., removed
frequency components). Therefore, we introduce a trade-off factor 𝛼

S. Wu et al. Information Fusion 126 (2026) 103584
Fig. 6. Illustration of the entire ALN step in our SP, from retaining the lowest 𝑇 frequency components to enforcing conjugate symmetry and applying IDFT to generate equal-length
time domain representations. For clarity, only the imaginary part of the spectral representation is shown.
Table 3
Average test ACC results (%) over 14 variable-length datasets achieved by the benchmarked length normalization strategies for eight DL
models. Spectral pooling (p) and Spectral pooling (m) denote that applying SP as the pre-processing and pooling layer, respectively. Bold
values indicate the best results while the underlined values indicate the second best systems.

Methods MLP LSTM FCN Resnet Inception Transformer Informer TimesNet

Pr
e-
pr
oc
es
sin
g

Padding
Zero pad (Pre) [45] 62.82 62.98 68.80 72.25 77.27 70.96 63.08 69.66
Zero pad (Post) [45] 62.50 62.74 68.80 70.47 77.57 70.28 61.93 70.53
Zero pad (Outer) [20] 65.66 63.48 68.76 72.96 75.91 70.57 64.69 70.49
Zero pad (Mid) [20] 63.39 62.12 67.38 71.42 73.70 69.07 64.07 70.00
Zero pad Avg. 63.59 62.83 68.43 71.77 76.11 70.22 63.44 70.17
Noise pad (Pre) [20] 62.88 65.32 68.79 73.14 77.10 70.81 63.98 69.64
Noise pad (Post) [44] 62.57 61.19 68.77 72.23 77.80 69.75 63.05 69.43
Noise pad (Outer) [44] 65.51 62.94 68.85 72.07 76.17 70.07 64.87 70.97
Noise pad Avg. 63.65 63.15 68.80 72.48 77.02 70.21 63.96 70.01
Edge pad (Pre) 60.59 61.65 58.37 64.32 70.91 61.53 62.16 68.00
Edge pad (Post) 60.04 63.00 60.10 64.57 71.72 61.05 59.65 66.81
Edge pad (Outer) 64.46 58.22 58.75 61.78 69.93 60.92 59.50 67.75
Edge pad Avg. 61.69 60.95 59.07 63.55 70.85 61.16 60.43 67.52
STRF pad [20] 55.07 60.93 62.49 65.92 71.37 70.92 69.73 69.13
Random pad [20] 64.72 58.71 59.00 64.74 71.55 68.94 66.39 69.84
Zoom pad [20] 64.32 58.91 63.62 65.02 71.10 63.57 69.17 66.82
Avg. 62.65 61.70 64.80 68.53 74.00 67.57 64.02 69.15
Truncation
Truncate (Pre) [45] 47.91 48.37 52.52 53.60 53.90 50.07 48.85 49.94
Truncate (Post) [45] 43.65 45.77 48.16 50.32 52.14 46.37 47.67 48.11
Truncate (Outer) [44] 53.12 51.47 55.41 55.48 57.95 52.70 54.23 55.80
Avg. 48.22 48.53 52.03 53.13 54.66 49.71 50.25 51.28
Resampling
Linear interpolate 63.83 59.34 63.71 65.95 70.45 64.50 68.88 65.92
Frequency selection [3] 54.58 53.88 59.41 60.72 59.72 51.81 48.82 54.97
Avg. 59.20 56.61 61.56 63.33 65.08 58.15 58.55 60.44
Warping
Nearest guided warping- 𝛼 [19] 58.96 55.57 59.03 61.47 62.49 60.39 58.47 61.82
Nearest guided warping- 𝛼𝛽 [19] 66.67 61.95 65.42 67.14 68.45 63.77 63.33 66.39
Avg. 62.81 58.76 62.22 64.30 65.47 62.08 60.90 64.10
Spectral pooling (p) (Ours) 67.08 67.65 72.22 74.90 78.74 69.55 70.98 71.23

Po
ol
in
g

Pooling
Adaptive max pooling – 70.85 73.50 77.11 79.45 70.37 57.95 69.07
Adaptive average pooling – 63.64 71.67 74.48 78.66 70.33 65.67 69.29
Spectral pooling (m) (Ours) – 75.50 77.10 78.44 80.10 73.18 74.47 71.80
Avg. – 69.99 74.09 76.67 79.40 71.29 66.03 70.05

to define 𝑇 , i.e., it sets 𝑇 as the length of the 𝛼-percentile shortest
time series in the training set. In this case, each time series 𝑋𝑏 that
has less than 𝑇 frames (i.e. 𝑇 𝑏 < 𝑇), its time domain representation
𝑋𝑏

𝑡 is simply equaling the first 𝑇 frames of its padded time series 𝑋𝑏
pad

(i.e., 𝑋𝑏
𝑡 = {𝑥𝑏pad(0), 𝑥

𝑏
pad(1),… , 𝑥𝑏pad(𝑇−1)}. Each time series 𝑋𝑏 that has

more than 𝑇 frames is still processed based on previously introduced
LSG and ALN steps. While this strategy would introduce distortion for
time series whose length is less than 𝑇 , it reduces information loss for
longer ones, i.e., 𝛼 decides the trade-off between distortion/information
loss during training (evaluated in Section 5.2.2).
9
5. Experiment

In this section, we first present the performances of the 22 bench-
marked length normalization methods achieved for 14 widely-used
datasets based on 8 benchmarked network architectures in Section 5.1.
We then demonstrate the effectiveness and ablation analysis of our
proposed spectral pooling (SP) method in Section 5.2.

5.1. Benchmarking results

Table 3 reports the results achieved by all benchmarked length
normalization strategies, based on which we provide the following

S. Wu et al. Information Fusion 126 (2026) 103584
Fig. 7. t-SNE visualizations of features output from different length normalization strategies on the variable-length AsphaltPavementType dataset, where two deep learning models
are individually employed. Top row: Inception-based models. Bottom row: FCN-based models. Each point represents a sample in the 2D projected feature space, with colors denoting
class labels.
discussions. Based on the discussion below, we concluded that end-
to-end pooling-based length normalization strategies are superior to
pre-processing-based strategies, as pooling-based length normalization
strategies facilitate DL models to obtain a more aggregated feature
distribution, where our proposed SP achieves state-of-the-art results
across various model architectures and datasets. Meanwhile, choosing
different padding locations according to model architectures can im-
prove the performance of padding methods. It is also interesting to note
that models performing well on equal-length series classification are
unlikely to perform well on VTS classification.
Comparison between pre-processing and pooling-based length nor-
malization strategies: As shown in Fig. 7, pooling-based length nor-
malization strategies (integrated within the deep learning models)
consistently yield clearer and more compact feature representations
compared to various pre-processing-based strategies. The t-SNE visu-
alizations clearly illustrate that features learned by end-to-end pooling
strategies form tighter clusters within each class and exhibit clearer
separation between classes, which indicates more effective preservation
of task-specific information. In contrast, features learned via pre-
processing methods (e.g., zero-padding or truncation) are generally less
compact and show more overlap between classes, reflecting potential
loss or distortion of discriminative information. This advantage arises
because model training inherently and jointly optimizes these pooling
operations in coordination with other model layers, i.e., end-to-end
optimization.

