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Abstract Nowadays, facial expression synthesis is widely used in expression simulation,
recognition and animation. While a variety of works available in literature are 3D based,
these algorithms usually require face matching and trimming, are thus time consuming. In
this work, an automatic algorithm for expression synthesis in 2D space is proposed, which
mainly consists of three stages.The optimum matching of three sets of feature points on the
faces of source neutral (Fsn), source expression (Fse) and target neutral (Ftn) are obtained
in the first stage. Different components on the target face are deformed by learning from
not only the displacements but also the geometry shape of face Fse in the second stage.
In the last stage, the details of the source expression are mapped onto the corresponding
positions on the target face by fitting of the lighting differences. Experimental results on
expression synthesis with large geometry deformation and lighting difference show that
the proposed algorithm is able to accurately preserve the geometry deformation, and the
synthesized expressions are visually realistic.
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1 Introduction

With the development of face recognition and facial animation, expression synthesis has
been increasingly important and widely used in these applications. Low-quality 2D images
and 3D depth maps were mapped to realistic facial expressions by optimization with geom-
etry and texture registration [29]. Features of 2D geometric deformation were employed for
the facial expression recognition [10], where 2D deformable models tracking the greatest
facial expression intensity were used for SVM classification. Other algorithms related with
facial deformation and synthesis for expression recognition were also reported in [1, 19, 23].

Generally, the algorithms of expression synthesis are mainly divided into the categories
of 3D and 2D based approaches. The 3D based algorithms can synthesize realistic expres-
sions [32], however, they often require a matching between 2D image and 3D shape or a
database of basic expression set with respect to (w.r.t.) the target person when a 2D non-
expression face is provided. The 2D based algorithms learn geometry and texture features
of the reference (source) expressions and map these features directly onto the target face.
Based on the number of the reference expressions, the 2D based algorithms can be clas-
sified into two classes, i.e. statistical learning of multiple reference expressions, and face
deformation and wrinkle mapping with a single expression face.

With respect to statistically-based algorithms, [4] divided the expression synthesis into
the phases of analysis network training and synthesis network learning. A database of var-
ious facial expressions of a single person was learned by the principle component analysis
(PCA) for simulating new expressions [33]. This method may not work when the size of the
face varies largely as it was based on facial region segmentation and interpolation. Using
bilinear kernel regression [8], facial expression synthesis was proposed to preserve sub-
tle person-specific facial characteristics by learning expression variations. Facial animation
parameters (FAPs) were used to model the primary expressions in [21]. Vlasic et al. [28]
proposed to synthesize a new expression face from the Cartesian product of sub-statistical
models of the example’s identity, expression and viseme. For statistically-based algorithms,
a database of referred expressions w.r.t. the considered person is needed in general, and
these methods mainly concentrate on the detail preservation of the generated expression.

The deformation and mapping based algorithms generally require the following steps:

– Location and alignment of the feature points on faces of Fsn, Fse and Ftn;
– Deformation of the target face Ftn by learning the movement from Fsn and Fse;
– Wrinkle mapping on the deformed face of Ftn.

1.1 Correspondence matching

For face correspondence matching, Liu et al. [15] and Zhang et al. [34] located the positions
and determined the correspondence of the feature points manually. Song et al. [25] made
this step semi-automatic by determining the initial positions of the feature points with active
appearance model, then these locations are adjusted to be inside of the face contour by a
few manual interactions. Actually, this step can be made automatic using state-of-the-art
face alignment algorithms. Li et al. [13] proposed to align the faces by the optical flow.
Qian et al. [20] and Liao et al. [14] found a better contour matching between two faces by
the minimization of an energy function. Cascade of regression trees were adopted in the
face alignment in [9, 22]. These algorithms obtain the facial correspondence by a global
optimization. While the local features around facial parts were not matched, the genuineness
of synthesized expression is greatly compromised. The employed optimization in this paper
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is concentrated on matching local features around facial parts by optimizing the feature
point location incorporating with the detected boundary pixels.

1.2 Face deformation

For mesh deformation, Sumner and Popovic [26] presented a method of deformation trans-
fer by deforming a source triangle mesh with a minimization optimization. However, the
feature points were manually located, and the details were not well preserved. The facial
expression was generated by simulating the muscle deformation with differential equation
model in 3D space [12]. A hierarchical geodesic-based resampling approach was applied to
extract the landmarks for deformation modeling [16].