Comparison among different pooling strategies: Our SP can effec-
tively encode global information across all time points and consistently
outperformed adaptive max/avg pooling that only summarize local
time domain patterns, which cannot avoid the influence of the padded
data points, while the average and max pooling beat each other depend-
ing on the model. In particular, our SP achieved significantly higher
accuracy compared to max/avg pooling when integrating them into
LSTM, FCN, and Informer models.
Comparison among different pre-processing strategies: Except the
SP, the average performances of padding strategies are generally su-
perior to the other three types of solutions. Among all pre-processing
10
strategies, truncation-based methods achieved the worst average per-
formance, as directly removing a large part of data points lead to sub-
stantial information loss, while resampling strategies either introduce
non-existent time points or discard some low and middle frequency
components. Although warping-based strategies can partially address
the distortion problem and achieved better performances, they have a
quadratic time complexity. Also, padding time series with either zeros
or low-amplitude noise at their beginning or end, achieved superior
results than other padding strategies, where noise padding frequently
exhibits greater robustness with marginally improved results over the
simple zero padding. In contrast, random and STRF pad performed less
effectively, as distributing padded zeros into time series would distort
their shape. Furthermore, zoom pad that duplicates neighboring values,
outperformed the edge pad which relies on edge values of time series.
Importantly, the optimal padding locations are different across various
backbones. For example, MLP performed best with padding at both
ends (denoted as ‘Outer’), while LSTM is less affected by pre-padding
due to its sequential processing. Similarly, the padding location has
limited impacts on CNNs (e.g., FCN, ResNet, Inception and TimesNet)
and Transformer’s performances. Results also reveal that information
described by the middle segments (Truncate (Outer)) in the VTS is more
valuable than the information represented by the front/end (Truncate
(Pre)/(Truncate (Post))). Consequently, separately truncating both ends
of VTS is more effective.
Comparison of the benchmarked results achieved on datasets
whose time series are mainly represented by low-frequency com-
ponents and high-frequency components: Fig. 8 shows that the time
series in 11 out of the 14 employed VTS datasets have clearly less
information at high frequency components compared to low/middle
frequency components, while the high frequency components represent
more information for VTS in three pavement classification datasets. We
compare the average accuracy results of eight benchmarked backbones
achieved for each of these two types of datasets. As we can see from the
left part of Table 4, the results of all benchmarked length normalization
methods (except our SP) achieved for each sub-frequency type are simi-
lar to their corresponding results achieved on all 14 datasets, where the

S. Wu et al.

t
p
W
f
s
c
f
a
e
S

Information Fusion 126 (2026) 103584
Fig. 8. The amplitude maps of 14 variable-length series datasets, only half of which are shown due to conjugate symmetry, with the names of the datasets where the high-frequency
components have information labeled in purple.
Table 4
Average test accuracy (%) across eight backbone models on variable-length datasets categorized by frequency content and
length variation: the left part summarizes results on 11 datasets with few high-frequency information (Few-hf) and
3 datasets with more high-frequency information (More-hf), while the right part presents results on 4 datasets with
different levels of length variation, where AsphaltRegularity (Asphalt-R) and AllGestureWiimoteY (Gesture-Y) exhibit larger
variation in series length, and GesturePebbleZ1 (Gesture-Z1) and AsphaltObstacles (Asphalt-O) show smaller variation. SP
(p) and SP (m) refer to applying spectral pooling as a pre-processing method and as a model-integrated pooling layer,
respectively. Bold values indicate the best results, and underlined values indicate the second-best.

Methods Few-hf More-hf Gesture-Z1 Gesture-Y Asphalt-O Asphalt-R

Pr
e-
pr
oc
es
sin
g

Padding
Zero pad (Pre) [45] 62.51 90.37 80.97 63.65 84.27 96.71
Zero pad (Post) [45] 62.12 90.02 81.63 63.43 84.62 95.71
Zero pad (Outer) [20] 63.22 90.51 82.53 63.81 84.55 96.91
Zero pad (Mid) [20] 61.70 89.44 79.88 63.77 81.97 96.43
Noise pad (Pre) [20] 63.13 90.34 81.56 63.56 83.96 96.86
Noise pad (Post) [44] 62.07 90.22 81.87 63.48 83.75 97.06
Noise Pad (Outer) [44] 63.04 90.54 81.85 64.07 84.96 96.98
Edge pad (Pre) 56.31 89.58 64.33 64.67 83.51 96.58
Edge pad (Post) 56.25 89.45 71.91 64.23 82.90 96.90
Edge pad (Outer) 55.26 89.80 60.63 64.98 83.71 97.26
STRF pad [20] 59.54 88.26 87.75 57.91 83.12 94.43
Random pad [20] 58.79 90.03 85.85 61.18 84.55 97.32
Zoom pad [20] 59.00 88.48 83.43 60.31 82.45 95.68
Truncation
Truncate (Pre) [45] 42.32 81.19 69.86 30.28 69.78 92.47
Truncate (Post) [45] 39.43 78.36 46.47 30.07 62.03 95.98
Truncate (Outer) [44] 46.54 83.80 81.62 28.65 78.27 91.97
Resampling
Linear interpolate 58.94 88.60 84.70 60.15 83.33 95.78
Frequency selection[3] 48.30 81.87 52.27 52.65 64.87 98.02
Warping
Nearest guided warping- 𝛼 [19] 54.43 79.37 79.67 62.66 73.55 90.10
Nearest guided warping- 𝛼𝛽 [19] 60.04 85.00 82.42 68.23 81.06 95.37
Spectral pooling (p) (Ours) 66.71 89.28 91.44 65.36 84.81 98.81

Po
ol
in
g Pooling

Adaptive max pooling 65.27 92.87 85.10 64.14 88.57 98.32
Adaptive average pooling 64.21 93.72 64.21 58.15 88.38 99.01
Spectral pooling (m) (Ours) 70.81 94.10 86.82 71.60 89.10 99.34
C
a
r
t
s
s
o
f
b

wo pre-processing methods, zero pad and noise pad, achieved decent
erformances, while the truncation-based methods are least effective.
hile the above benchmarked result are not sensitive to the dominant
requency components of the processed time series, our proposed SP
trategy demonstrates superiority on datasets whose time series have
learly less information at high frequency components, i.e., both SP (p)
or pre-processing and SP (m) for pooling achieved the highest average
ccuracy, with pre-processing-based SP (p) even outperforming the
nd-to-end adaptive max/average pooling. Importantly, our end-to-end
P (m) attains the highest accuracy on both types of datasets.
 d

11
omparison among datasets with different degrees of length vari-
tion: The right part of Table 4 shows that the average accuracy
esults achieved by eight backbones for different length normaliza-
ion strategies on datasets with different length variations. The re-
ults demonstrate that almost all benchmarked length normalization
trategies are robust to this factor. However, for truncation meth-
ds, truncating only the beginning or the end of the time series per-
orms better than truncating both ends on datasets with large distri-
utional differences. The frequency selection method is suitable for
atasets spanning a wide range of lengths, e.g., it achieves sub-optimal

S. Wu et al. Information Fusion 126 (2026) 103584
Table 5
Average test ACC (%) over 14 datasets achieved by different poolings equipped with (w) and without (w/o) our length tracking.
 LSTM FCN Resnet Inception Transformer Informer TimesNet
 Spectral pooling (m) w/o length tracking 73.53 74.57 77.35 78.37 70.74 63.07 69.28
 w/ length tracking 75.50 77.10 78.44 80.10 73.18 74.47 71.80
 Adaptive max pooling w/o length tracking 70.85 73.50 77.11 79.45 70.37 57.95 69.07
 w/ length tracking 70.80 75.51 77.00 78.85 72.81 70.19 70.89
 Adaptive average pooling w/o length tracking 63.64 71.67 74.48 78.66 70.33 65.67 69.29
 w/ length tracking 68.57 73.50 75.30 79.65 71.63 73.92 70.24
performance among pre-processing methods on Asphalt-R, but per-
forms poorly on other datasets with narrower length ranges. SP (p)
is consistently top/second-performing, even exceeding based-pooling
on the GesturePebbleZ1 dataset. SP (m) is consistently top-performing
compared to the pooling-based methods across all four datasets.
Performances of existing TSC DL models on VTS classification: It
can be observed that the Inception achieved the best performances
on VTS classification when employing different benchmarked pre-
processing and pooling-based length normalization strategies. How-
ever, the state-of-the-art TimesNet for equal-length time series classi-
fication only achieved middle-ranking VTS classification results among
all benchmarked competitors. We explain this as the TimesNet attempts
to treat each time series as a periodical signal, where padding data
points would strongly affect its performance in defining the period
division. In contrast, the attention mechanism of the Transformer
effectively manages interference from the padded data points, and
thus achieved promising results. While the ProbSparse self-attention in
Informer degrades the attention to reduce time complexity, it fails to
demonstrate this advantage.

5.2. Results achieve by our spectral pooling

5.2.1. Comparison with benchmarked strategies
The proposed SP layer can be used either as a pooling layer inside

DL models or attached at the top of them as a pre-processing layer. It is
clear that our SP-based pre-processing strategies outperformed all other
pre-processing strategies on 7/8 backbones, which achieved the fourth
best performance on the remaining backbone. Meanwhile, our SP-based
pooling is also superior to other pooling strategies across all backbones,
and it performs well on datasets with different frequency types and
varying degrees of length variation, suggesting that our SP layer is
a robust and state-of-the-art length normalization strategy for
variable time series classification (TSC) tasks. This can be explained
by the facts: (i) when employing our SP as a pre-processing layer, it
causes much less information loss/distortion compared to existing pre-
processing truncation/wrapping/resampling strategies; (ii) when SP is
employed as a pooling layer, it retains global information and thus
effectively captures the trend of the input time series. This is different
from adaptive pooling layers focusing on modeling local information;
and (iii) our length tracking ensures the SP to process time series in-
dependent of the padded data points, which avoids the introduction of
non-existent information. Table 5 shows that this strategy significantly
enhanced performances.

To further evaluate the robustness and superiority of our SP, we
conducted a comprehensive statistical analysis using the Bayesian
Wilcoxon signed-rank test [64]. As shown in Figs. 14 and 15, our
SP consistently outperformed most baseline strategies with high con-
fidence. When using our SP as a pre-processing method (SP (p)), it
achieved near-certain superiority (i.e., posterior probability close to
100%) over truncation, resampling, and warping methods across all
backbones (except for Nearest Guided Warping-𝛼𝛽 on MLP). Among
padding-based strategies, only the noise pad (pre) in LSTM slightly
surpasses SP (p). Additionally, due to the inherent robustness of the
Transformer’s self-attention mechanism, half of the evaluated padding
methods exhibit marginally higher probability than SP (p) in that
12
model (in 7 out of 13 padding variants). When applying our SP as a
pooling layer (SP (m)), it achieved clearly advantages over both adap-
tive average pooling and adaptive max pooling with high confidence—
exceeding 70% across all backbones and reaching over 90% in most
cases. The only exception is on Inception, where SP (m) performs com-
parably to adaptive max pooling, with a 53% probability of practical
equivalence.

5.2.2. Ablation studies
This section first analyzes the impact of length tracking and adap-

tive length normalization (ALN) of the proposed SP method on VTS
classification, and then demonstrates how the performance varies with
different values of the hyperparameter 𝛼 and with the SP layer placed
at various positions within the model.
Influence of the length tracking: Table 5 demonstrates that the
proposed length tracking clearly improved the average performances
on most cases (18/21). Particularly, it largely impacted on our SP layer.
This is because the length tracking prevent all frequency components
in DFT from distorted by the padded data points. Besides, excluding
padded data points in generating outputs also lead more benefits to av-
erage pooling than max pooling, as padded data points would certainly
impact the average value but may not change the local max value.
When without utilizing our length tracking, the SP still consistently
outperformed the other two pooling strategies.
Influence of the ALN: Our ALN consists of two main stages: (1) trun-
cating high frequency components from the variable-length spectral
representations; and (2) inversely converting the truncated spectral
representations back to time domain representations. Table 6 shows
that the first stage of truncating the signal in frequency domain and us-
ing the truncated spectral representation for classification, significantly
improves the average performance compared to direct truncating in the
time domain, except for Transformer and Informer. The second stage
which converts the truncated spectral representation back to the time
domain results in further performance gain, suggesting that our strategy
can effectively address the frequency misalignment issue.
Influence of different 𝛼: Table 7 suggests that DL models’ perfor-
mances are also influenced by 𝛼 values, where the best result of some
models are achieved when 𝛼 ≠ 0. This suggests that retaining more
information at the cost of certain degrees of distortion could improve
the SP’s performance. However, if a large part of VTS are distorted
(𝛼 ≥ 0.4), the additionally retained information cannot compensate
their negative impacts, i.e., the best results are achieved when 𝛼 = 0 or
𝛼 = 0.2 for most cases.
Influence of different 𝛼 from different task: We further investigated
the selection of 𝛼 in terms of different classification tasks. For gesture
recognition datasets, Table 8 suggests that most models (except Trans-
former) achieved their best performances when 𝛼 = 0.2. The amplitude
maps (Fig. 8) indicate that the energy distribution for gesture datasets
is predominantly concentrated in the low-frequency region, with rel-
atively little information represented by middle and high-frequency
bands. Therefore, during the length normalization, a smaller 𝛼 value
is more appropriate, as truncating middle and high-frequency compo-
nents would not only retain almost all crucial information but also
remove irrelevant noises. For device identification dataset PLAID,

S. Wu et al. Information Fusion 126 (2026) 103584
Table 6
Average test ACC (%) over 14 datasets achieved with different ALN settings. Trunc-t. represents directly truncating VTS in time domain; Trunc-f. represents truncating high
frequencies (Eq. (4)); and Conv. represents converting to time domain (Eq. (5)).
Trunc-t. Trunc-f. Conv. MLP LSTM FCN ResNet Inception Transformer Informer TimesNet

p m p m p m p m p m p m p m p m

3 43.65 – 59.02 46.42 48.16 48.91 50.32 50.82 73.57 70.92 64.98 72.44 59.68 71.82 58.12 54.97
3 61.09 – 56.06 75.30 65.35 77.00 67.25 78.16 67.01 77.28 59.68 71.87 52.68 70.08 62.13 65.20
3 3 67.08 – 67.65 75.50 72.22 77.10 74.90 78.44 78.74 80.10 69.55 73.18 70.98 74.47 71.23 71.80
Table 7
Average test ACC (%) achieved for different trade-off factor 𝛼 value with our SP as pre-processing (p) and pooling layer (m).
 MLP LSTM FCN ResNet Inception Transformer Informer TimesNet

 p m p m p m p m p m p m p m p m
 𝛼 = 0 67.08 – 67.57 75.50 72.22 77.10 74.90 78.44 76.07 78.83 63.97 72.87 69.15 74.17 69.26 71.80
 𝛼 = 0.2 66.98 – 67.65 71.89 71.25 75.52 74.00 77.40 77.05 80.10 66.83 73.18 70.98 74.47 71.23 71.07
 𝛼 = 0.4 66.88 – 65.87 70.84 71.19 73.67 72.77 76.00 78.74 78.51 69.55 73.12 70.65 73.62 69.89 67.57
 𝛼 = 0.6 64.39 – 65.21 69.60 71.52 72.98 73.07 75.44 78.37 77.36 69.19 73.35 68.00 73.66 69.62 67.00
 𝛼 = 0.8 64.15 – 65.59 66.86 70.53 72.99 74.02 74.87 77.77 77.27 69.87 73.55 67.94 73.25 69.41 65.32
 𝛼 = 1 62.50 – 62.74 – 68.80 70.47 – 77.57 – 70.28 – 61.93 – 70.53 –
Table 8
Average test ACC (%) achieved for different trade-off factor 𝛼 value with our SP as pre-processing (p) and pooling layer (m) on gesture datasets.
 MLP LSTM FCN ResNet Inception Transformer Informer TimesNet