For 2D deformation algorithms, [8, 33] firstly located the target feature points from the
expression database of the considered person, then the non-feature points were interpolated
with basis functions. However, these interpolation algorithms neglect the geometry features
of the target face. The wrapping algorithm in [3] obtained the movement of each pixel by
incorporating a few directed line segments and the distances between the pixel and these
key segments on Fte, which was also adopted in [15, 25] for mesh deformation. However,
this deformation algorithm was time-consuming, and the line segments on Fte were diffi-
cult to be determined when the face parts are largely deformed. The feature points on the
deformed target face were approximated with the weighted positions of the feature points
on the reference face by an elastic model [34]. While the geometry features of the learned
face were preserved, the facial part smoothness are not well preserved during the deforma-
tion. The work in [18] compared the performance of 2D (e.g. Active Appearance Models)
and 3D (e.g. Morphable Models) face models in terms of representation power, construction
accuracy and efficiency. A global optimization model for 2D shape deformation was pre-
sented in [30], while the geometry features inside the object such as the directional vectors
of the part edge were ignored.

1.3 Wrinkle mapping

While [2, 11] model wrinkles for the 3D expression synthesis, the 2D wrinkle simulation
needs only to learn and map the reference wrinkle features. [15] assumed the expression
ratio image (ERI) between Fsn and Fse to be the same as that between Ftn and Fte. The
expression features with ERI were mapped to the retrieved and deformed face sequence to
obtain the final expression sequence [13]. Shift ERI incorporated with Gaussian damping
weighting term was employed to map the wrinkles onto the target face [34]. These ratio
based algorithms of lighting mapping are largely influenced by the abnormal lighting ratios
when the lighting values of pixels on Fsn is relatively small. To avoid this disadvantage, we
adopt the difference of the lighting intensities [6] rather than the ratio between correspond-
ing pixels on Fsn and Fse to simulate the lighting changes. Moreover, a fitting form of the
lighting difference [31] is proposed.

Thus, for deformation and mapping based algorithms, three problems still need to be
resolved. Firstly, the alignment of the feature points needs to be improved for accurate part
matching. Secondly, the direction information of the part edges is not sufficiently learned in
the face deformation. Lastly, the existing wrinkle mapping algorithms are mostly based on
the ratio of lighting intensity, which is sensitive to the abnormal lighting. The paper aims to
propose a new algorithm of expression synthesis to deal with these three problems.

In this work, a mesh deformation algorithm incorporating wrinkle mapping (abbreviated
as DaWF) is proposed to synthesize the facial expressions. The main contributions of the
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proposed DaWF concentrate on three aspects. Firstly, we locally optimize the correspon-
dences among the feature points on the faces Fsn, Fse and Ftn by minimizing an energy
function, which matches part boundary and the differences between the local pixels around
the face part edges. In this way, the lighting intensities on two faces are better matched to
reduce abnormal lighting differences. Secondly, accurate geometry deformation of the parts
is obtained by a mesh deformation algorithm, which can properly preserve the direction
field of part edges. Experimental results of the two deformation algorithms in Section 3.1
demonstrate that DaWF can efficiently simulate the geometry shape changes of different
expressions. Thirdly, the wrinkle mapping on the deformed face is performed by solving
a system of linear equations to fit lighting differences. Comparative results with several
related algorithms in Section 3.2 reveal that the proposed mapping method can generate
more complete wrinkle and is both robust and efficient.

This paper is structured as follows. Section 2 gives a description about the proposed
algorithm step by step. The experimental results of the proposed algorithm on various
expressions are presented in Section 3. Finally, discussions and some conclusions are
addressed in Section 4.

2 The proposed algorithm

The sketch of expression synthesis is illustrated in Fig. 1, where the faces from Fig. 1a to
b are used for learning, the learned information is then applied to Fig. 1c and finally the
synthesized expression is showed in Fig. 1d.

Fig. 1 The sketch of the expression synthesis. a Source neutral face Fsn, b Source fear expression for
learning Fse , c Target neutral face Ftn, d Target fear expression after learning Fte
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2.1 Framework of the algorithm

As presented in Fig. 2, the general framework of the proposed DaWF consists of three steps.
In the first step, the correspondence between feature points is matched. In the second step,
we obtain the deformed geometry by mesh deformation. The wrinkles and the teeth are
mapped onto the target face in the last step.