 p m p m p m p m p m p m p m p m
 𝛼 = 0 63.27 – 61.50 71.28 67.38 72.28 70.38 74.24 70.58 73.56 56.32 67.06 63.98 69.67 64.20 66.23
 𝛼 = 0.2 66.98 – 67.65 71.90 71.25 75.52 74.00 77.40 77.05 80.10 59.74 67.45 66.44 69.88 65.05 65.21
 𝛼 = 0.4 62.50 – 60.20 66.31 65.42 68.35 66.85 70.75 73.45 72.74 63.32 67.39 65.85 68.71 63.63 60.28
 𝛼 = 0.6 59.59 – 58.99 64.44 65.59 67.50 67.25 70.12 73.35 71.26 62.53 67.72 62.08 68.75 63.26 59.99
 𝛼 = 0.8 59.37 – 59.60 61.14 64.26 67.72 68.27 68.83 72.37 71.34 63.24 68.03 61.72 68.38 63.06 57.26
 𝛼 = 1 58.57 – 56.08 – 62.96 – 66.01 – 71.85 – 64.00 – 55.10 – 63.58 –
Table 9
Average test ACC (%) achieved for different trade-off factor 𝛼 value with our SP as pre-processing (p) and pooling layer (m) on device datasets.
 MLP LSTM FCN ResNet Inception Transformer Informer TimesNet

 p m p m p m p m p m p m p m p m
 𝛼 = 0 65.50 – 59.70 63.10 65.30 69.20 73.10 70.20 82.60 78.30 69.00 72.90 64.20 64.20 62.90 64.40
 𝛼 = 0.2 66.20 – 54.30 50.00 61.80 66.10 72.20 73.10 83.90 85.80 71.80 72.80 65.70 65.70 74.80 66.60
 𝛼 = 0.4 66.80 – 46.50 51.20 65.70 62.50 73.50 74.40 87.80 84.90 72.40 73.70 65.10 65.50 72.90 67.50
 𝛼 = 0.6 66.10 – 48.00 52.80 64.60 63.50 72.40 72.00 80.20 84.30 72.40 75.00 57.30 65.10 68.70 63.80
 𝛼 = 0.8 65.90 – 48.40 52.10 64.80 61.00 72.80 74.80 80.80 84.10 71.80 73.50 57.70 64.80 68.70 70.00
 𝛼 = 1 65.10 – 47.60 – 52.50 – 45.90 – 82.80 – 69.40 – 50.40 – 72.00 –
where the energy of time series in this dataset is distributed relatively
even across their low, middle and high frequency bands (illustrated in
Fig. 8), the optimal 𝛼 values for different backbones generally range
from 0 to 0.4 (demonstrated in Table 9). These results suggest that the
optimal choice of 𝛼 depend on both the model architecture and the spe-
cific location where our spectral pooling is applied within the model.
For pavement dataset, which contains richer high-frequency informa-
tion, Table 10 shows that the optimal 𝛼 values are consistently greater
than 0.5 when our spectral pooling is applied as a pre-processing step.
This suggests that, for datasets with substantial high-frequency content,
padding is preferable to truncation, as it effectively preserves critical
high-frequency information in these time-series. However, when our
spectral pooling is integrated as a pooling layer within the model,
the optimal 𝛼 values tend toward zero but the results achieved by 𝛼
values ranging from 0 to 0.4 are stable. This occurs because the models
have already captured the essential features predominantly residing in
the lower frequency range at early feature extraction layers. Further
detailed analysis of this phenomenon is provided in the subsequent
sections.

Impacts of the SP layer’s location in the model: Table 11 shows that
integrating our SP layer into models is more beneficial than employing
it as a pre-processing step, which again suggests the effectiveness of
end-to-end normalizing over pre-normalizing. This can be explained
by the fact that deep learning models often prioritize learning lower
frequency components first, regardless of whether higher frequency
13
components or lower frequency components have larger amplitudes in
the original time series (as illustrated in Fig. 9), a phenomenon known
as spectral bias [87]. This explains why pooling-based SP outperformed
pre-processing-based SP, i.e., since the crucial cues of the extracted
feature already concentrated in low and middle frequency components
compared to the original series which contain more high frequency
contents, placing SP in the model means less information loss when
truncating high frequency components. Fig. 10 further employs t-SNE
to visualize the intermediate feature representations extracted from
each block, both with and without the use of our SP. It shows a clear
transition from a compact feature distribution (Fig. 10(b)) to a scattered
distribution (Fig. 10(d)), suggesting that deeper layers without SP may
generate features with larger intra-class distances. In contrast, applying
SP at earlier stages helps refine feature representations, enhancing both
intra-class compactness and inter-class separability of the extracted
features. Moreover, Fig. 10(e), (f), and (g) highlight that the optimal
position for placing SP varies depends on the model architecture.
Specifically, SP achieved optimal performances when placing it im-
mediately after the block that initially generates the most compact
intra-class features (i.e., after the first block for FCN and after the
second block for Informer).

6. Conclusion

This paper presents the first comprehensive benchmark for VTS
classification, evaluating 22 existing length normalization strategies

S. Wu et al.

F
b

F
f
c

a
w
w
a
t
s
t
Z
s
(

Information Fusion 126 (2026) 103584
Table 10
Average test ACC (%) achieved for different trade-off factor 𝛼 value with our SP as pre-processing (p) and pooling layer (m) on pavement datasets.
 MLP LSTM FCN ResNet Inception Transformer Informer TimesNet

p m p m p m p m p m p m p m p m
𝛼 = 0 80.33 – 90.43 93.66 90.66 95.80 90.60 95.23 92.20 96.60 87.83 92.26 88.06 92.50 88.26 92.93
𝛼 = 0.2 82.10 – 91.33 92.56 92.00 95.00 91.60 94.13 93.06 96.06 88.83 92.43 87.90 92.70 90.66 92.10
𝛼 = 0.4 81.53 – 91.20 92.50 92.26 95.13 92.30 94.06 93.36 95.63 89.40 92.06 88.50 92.70 89.76 91.90
𝛼 = 0.6 79.83 – 91.70 92.40 93.63 94.43 92.70 94.33 94.53 95.40 90.30 91.60 91.33 92.90 91.16 91.46
𝛼 = 0.8 79.50 – 91.30 90.86 93.36 94.56 93.60 95.03 94.80 94.76 91.36 92.00 92.10 92.33 90.83 90.66
𝛼 = 1 74.73 – 90.00 – 93.70 – 93.53 – 94.90 – 91.53 – 88.56 – 93.23 –
Table 11
Average test ACC (%) achieved by placing SP at different locations (after different layers) in DL models.
 LSTM FCN Resnet Inception Transformer Informer TimesNet
 Pre 67.65 72.22 74.90 78.74 69.55 70.98 71.23
 1 75.50 77.10 78.44 80.10 72.20 73.30 71.80
 2 71.85 73.96 77.67 78.22 73.18 74.47 71.29
 3 – 68.38 71.82 – 72.12 72.36 67.50
ig. 9. Comparison between the Fourier domain amplitude maps representing: (a) original time series; (b) features extracted by the FCN-based system; and (c) features extracted
y the Informer-based system.
ig. 10. t-SNE visualizations of intermediate feature representations learned from FCN (left) and Informer (right) models, illustrating the effect of spectral pooling (SP) on improving
eatures’ intra-class compactness and inter-class separability. In the FCN, each block contains a convolutional layer followed by a GELU activation. In the Informer, each block
onsists of 8-headed ProbSparse self-attention and layer normalization.
i
t
s
v
c
c
t
p
n

cross 14 VTS datasets using 8 representative DL models. In addition,
e propose a novel and effective SP-based normalization method,
hich can be flexibly used either as a pre-processing step or integrated
s a pooling layer within end-to-end DL architectures. The experimen-
al results lead to several key findings: (i) End-to-end pooling-based
trategies generally outperform pre-processing-based ones, facilitating
he DL model to obtain a more aggregated feature distribution; (ii)
ero padding and noise padding are relatively robust pre-processing
trategies, though the optimal padding position is model-dependent;
iii) Truncation methods yield the poorest results due to significant
m

14
nformation loss, with symmetric truncation typically performing better
han one-sided truncation; (iv) Most normalization methods show con-
istent performance across different dataset types and degrees of length
ariation; (v) DL models tend to focus on low-frequency components for
lassification, even when the original data contains rich high-frequency
ontent; (vi) Models performing well on equal-length series classifica-
ion are unlikely to perform well on VTS classification; and (vii) our
roposed SP effectively reduces information loss and distortion during
ormalization, achieving state-of-the-art performance across multiple
odels and datasets.

S. Wu et al. Information Fusion 126 (2026) 103584
Fig. 11. The amplitude maps of 40 equal-length series datasets in UCR, only half of which are shown due to conjugate symmetry, with the names of the datasets where the
high-frequency components have information labeled in purple.
The proposed spectral pooling (SP) method have several advantages
over existing strategies in processing VTS; (i) It can be flexibly used
as either a pre-processing operation or a pooling layer integrated
into standard deep learning models; (ii) as a pre-processing step
(SP (p)), it fundamentally differs from widely used truncation-based
methods that directly discard data points in the time domain. Instead,
our SP performs truncation in the frequency domain, preserving main
information by maintaining dominant spectral components. On datasets
where information is concentrated in low-frequency components, our
SP (p) even outperformed traditional adaptive pooling approaches;
(iii) When used as a pooling layer (SP(m)) within deep learning
models, SP effectively captures global temporal patterns, surpassing
conventional adaptive pooling methods that focus on local information.
Moreover, the selective truncation of high-frequency components aligns
well with the spectral bias observed in deep networks, thereby mitigat-
ing information loss during length normalization; and (iv) our length-
tracking mechanism ensures accurate processing of valid (unpadded)
15
regions, thereby avoiding misleading information introduced through
padding.

Despite these advantages, our SP also has several limitations. When
used as a pre-processing strategy (SP(p)), its performance may de-
cline on datasets dominated by high-frequency information due to the
truncation of potentially information. In such cases, we recommend
using SP(m), which incorporates spectral pooling into the model for
end-to-end optimization to align well with the spectral bias. More-
over, since SP inherently suppresses high-frequency components, it
may be fundamentally less suitable for tasks that rely heavily on such
information—such as short-term time-series forecasting or anomaly
detection.

In terms of scope, the current benchmark focuses exclusively on uni-
variate raw time-series data, aiming to establish a clear and standard-
ized foundation for variable-length time-series classification. However,
our approach is naturally extensible to multivariate and multi-modal
time series. For multivariate time series, our SP can be applied in-
dependently to each variable or jointly across variables to capture

S. Wu et al. Information Fusion 126 (2026) 103584
Fig. 12. The amplitude maps of 40 equal-length series datasets in UCR, only half of which are shown due to conjugate symmetry, with the names of the datasets where the
high-frequency components have information labeled in purple.
inter-dimensional dependencies. For multi-modal data, our SP can be
used to temporally normalize variable-length time series (e.g., different
numbers of audio frames and visual frames) from different modalities
to the same length, enabling straightforward fusion. In addition, our
framework supports benchmarking both early fusion (e.g., integrating
features from different modalities at the input level) and late fusion
(e.g., aggregating predictions from modality-specific branches) strate-
gies for multi-modal time series, which we plan to explore in future
work.

CRediT authorship contribution statement

Shiling Wu: Writing – review & editing, Writing – original draft,
Visualization, Validation, Methodology, Formal analysis, Data curation,
Conceptualization. Siyang Song: Writing – review & editing, Formal
analysis, Conceptualization. Songhe Deng: Visualization, Data cura-
tion. Weicheng Xie: Writing – review & editing. Linlin Shen: Writing
– review & editing, Supervision, Funding acquisition.
16
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported by the National Natural Science Foun-
dation of China under Grant 82261138629 and 12326610; Guang-
dong Basic and Applied Basic Research Foundation, China under Grant
2023A1515010688; Guangdong Provincial Key Laboratory, China un-
der Grant 2023B1212060076.

Data availability

I have shared the link to my code at the manuscript.

S. Wu et al.

Fig. 13. The amplitude maps of 37 equal-length series datasets in UCR, only half of which are shown due to conjugate symmetry, with the names of the datasets where the
high-frequency components have information labeled in purple.

Information Fusion 126 (2026) 103584

17

S. Wu et al.

Fig. 14. Statistical analysis (based on Bayesian Wilcoxon signed-rank test) between our spectral pooling (used as a pre-processing step (SP (p))) and various padding-based length
normalization methods across 14 VTS classification datasets and eight backbone models (columns). Each triangle illustrates the probability that SP (p) outperforms the compared
method (left corner), the compared method outperforms SP (p) (right corner), or their performance is practically equivalent (top corner, accuracy difference < 1%). Higher density
toward the left corner indicates larger advantages achieved by our SP (p).

Information Fusion 126 (2026) 103584

18

S. Wu et al. Information Fusion 126 (2026) 103584
Fig. 15. Bayesian statistical comparisons of spectral pooling (SP) as a pre-processing strategy (SP (p)) and as a model-integrated pooling layer (SP (m)) against a broader set
of benchmarks. SP (p) is compared with random padding, zoom padding, truncation, resampling, and warping strategies; SP (m) is compared with adaptive average and max
pooling. Each triangle illustrates the probability that SP outperforms the compared method (left corner), the compared method outperforms SP (right corner), or their performance
is practically equivalent (top corner, accuracy difference < 1%). Higher density toward the left corner indicates larger advantages achieved by our SP.
References

[1] J. Wu, K. Xu, X. Chen, S. Li, J. Zhao, Price graphs: Utilizing the structural
information of financial time series for stock prediction, Inform. Sci. 588 (2022)
405–424.

[2] H.F. Nweke, Y.W. Teh, M.A. Al-Garadi, U.R. Alo, Deep learning algorithms for
human activity recognition using mobile and wearable sensor networks: State of
the art and research challenges, Expert Syst. Appl. 105 (2018) 233–261.

[3] S. Song, S. Jaiswal, L. Shen, M. Valstar, Spectral representation of behaviour
primitives for depression analysis, IEEE Trans. Affect. Comput. 13 (2) (2020)
829–844.

[4] L. Yin, C. Ma, Interpretable incremental voltage-current representation attention
convolution neural network for non-intrusive load monitoring, IEEE Trans. Ind.
Inform. (2023).

[5] P.B. Weerakody, K.W. Wong, G. Wang, W. Ela, A review of irregular time series
data handling with gated recurrent neural networks, Neurocomputing 441 (2021)
161–178.