It can be seen from Fig. 2 that the proposed DaWF mainly differs from the other algo-
rithms on three aspects. Firstly, the feature points and the edges of the parts are aligned by
a local optimization. Secondly, direction field is incorporated into the mesh deformation
to preserve the directional features of the target expression during geometry deformation.
Lastly, lighting differences among nine neighboring pixels and fitting of the differences are
introduced for the wrinkle mapping.

As shown in Fig. 3b, we view the whole face as a structure � = {�1, · · · , �n} which
consists of eight parts i.e. two eyes, two brows, nose, mouse, lip and profile. Each part
encloses a closed region represented with shapes, geometry features, lighting intensities and
textures like wrinkles. The proposed algorithm aims to reconstruct the texture and geometry
properties of all the considered parts when the expression is synthesized.

2.2 Correspondence matching based on local optimization

Before correspondence matching between two sets of feature points, active appearance
model (AAM) [27] is first employed to obtain the initial positions of 68 feature points,

Fig. 2 The framework of the proposed algorithm
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a b

Fig. 3 Facial parts, profile and the locations of 68 and 79 feature points

which are expanded to 79 points to include the forehead region with Procrustes transforma-
tion. Figure 3a, b show the locations of the 68 and 79 feature points, respectively.

In order to map the expression feature onto the accurate position of the target face, edges
of the parts on the considered faces are finely matched and adjusted by local optimization.
That is, based on the obtained 79 feature points, each part boundary is interpolated with a B
spline curve. Then the positions of the feature points on the interpolated B-spline curve are
locally adjusted by considering the lighting intensities of local neighboring pixels on Fsn,
Fse and Ftn, where the lighting intensity is defined as the Y component of the YUV color
[15]. The correspondence matching is obtained by integrating the part boundary trimming
with correspondence optimization, which is divided into the following five steps. Figure 4
presents the optimization procedure of correspondence between Fsn and Fse with the face
profile as an example.

a b c d e

Fig. 4 Procedure of correspondence optimization of a face profile. a demonstrates the continuous edge
segments detected by Canny operator in a local region, where edge segments are labeled with blue lines and
the starting points are labeled with red dots. b records the trimmed boundary pixels. Images of boundary
pixels with different degrees and its smoothness are presented in (c) and (d), respectively. e presents the
initial and optimized edges labeled with red stars and blue circles, respectively
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– Canny edge detector is employed on faces Fsn and Fse to obtain the boundary pixels,
and continuous boundary edge segments are found by depth first searching (DFS) in a
local region around the initial face profile;

– Boundary pixels on edge with length less than 10 or angle larger than π/3 are
abandoned;

– After trimming the boundary pixels, the strength of each edge pixel is computed by
gradually increasing the threshold of Canny operator;

– Each edge pixel is assigned an index to indicate its strength of being boundary and
smoothed to facilitate the local searching around the face profile;

– Optimized face profile is obtained by a local optimization formulated in (1).

The first term of optimization (1) denotes the lighting intensities of the smoothed face
Fse, which records the distance between the re-located pixel and the strongest edge pixels
detected by Canny operator. The second term records the similarity of direction field with
the original edge. The third term corresponds to the smoothness of the interpolated boundary
edge, which is used to reduce abnormal feature points. The last term reflects the match-
ing degree between the source and target face edges, which is introduced to finely locate
the correspondence points on the target face. The matching degree Mi of the i-th point is
formulated in (2).
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where {IPi, i = 1, · · · , n}, {Pi, i = 1, · · · , n} are the discrete approximations of the initial
and current interpolation B-spline curves, respectively. vi = Pi+1 −Pi, ivi = IPi+1 − IPi .
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denote the numbers of pixels in the tangent direction Td and normal direction Nd . ri =∣∣∣∣
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∣∣∣∣ is the ratio of the lighting differences of two pixels in the normal

direction Nd , which is introduced to normalize the lighting intensities of faces Fsn and Fse

around the boundary regions.
The minimization problem (1) is optimized iteratively by Golden section method with

the parameters (α, β, γ ) increasing from (0.005, 0.005, 0.001) to (0.2, 0.1, 0.2) and the
number of discrete points n increasing from n0 to 3 · n0, where n0 is the number of initial
feature points on the part boundary. Similar optimization is also applied to Ftn to adjust the
feature points located by AAM. The fourth term of optimization (1) is omitted for the part
edge optimization of the reference face Fsn.