[6] C. Sun, S. Hong, M. Song, H. Li, A review of deep learning methods for irregularly
sampled medical time series data, 2020, arXiv preprint arXiv:2010.12493.

[7] D.M. Kreindler, C.J. Lumsden, The effects of the irregular sample and missing
data in time series analysis, in: Nonlinear Dynamical Systems Analysis for the
Behavioral Sciences using Real Data, CRC Press, 2016, pp. 149–172.

[8] Y.-S. Jeong, M.K. Jeong, O.A. Omitaomu, Weighted dynamic time warping for
time series classification, Pattern Recognit. 44 (9) (2011) 2231–2240.

[9] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, E. Keogh, Querying and mining
of time series data: experimental comparison of representations and distance
measures, Proc. VLDB Endow. 1 (2) (2008) 1542–1552.
19
[10] Z. Geler, V. Kurbalija, M. Ivanović, M. Radovanović, Weighted kNN and
constrained elastic distances for time-series classification, Expert Syst. Appl. 162
(2020) 113829.

[11] A. Jalalian, S.K. Chalup, GDTW-P-SVMs: Variable-length time series analysis
using support vector machines, Neurocomputing 99 (2013) 270–282.

[12] A. Mezari, I. Maglogiannis, Gesture recognition using symbolic aggregate ap-
proximation and dynamic time warping on motion data, in: Proceedings of the
11th EAI International Conference on Pervasive Computing Technologies for
Healthcare, 2017, pp. 342–347.

[13] S. Song, L. Shen, M. Valstar, Human behaviour-based automatic depression
analysis using hand-crafted statistics and deep learned spectral features, in: 2018
13th IEEE International Conference on Automatic Face & Gesture Recognition,
FG 2018, IEEE, 2018, pp. 158–165.

[14] N. Dehak, P.J. Kenny, R. Dehak, P. Dumouchel, P. Ouellet, Front-end factor
analysis for speaker verification, IEEE Trans. Audio Speech Lang. Process. 19 (4)
(2010) 788–798.

[15] Z. Wang, W. Yan, T. Oates, Time series classification from scratch with deep
neural networks: A strong baseline, in: 2017 International Joint Conference on
Neural Networks, IJCNN, IEEE, 2017, pp. 1578–1585.

[16] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, P.-A. Muller, Deep
learning for time series classification: a review, Data Min. Knowl. Discov. 33
(4) (2019) 917–963.

[17] J. Faouzi, Time series classification: A review of algorithms and implementations,
Mach. Learn. (Emerg. Trends Appl.) (2022).

[18] Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, L. Sun, Transformers in
time series: A survey, 2022, arXiv preprint arXiv:2202.07125.

http://refhub.elsevier.com/S1566-2535(25)00656-6/sb1
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb1
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb1
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb1
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb1
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb2
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb2
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb2
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb2
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb2
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb3
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb3
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb3
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb3
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb3
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb4
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb4
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb4
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb4
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb4
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb5
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb5
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb5
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb5
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb5
http://arxiv.org/abs/2010.12493
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb7
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb7
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb7
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb7
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb7
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb8
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb8
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb8
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb9
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb9
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb9
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb9
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb9
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb10
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb10
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb10
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb10
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb10
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb11
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb11
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb11
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb12
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb12
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb12
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb12
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb12
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb12
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb12
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb13
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb13
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb13
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb13
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb13
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb13
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb13
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb14
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb14
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb14
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb14
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb14
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb15
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb15
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb15
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb15
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb15
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb16
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb16
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb16
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb16
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb16
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb17
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb17
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb17
http://arxiv.org/abs/2202.07125

S. Wu et al. Information Fusion 126 (2026) 103584
[19] B.K. Iwana, On mini-batch training with varying length time series, in: ICASSP
2022-2022 IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP, IEEE, 2022, pp. 4483–4487.

[20] A. Lopez-del Rio, M. Martin, A. Perera-Lluna, R. Saidi, Effect of sequence padding
on the performance of deep learning models in archaeal protein functional
prediction, Sci. Rep. 10 (1) (2020) 1–14.

[21] E. Rahimian, S. Zabihi, S.F. Atashzar, A. Asif, A. Mohammadi, Xceptiontime:
A novel deep architecture based on depthwise separable convolutions for hand
gesture classification, 2019, arXiv preprint arXiv:1911.03803.

[22] M. Malekzadeh, R. Clegg, A. Cavallaro, H. Haddadi, Dana: Dimension-adaptive
neural architecture for multivariate sensor data, Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol. 5 (3) (2021) 1–27.

[23] Z. Yu, X. Xu, X. Chen, D. Yang, Temporal pyramid pooling convolutional neural
network for cover song identification, in: IJCAI, 2019, pp. 4846–4852.

[24] A. Sawada, T. Miyagawa, A. Ebihara, S. Yachida, T. Hosoi, Convolutional neural
networks for time-dependent classification of variable-length time series, in: 2022
International Joint Conference on Neural Networks, IJCNN, IEEE, 2022, pp. 1–8.

[25] H.A. Dau, A. Bagnall, K. Kamgar, C.-C.M. Yeh, Y. Zhu, S. Gharghabi, C.A.
Ratanamahatana, E. Keogh, The UCR time series archive, IEEE/CAA J. Autom.
Sin. 6 (6) (2019) 1293–1305.

[26] V.M. Souza, Asphalt pavement classification using smartphone accelerometer and
complexity invariant distance, Eng. Appl. Artif. Intell. 74 (2018) 198–211.

[27] C.-C. Kao, M. Sun, W. Wang, C. Wang, A comparison of pooling methods on
LSTM models for rare acoustic event classification, in: ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal Processing, ICASSP,
IEEE, 2020, pp. 316–320.

[28] H. Ismail Fawaz, B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I.
Webb, L. Idoumghar, P.-A. Muller, F. Petitjean, Inceptiontime: Finding alexnet
for time series classification, Data Min. Knowl. Discov. 34 (6) (2020) 1936–1962.

[29] H. Wu, T. Hu, Y. Liu, H. Zhou, J. Wang, M. Long, TimesNet: Temporal 2D-
variation modeling for general time series analysis, 2022, arXiv preprint arXiv:
2210.02186.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser,
I. Polosukhin, Attention is all you need, Adv. Neural Inf. Process. Syst. 30 (2017).

[31] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, W. Zhang, Informer: Beyond
efficient transformer for long sequence time-series forecasting, in: Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 35, 2021, pp. 11106–11115,
12.

[32] H.I. Fawaz, Deep learning for time series classification, 2020, arXiv preprint
arXiv:2010.00567.

[33] A. Shifaz, C. Pelletier, F. Petitjean, G.I. Webb, Elastic similarity and distance
measures for multivariate time series, Knowl. Inf. Syst. 65 (6) (2023) 2665–2698.

[34] J. Zhao, L. Itti, Shapedtw: Shape dynamic time warping, Pattern Recognit. 74
(2018) 171–184.

[35] Y. Liu, Y.-A. Zhang, M. Zeng, J. Zhao, A novel distance measure based on
dynamic time warping to improve time series classification, Inform. Sci. 656
(2024) 119921.

[36] L. Ye, E. Keogh, Time series shapelets: a new primitive for data mining, in:
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2009, pp. 947–956.

[37] A. Bagnall, J. Lines, J. Hills, A. Bostrom, Time-series classification with COTE:
the collective of transformation-based ensembles, IEEE Trans. Knowl. Data Eng.
27 (9) (2015) 2522–2535.

[38] C. Avcı, M. Budak, N. Yağmur, F. Balçık, Comparison between random forest and
support vector machine algorithms for LULC classification, Int. J. Eng. Geosci. 8
(1) (2023) 1–10.

[39] A. Shifaz, C. Pelletier, F. Petitjean, G.I. Webb, TS-CHIEF: a scalable and accurate
forest algorithm for time series classification, Data Min. Knowl. Discov. 34 (3)
(2020) 742–775.

[40] Y. Narayan, Comparative analysis of SVM and naive Bayes classifier for the SEMG
signal classification, Mater. Today: Proc. 37 (2021) 3241–3245.

[41] F. Karim, S. Majumdar, H. Darabi, S. Harford, Multivariate LSTM-FCNs for time
series classification, Neural Netw. 116 (2019) 237–245.

[42] S. Liu, H. Yu, C. Liao, J. Li, W. Lin, A.X. Liu, S. Dustdar, Pyraformer:
Low-complexity pyramidal attention for long-range time series modeling and
forecasting, in: International Conference on Learning Representations, 2021.

[43] P. Wang, J. Xu, B. Xu, C. Liu, H. Zhang, F. Wang, H. Hao, Semantic clustering
and convolutional neural network for short text categorization, in: Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing (Volume
2: Short Papers), 2015, pp. 352–357.

[44] C.W. Tan, F. Petitjean, E. Keogh, G.I. Webb, Time series classification for varying
length series, 2019, arXiv preprint arXiv:1910.04341.

[45] M. Dwarampudi, N. Reddy, Effects of padding on LSTMs and CNNs, 2019, arXiv
preprint arXiv:1903.07288.

[46] T. Zhou, Z. Ma, Q. Wen, X. Wang, L. Sun, R. Jin, Fedformer: Frequency en-
hanced decomposed transformer for long-term series forecasting, in: International
Conference on Machine Learning, PMLR, 2022, pp. 27268–27286.

[47] W. Cai, Y. Liang, X. Liu, J. Feng, Y. Wu, MSGNet: Learning multi-scale inter-series
correlations for multivariate time series forecasting, in: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 38, 2024, pp. 11141–11149, 10.
20
[48] J. Xu, H. Gunes, K. Kusumam, M. Valstar, S. Song, Two-stage temporal modelling
framework for video-based depression recognition using graph representation,
IEEE Trans. Affect. Comput. (2024).

[49] M. Chen, X. Xiao, B. Zhang, X. Liu, R. Lu, Neural architecture searching for facial
attributes-based depression recognition, in: 2022 26th International Conference
on Pattern Recognition, ICPR, IEEE, 2022, pp. 877–884.

[50] H. Shu, W. Song, Z. Song, H. Guo, C. Li, Y. Wang, Multistep short-term wind
speed prediction with rank pooling and fast Fourier transformation, Wind. Energy
27 (7) (2024) 667–694.

[51] R. Liao, S. Song, H. Gunes, An open-source benchmark of deep learning models
for audio-visual apparent and self-reported personality recognition, IEEE Trans.
Affect. Comput. (2024).

[52] R. Ju, P. Zhou, S. Wen, W. Wei, Y. Xue, X. Huang, X. Yang, 3D-CNN-SPP: A
patient risk prediction system from electronic health records via 3D CNN and
spatial pyramid pooling, IEEE Trans. Emerg. Top. Comput. Intell. 5 (2) (2020)
247–261.

[53] H.I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, P.-A. Muller, Transfer learning
for time series classification, in: 2018 IEEE International Conference on Big Data,
Big Data, IEEE, 2018, pp. 1367–1376.

[54] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., Pytorch: An imperative style, high-performance
deep learning library, Adv. Neural Inf. Process. Syst. 32 (2019).

[55] F.A. Del Campo, M.C.G. Neri, O.O.V. Villegas, V.G.C. Sánchez, H.d.O. Domínguez,
V.G. Jiménez, Auto-adaptive multilayer perceptron for univariate time series
classification, Expert Syst. Appl. 181 (2021) 115147.

[56] S. Belagoune, N. Bali, A. Bakdi, B. Baadji, K. Atif, Deep learning through LSTM
classification and regression for transmission line fault detection, diagnosis and
location in large-scale multi-machine power systems, Measurement 177 (2021)
109330.

[57] H. Sheng, M. Liu, J. Hu, P. Li, Y. Peng, Y. Yi, LA-ESN: a novel method for time
series classification, Information 14 (2) (2023) 67.

[58] D. Lee, S. Lee, H. Yu, Learnable dynamic temporal pooling for time series
classification, in: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, 2021, pp. 8288–8296, 9.

[59] M. Khan, H. Wang, A. Ngueilbaye, A. Elfatyany, End-to-end multivariate time
series classification via hybrid deep learning architectures, Pers. Ubiquitous
Comput. 27 (2) (2023) 177–191.

[60] Y. Lei, Z. Wu, Time series classification based on statistical features, EURASIP
J. Wirel. Commun. Netw. 2020 (1) (2020) 46.

[61] M. Middlehurst, P. Schäfer, A. Bagnall, Bake off redux: a review and experimental
evaluation of recent time series classification algorithms, Data Min. Knowl.
Discov. (2024) 1–74.

[62] Y. Zhang, Y. Hou, K. OuYang, S. Zhou, Multi-scale signed recurrence plot based
time series classification using inception architectural networks, Pattern Recognit.
123 (2022) 108385.

[63] H. Wu, J. Xu, J. Wang, M. Long, Autoformer: Decomposition transformers with
auto-correlation for long-term series forecasting, Adv. Neural Inf. Process. Syst.
34 (2021) 22419–22430.

[64] A. Benavoli, G. Corani, F. Mangili, M. Zaffalon, F. Ruggeri, A Bayesian wilcoxon
signed-rank test based on the Dirichlet process, in: International Conference on
Machine Learning, PMLR, 2014, pp. 1026–1034.

[65] B. McFee, J. Salamon, J.P. Bello, Adaptive pooling operators for weakly labeled
sound event detection, IEEE/ACM Trans. Audio Speech Lang. Process. 26 (11)
(2018) 2180–2193.

[66] X. Wu, C. Huang, P. Robles-Granda, N.V. Chawla, Representation learning on
variable length and incomplete wearable-sensory time series, ACM Trans. Intell.
Syst. Technol. (TIST) 13 (6) (2022) 1–21.

[67] C. Ji, Y. Hu, S. Liu, L. Pan, B. Li, X. Zheng, Fully convolutional networks with
shapelet features for time series classification, Inform. Sci. 612 (2022) 835–847.

[68] G. Li, B. Choi, J. Xu, S.S. Bhowmick, K.-P. Chun, G.L.-H. Wong, Shapenet: A
shapelet-neural network approach for multivariate time series classification, in:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, 2021, pp.
8375–8383, 9.

[69] Y. He, J. Zhao, Temporal convolutional networks for anomaly detection in time
series, in: Journal of Physics: Conference Series, vol. 1213, IOP Publishing, 2019,
042050, 4.

[70] M. Imamura, T. Nakamura, Parameter-free spikelet: Discovering different length
and warped time series motifs using an adaptive time series representation, in:
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, 2023, pp. 857–866.

[71] R. Rai, T. Basikolo, S.B. TSB, Enhancing user experience in home networks with
machine learning-based classification, 2024.

[72] Z. Aldeneh, E.M. Provost, Using regional saliency for speech emotion recogni-
tion, in: 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP, IEEE, 2017, pp. 2741–2745.