Figure 5 presents the initial and adjusted feature points on the face Fse. One can observe
that most of the feature points on the face profile of Fse have been adjusted to match the
corresponding points on Fsn.

The optimization model (1) is newly proposed for the correspondence matching of the
feature points on the faces Fsn, Fse and Ftn. Different from current algorithms which manu-
ally refine the feature points based on coarse point correspondence, the proposed algorithm



7572 Multimed Tools Appl (2018) 77:7565–7593

Fig. 5 The left image depicts the feature points on Fsn located by AAM and optimization (1), the right
image demonstrates the feature points on Fse , where the initial feature points are labeled with red triangles
and the adjusted feature points are labeled with blue dots

automatically adjusts the feature points to match the local texture features of the reference
points and the part boundary edges while preserving the geometry property of these points.

2.3 Mesh deformation based on edge direction preservation

The procedure of generating the deformed feature points on Fte is divided into three steps.
In the first step, all the feature points are rotated to an unified coordinate system with

reference to the positions of the two eyes and the nose on Fsn and Ftn. In the second step,
initial positions of feature points on Fte are obtained according to the scaled movements of
feature points on Fsn and Fse, as demonstrated in Fig. 6a.

In the third step, accurate feature points and the corresponding deformed non-feature
points on Fte are obtained using a global triangulation mesh deformation based on the fea-
ture points of Fte. The mesh employed in this work is generated by a triangulation with
boundary constraints of the considered parts, where the boundary points are uniformly and
densely sampled from the interpolated B-spline curve. Figure 6b shows the triangulation of
an example face.

a b

Fig. 6 The movements and triangulation of feature points. a: The movements of all the feature points from
Fsn to Fse . The points in the white circles are from Fsn. b: The constrained triangulation of an example set
of feature points
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Motivated by the work in [30], we propose to deform the mesh by the minimization opti-
mization using (3). The optimization approach in [30] can flexibly deform source exterior
boundary into the target shape, while the deformation of the interior parts and the fine geom-
etry feature such as edge direction field are not considered. Thus, for expression synthesis
application, we proposed an improved algorithm of [30] as below:

min ||MV ||22 + λ1||HV − e(V )||22 + λ2||DV − δ(V )||22 + λ3||CV − U ||22
s.t. 	(Vi) − 	̃i = 0, 1 ≤ i ≤ N.

(3)

where V records the vector form of vertex coordinates of the mesh, D, M,H, C correspond
to the coefficient matrixes, δ(V ), e(V ), 	̃k are the corresponding terms for learning and
N = 8 is the number of considered parts on the face.

In the first term of the optimization, the matrix M describes the weight of each interior
point and the corresponding adjacent points. This term is used to restrict the bias between
a point and the corresponding mean coordinate, which tries to make the interior point be
close to the weighted center of the adjacent points and formulated as below:

vi −
∑

(i,j)∈E

wi,j · vj = 0, for vi ∈ Vg. (4)

where vi is the i-th point of the vector representation of mesh points V , E denotes the set
of all edges, Vg records all the interior points.

In the second term, the matrix H records the constraints of the lengths of the edges, i.e.
the lengths of all the edges keep constant before and after deformation, which is formulated
as below:
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iteration.
The preceding two terms are introduced to regulate the deformation of points and shape

in the work [30], while the last two terms are newly proposed for the specific expression
synthesis model.

The third term is newly introduced, where the matrix D corresponds to the coefficient
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for {Vi,j , Vi,j+1} ⊂ Ep.

(6)

where V
(k)
i,j is the j -th point on the i-th part of the face Fte at the k-th iteration, V (se)

i,j+1−V
(se)
i,j

is the directional vector on i-th part of the face Fse, rse
i is the ratio between the width and

height of the i-th part on Fse, Ep records all the boundary points. This term is proposed
to preserve the proportional direction vectors (field) on the part boundary of Fse and the
corresponding length proportions, i.e., the deformation algorithm not only learns from the
displacements of the feature points, but also from the direction field of geometry shape Fse.
To prevent the deformed points being far from the initial feature points, the fourth term is
introduced.
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In the fourth term, matrixes C, U are set for the position constraints. In this work, this
term reflects the geometry changes of the feature point positions. We try to restrict the
feature points within a close distance from the obtained initial positions by (7):

Vi,j = Ṽij , for 1 ≤ i ≤ N, 1 ≤ j ≤ in. (7)

where Ṽij denotes the initial position of the feature point Vij .
The constraints in the optimization problem reflect the restrictions of the areas before

and after deformation. In (8), operator 	(Vi) denotes the area of the region enclosed by the
the i-th part, as formulated below:

{
	(Vi) = 1

2

in
j=1(xi,j yi,jn − xi,jnyi,j )

jn = j, 1 ≤ j ≤ in; jn = 1, j = in.
(8)

The parameters {λi, 1 ≤ i ≤ 3} control the importance of each term to the global opti-
mization (3). In this work, we set the values as λ1 = λ3 = 1, λ2 = 2 for all the test problems
after a few trials. The coefficient λ2 can be set to be larger when a closer matching with the
learned geometry shape is needed. This least square optimization is solved using iterative
Gauss-Newton method [30].

After obtaining the feature points on the face Fte, these points in the unified framework
(i.e. relative coordinate) are transformed back into the coordinate system of Ftn (i.e. absolute
coordinate). With an inverse mapping, the pixel colors in the deformed triangle on Fte are
approximated with the corresponding pixel colors in the initial triangle on Ftn. The color at
each point is computed by bilinear interpolation using the colors of the neighboring pixels.

Compared to the optimization proposed in [30], our optimization has three new ideas.
Firstly, not only the geometry shape of the exterior face profile but also those of the inte-
rior parts are considered in the objective function. Secondly, the curve Laplacian term in
the original optimization introduced to preserve the degree of curve blending during defor-
mation is removed, while the directional vectors along the edges of parts are introduced to
preserve the detailed geometry features of the parts. Lastly, multiple boundary edges rather
than one edge of the considered object are considered for the overall deformation.

2.4 Wrinkle mapping based on lighting difference fitting

After the part deformation, the texture details (such as the wrinkle) are mapped onto the
target face subsequently to transfer the fine expression features. In the work [15], the wrinkle
was reflected as the lighting variants at the pixel (the Y component of the YUV colors).
They further proposed to simulate the lighting intensity of the pixel on the face Fte based
on the ratio of the lighting intensities, and learn the lighting change from the corresponding
pixel on Fse.

Different from lighting ratio-based mapping in [15], a difference based lighting mapping
is introduced by solving a linear equation. In the proposed algorithm, each pixel learns from
the lighting differences of the adjacent eight pixels, which makes the algorithm robust for
abnormal lighting ratios when the pixel lighting of Fsn is relatively small.

First, we denote the regions on the face Fte where the wrinkles need to be manually
extracted and mapped as BMpix . Figure 7 demonstrates the extraction and mapping of
wrinkle regions. The corresponding lighting intensities of faces Fsn, Fse, Ftn in the 3 × 3
adjacent region around the position (p, q) are denoted as {l(sn)

p,q , l
(se)
p,q , l

(tn)
p,q ; i − 1 ≤ p ≤

i + 1, j − 1 ≤ q ≤ j + 1}. Then the corresponding lighting intensities on the face Fte are
assumed to satisfy the constraints in (9)–(10).
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a b

Fig. 7 The extraction and correspondence of wrinkle regions. a: The extraction of wrinkle regions on Fse

with colorized label. b: The corresponding wrinkle regions BMpix on Fte

For (i, j) ∈ BMpix
{ (

l
(te)
p,q − l

(te)
i,j

)
=

(
l
(tn)
p,q − l

(tn)
i,j

)
+ λr ·

[(
l
(se)
p,q − l

(se)
i,j

)
−
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(sn)
p,q − l

(sn)
i,j

)]
,

i − 1 ≤ p ≤ i + 1, j − 1 ≤ q ≤ j + 1.
(9)

where λr = CEt,r

CEs,r
, CEs,r , CEt,r are the changed extents of lighting intensities of the r-th

wrinkle region on Fsn, Ftn, respectively, which are approximated by the difference of the
95% largest and 5% largest lighting intensities of each region BMpix to alleviate the
influence of abnormal lighting intensities.