[73] Y. Wang, W. Yao, M. Dong, Y. Li, L. Zhu, S. Bi, Prediction of battery capacity
based on deep residual network, in: 2022 12th International Conference on
CYBER Technology in Automation, Control, and Intelligent Systems, CYBER,
IEEE, 2022, pp. 462–467.

http://refhub.elsevier.com/S1566-2535(25)00656-6/sb19
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb19
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb19
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb19
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb19
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb20
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb20
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb20
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb20
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb20
http://arxiv.org/abs/1911.03803
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb22
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb22
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb22
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb22
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb22
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb23
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb23
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb23
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb24
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb24
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb24
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb24
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb24
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb25
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb25
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb25
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb25
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb25
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb26
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb26
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb26
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb27
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb27
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb27
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb27
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb27
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb27
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb27
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb28
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb28
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb28
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb28
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb28
http://arxiv.org/abs/2210.02186
http://arxiv.org/abs/2210.02186
http://arxiv.org/abs/2210.02186
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb30
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb30
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb30
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb31
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb31
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb31
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb31
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb31
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb31
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb31
http://arxiv.org/abs/2010.00567
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb33
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb33
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb33
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb34
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb34
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb34
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb35
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb35
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb35
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb35
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb35
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb36
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb36
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb36
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb36
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb36
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb37
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb37
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb37
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb37
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb37
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb38
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb38
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb38
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb38
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb38
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb39
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb39
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb39
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb39
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb39
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb40
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb40
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb40
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb41
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb41
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb41
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb42
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb42
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb42
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb42
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb42
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb43
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb43
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb43
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb43
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb43
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb43
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb43
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb43
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb43
http://arxiv.org/abs/1910.04341
http://arxiv.org/abs/1903.07288
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb46
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb46
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb46
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb46
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb46
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb47
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb47
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb47
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb47
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb47
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb48
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb48
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb48
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb48
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb48
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb49
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb49
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb49
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb49
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb49
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb50
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb50
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb50
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb50
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb50
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb51
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb51
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb51
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb51
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb51
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb52
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb52
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb52
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb52
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb52
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb52
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb52
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb53
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb53
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb53
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb53
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb53
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb54
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb54
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb54
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb54
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb54
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb55
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb55
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb55
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb55
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb55
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb56
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb56
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb56
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb56
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb56
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb56
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb56
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb57
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb57
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb57
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb58
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb58
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb58
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb58
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb58
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb59
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb59
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb59
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb59
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb59
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb60
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb60
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb60
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb61
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb61
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb61
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb61
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb61
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb62
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb62
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb62
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb62
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb62
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb63
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb63
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb63
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb63
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb63
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb64
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb64
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb64
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb64
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb64
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb65
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb65
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb65
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb65
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb65
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb66
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb66
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb66
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb66
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb66
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb67
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb67
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb67
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb68
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb68
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb68
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb68
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb68
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb68
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb68
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb69
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb69
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb69
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb69
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb69
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb70
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb70
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb70
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb70
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb70
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb70
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb70
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb71
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb71
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb71
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb72
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb72
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb72
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb72
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb72
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb73
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb73
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb73
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb73
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb73
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb73
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb73

S. Wu et al. Information Fusion 126 (2026) 103584
[74] A.M. Sadeghzadeh, S. Shiravi, R. Jalili, Adversarial network traffic: Towards
evaluating the robustness of deep-learning-based network traffic classification,
IEEE Trans. Netw. Serv. Manag. 18 (2) (2021) 1962–1976.

[75] V. Cerqueira, L. Torgo, I. Mozetič, Evaluating time series forecasting models:
An empirical study on performance estimation methods, Mach. Learn. 109 (11)
(2020) 1997–2028.

[76] A.P. Ruiz, M. Flynn, J. Large, M. Middlehurst, A. Bagnall, The great multivariate
time series classification bake off: a review and experimental evaluation of recent
algorithmic advances, Data Min. Knowl. Discov. 35 (2) (2021) 401–449.

[77] Z. Che, S. Purushotham, G. Li, B. Jiang, Y. Liu, Hierarchical deep generative
models for multi-rate multivariate time series, in: International Conference on
Machine Learning, PMLR, 2018, pp. 784–793.

[78] G. Huang, Missing data filling method based on linear interpolation and
lightgbm, in: Journal of Physics: Conference Series, vol. 1754, IOP Publishing,
2021, 012187, 1.

[79] C. Zhang, H. Fanaee-T, M. Thoresen, Feature extraction from unequal length het-
erogeneous EHR time series via dynamic time warping and tensor decomposition,
Data Min. Knowl. Discov. 35 (4) (2021) 1760–1784.

[80] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, 2014, arXiv preprint arXiv:1409.1556.
21
[81] I. Martín-Morató, M. Cobos, F.J. Ferri, Adaptive distance-based pooling in
convolutional neural networks for audio event classification, IEEE/ACM Trans.
Audio Speech Lang. Process. 28 (2020) 1925–1935.

[82] Y. Zhu, H. Luo, R. Chen, F. Zhao, L. Su, DenseNetX and GRU for the sussex-
huawei locomotion-transportation recognition challenge, in: Adjunct Proceedings
of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous
Computing and Proceedings of the 2020 ACM International Symposium on
Wearable Computers, 2020, pp. 373–377.

[83] K. Huang, F. Wang, Y. Wang, TS-TWC: A time series representation learning
framework based on time-wavelet contrasting, Biomed. Signal Process. Control.
88 (2024) 105678.

[84] X. Wang, P. Wang, Y. Song, Q. Xiang, J. Li, Recognition of high-resolution range
profile sequence based on TCN with sequence length-adaptive algorithm and
elastic net regularization, Expert Syst. Appl. (2024) 123417.

[85] C.E. Brown, Coefficient of variation, in: Applied Multivariate Statistics in
Geohydrology and Related Sciences, Springer, 1998, pp. 155–157.

[86] W.M. Gentleman, G. Sande, Fast Fourier transforms, in: Proceedings of the
November 7-10, 1966, Fall Joint Computer Conference on XX - AFIPS ’66, Fall,
1966, http://dx.doi.org/10.1145/1464291.1464352.

[87] N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht, Y. Bengio, A.
Courville, On the spectral bias of neural networks, in: International Conference
on Machine Learning, PMLR, 2019, pp. 5301–5310.

http://refhub.elsevier.com/S1566-2535(25)00656-6/sb74
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb74
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb74
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb74
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb74
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb75
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb75
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb75
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb75
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb75
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb76
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb76
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb76
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb76
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb76
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb77
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb77
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb77
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb77
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb77
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb78
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb78
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb78
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb78
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb78
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb79
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb79
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb79
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb79
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb79
http://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb81
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb81
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb81
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb81
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb81
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb82
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb82
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb82
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb82
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb82
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb82
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb82
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb82
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb82
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb83
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb83
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb83
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb83
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb83
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb84
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb84
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb84
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb84
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb84
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb85
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb85
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb85
http://dx.doi.org/10.1145/1464291.1464352
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb87
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb87
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb87
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb87
http://refhub.elsevier.com/S1566-2535(25)00656-6/sb87

	Variable-length time series classification: Benchmarking, analysis and effective spectral pooling strategy
	Introduction
	Related Work
	Time series classification
	Length normalization strategies

	The Proposed Benchmarking Framework
	Coding infrastructure
	Data pipeline
	Employed deep learning backbones
	Training and testing protocol
	Evaluation metrics

	Benchmarked length normalization strategies
	Inclusion and exclusion criteria
	Benchmarked length normalization strategies

	Datasets

	Spectral Pooling Strategy
	The Overview of Spectral Pooling
	Length Tracking and Undistorted Spectral Representation Generation
	Adaptive Length Normalization

	Experiment
	Benchmarking results
	Results achieve by our Spectral Pooling
	Comparison with benchmarked strategies
	Ablation studies

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