For (i, j) /∈ BMpix

l
(te)
i,j = l

(tn)
i,j . (10)

The (9) incorporating with (10) are then converted into one whole system of linear
equations: {

A · L|BMpix
= B

L|BMpix
= L0

(11)

whereL =
{
l
(te)
i,j , (i, j) ∈ BMpix

}
,A,B correspond to the coefficient matrixes constructed

by (9),BMpix = Ω−BMpix andΩ is the entire facial region,L0 records the corresponding
lighting intensities on the face Ftn. The least squares of this system (AT ·A) ·L = AT ·B is
then solved by the sparse LU decomposition. The construction of the equations in the linear
system around a boundary pixel is illustrated in Fig. 8.

Equation (11) is not well formulated when the lighting differences between Fse and Fsn

along edges of wrinkle regions are significant, which makes the mapped wrinkles look not
genuine. Thus, attenuation weight coefficient λr(d) is introduced to substitute λr in (9)

λr(d) =
{

λr · sin
(

π
2 · d

d0

)
, d ≤ d0

λr , d > d0
(12)

where d is the distance between the considered pixel in the wrinkle region and the nearest
edge, d0 = 5 is a critical distance, λr is the r-th lighting ratio which is defined in (9).
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Fig. 8 The linear equations for an example boundary pixel (i, j)

After the details accompanied with the expression are mapped onto the target face, the
teeth texture needs to be padded for the opened mouth. However, the teeth region may be
invisible, which varies from person to person and from expression to expression. [5, 33]
generated new transformed teeth texture with several fixed teeth templates for different
kinds of open mouth regions. [13] defined a similarity metric of optimal flow field to match
the most similar expression including the teeth region for the expression retargeting. In this
work, the teeth in the mouth region of Fse are directly extracted and embedded into the
corresponding region on Fte. The procedures of teeth extracting, embedding and blending
are described in the following:

– Convert the RGB colors of Fse and Fte to YUV representation;
– Extract the teeth region from Fse by shrinking the outer mouth boundary and scale its

size to corresponding size of the face Fte by nearest interpolation;
– Perform color blending around the boundary of the lip region by linear interpolation as

(13);
– Convert the blended YUV colors of Fte back to those in the format of RGB and output

the image.

BlenYi,j = k
Len+1 InitYi,j−1 + Len+1−k

Len+1 InitYi,j+1,

for (i, j) ∈ δ(Blip, 2), 1 ≤ k ≤ Len.
(13)

where InitY, BlenY are the initial and blended Y components, respectively, Len is the
length for blending, δ(Blip, 2) is the adjacent two rings of pixels around the lip boundary.

The proposed wrinkle mapping algorithm is significantly different from the traditional
lighting ratio-based mapping. Firstly, the proposed algorithm is based on the lighting dif-
ference, which will not introduce abnormal lighting ratios when the pixel lighting intensity
on Fsn is relatively small. Secondly, the proposed mapping uses the information of mul-
tiple adjacent pixels around each pixel to construct the lighting fitting system, which
is less sensitive to abnormal pixels compared with the pixel-to-pixel mapping algorithm
of ERI.
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3 Experimental results

We perform the experiments on a PC with a 3.2 GHZ core processor and 4 GB RAM. We
first test the performance of our mesh deformation in Section 3.1 and wrinkle mapping algo-
rithms in Section 3.2, then study the expression synthesis on a face database and compare
the results with state of the art algorithms in Section 3.3. The employed images are shown in
Fig. 9, where (a) shows an average man face downloaded from web, (b) shows Mona Lisa’s
neutral face from paper [15], (c)–(h), (r)–(t) are four neutral face images together with the
corresponding frown (raising-eyebrow), sad, smile and chuckle expression images used in
paper [15] for testing. The expressions (i)–(l) are photographed by iPhone 5, and the third
and fifth rows of expressions and (u),(v) are faces of the 74-th,11-th,10-th persons in the
database [17].

Fig. 9 The expression set used in the experiments
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3.1 Mesh deformation

In this section, we first investigate the performance of deformation algorithm by mapping
the expressions of a woman to herself, and then compare the proposed deformation with a
baseline wrapping algorithm both visually and quantitatively. We use Fig. 9m as Fsn and
Ftn, Fig. 9n–q as Fse to synthesize the fear, happy, and surprise expressions of the woman.
Figure 10 shows the synthesized fear, happy, disgust and surprise expressions ((e)–(l)) of
the women and the average man, together with those of ground truths ((a)–(d)).

To quantitatively evaluate the performance of the geometry preservation of the mesh
deformation, similarity of the boundary directions and the runtime (RT ) of deformation are
considered in this paper. When RT is the overall runtime for obtaining the colors of all the
pixels on Fte, the mean error (ME) of the directional vectors is defined as below:

ME = 1

N

N∑

i=1

∣∣∣∣

∣∣∣∣DV
(te)
i − LenPart

(te)
i

LenPart
(se)
i

r
(se),(tn)
i · DV

(se)
i

∣∣∣∣

∣∣∣∣
2

||DV
(se)
i ||2

(14)

Fig. 10 The expression synthesis of a woman and the average man by learning the expressions of the woman.
The first row are the expression faces for learning, the second and third rows are the synthesized expressions
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a b c d

e f g h

Fig. 11 The geometry deformations of the little girl’s face with different deformation algorithms. The source
target face and mouth (a),(e), the face and mouth wrapped with IniWrap (b),(f), SimpWrap (c),(g) and the
proposed DaWF (d),(h)

where N is the number of the parts, LenPart
(te)
i is the length of the i-th part, DV (te)

records all the directional vectors of the i-th part, r(se),(tn)
i records the ratio of the width and

height of the i-th part on Fsn and Ftn.
The wrapping algorithm in [3] obtains the position of each pixel by incorporating the

directional field of several key parts on Fte, which is time-consuming when all the direc-
tional vectors are utilized to obtain the position of a single pixel. Thus, we adopt two
modified editions of the algorithm. For IniWrap, each pixel is influenced by all the edges
of adjacent triangles around the triangle the pixel lies in. For SimpWrap, each pixel is
influenced only by the edges of the triangle the pixel lies in.

The comparison of the deformation algorithms IniWrap, SimpWrap and DaWF using
the little girl’s face is demonstrated in Fig. 11, when Fig. 9m and g are used as Fsn and
Ftn, respectively. Figure 11b, c, d show the synthesized surprise expressions using Fig. 11q
as Fse for IniWrap, SimpWrap and the proposed DaWF, respectively. In particular,
deformations of the mouth region are shown in Fig. 11f–h.

From Fig. 11b–d, it can be seen that the proposed DaWF produces more similar geom-
etry features than IniWrap and SimpWrap. For regions labeled with blue rectangles, the
deformation above the left eye by the proposed DaWF is more smooth and generates more
similar blending than IniWrap and SimpWrap.

While the wrapping algorithm proposed in [3] mainly learns the information from the
movements of the feature points, the proposed algorithm learns from the shape of the target
part by preserving the directional field of the part edge. It is more obvious in Table 1 that
the proposed DaWF achieves the minimum matching errors regarding the directional field
for learning. Moreover, because a sequence of algebraic computations are needed for each
pixel on the target face, SimpWrap is more time-consuming than DaWF. The efficiency of
the proposed algorithm is verified in Table 1.
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Table 1 The comparison of two
deformation algorithms in terms
of geometry preservation error
and runtime (s)

Algorithm Fear Happy Disgust Surprise

(ME,RT ) (ME,RT ) (ME,RT ) (ME,RT )

IniWrap (0.289,4.1) (0.347,3.7) (0.363,3.0) (0.304,3.2)

SimpWrap (0.289,2.8) (0.347,2.5) (0.363,2.2) (0.304,2.3)

DaWF (0.106, 2.2) (0.113, 1.8) (0.131, 1.6) (0.094, 1.7)
The size of Ftn is 490 × 640

3.2 Wrinkle mapping

To view the performance of the wrinkle mapping, expression synthesis from gray to gray,
gray to color, and color to color faces is firstly studied. Then the robustness of the pro-
posed algorithm against large geometric deformation and lighting variation is tested. Finally,
the comparison between the proposed algorithm and several wrinkle mappings available in
literature are conducted.

Using Fig. 9v, w and u as Fsn, Fse and Ftn, respectively, the synthesized expressions from
gray face to gray face with increasing intensities of geometry deformation and wrinkles are
demonstrated in Fig. 12. To study the synthesis performance from gray face onto color face,
the synthesized happy expression of the average man’s face after geometry deformation and
wrinkle mapping is presented in Fig. 13, where Fig. 9v, ab and a are used as Fsn, Fse and
Ftn, respectively.

To test the performance from color face onto color face, Fig. 14 presents the results of
disgust, surprise and smile expressions mapped onto a little girl, a middle-aged man and a
boy, when Fig. 9e, c, g are used as Fsn and Fig. 9f, d, h are used as Fse. It can be seen from
Fig. 14 that not only complicated geometry shape but also obvious or hidden wrinkles on
the three expressions are synthesized properly.

To test performance of the algorithm to synthesize expressions with large deforma-
tion, Fig. 15 presents the fearing, laughing (i.e. happy), disgusting and surprising Mona
Lisa when Fig. 9m is used as Fsn and Fig. 9n–q are used as Fse, respectively. For these

Fig. 12 The gradual changes of the fear expression in Fig. 9w. From (a–e), the intensities of geometry
deformation and wrinkle are gradually increased with the size of opened mouth
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Fig. 13 The expression synthesis of the average man’s face (a) after geometry deformation (b) and wrinkle
mapping (c)

expressions, the mouth region, eyes and brows are shown with large geometry deformations,
while the proposed algorithm can effectively preserve these geometry and the corresponding
texture details.

To test robustness of the proposed algorithm against large lighting variation, we use
Fig. 9i as Fsn and Fig. 9j–l as Fse to synthesize the expressions of disgust, surprise and
smile for the girl shown in Fig. 16. The lighting histograms of the two neutral faces shown
in Fig. 16a, e demonstrate that there are great lighting differences between the two faces.
However, the proposed DaWF achieves visually good wrinkle mapping performance in
synthesizing the three expressions.

As a lighting difference based approach, we also compared our wrinkle mapping with
that of three related algorithms, i.e. expression ratio image (ERI) [15], vertex tent coordinate
(VTC) [25] and musical model (MD) [34]. Considering the similarity of the synthesized
lighting differences ∇Lsyn with the ground truth differences ∇Lsrc (i.e. the lighting differ-
ence of the corresponding pixels on source expression and source neutral faces) in Fig. 17a,
Fig. 17 presents the comparative results of our algorithm with several related algorithms
on sad expression synthesis using Fig. 9e, f, g as Fsn, Fse and Ftn, respectively. In this
test, the mesh deformation of the proposed DaWF was used for all competing approaches.
The average similarity values corresponding to the algorithms ERI, VTC, MD and DaWF
in Fig. 17b–e on two cheek regions are 0.59, 0.78, 0.81 and 0.89, respectively, where the
lighting differences with absolute values larger than one-tenth of the ground truth are con-
sidered. Meanwhile, it is demonstrated in Fig. 17a–e that the proposed DaWF preserves
more complete wrinkles than the other algorithms on the cheek region. To demonstrate the
detailed information of these algorithms on lighting preservation, Fig. 17f–j present light-
ing differences between the source and synthesized expressions on the region between two
eyes, two cheeks and the lower jaw by different algorithms. While the lighting differences
between corresponding pixels on Fsn and Fse are demonstrated in Fig. 17f, the lighting dif-
ferences between Ftn and Fte by the algorithms ERI, VTC, MD and the proposed DaWF
are presented in Fig. 17g–j, respectively. One can observe from Fig. 17g–j that the wrinkle
difference obtained by the proposed DaWF is more similar to that of Fig. 17f than the other
algorithms.

In the paper [15], Fig. 9r, s, t were used to test the algorithm performance on synthesizing
frontal expression based on non-frontal wrinkle features, where ERI format was reported to
lose efficiency. In this work, we use Fig. 9r, s, t as Fsn, Fse and Ftn for the testing. It can
be seen from Fig. 18a that the dimples in the both face cheeks are not obvious, expression
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Fig. 14 Three neutral and synthesized expressions. a, b: The neutral and synthesized sad expressions of a
little girl using Fig. 9e and f as Fsn and Fse . c, d: The neutral and synthesized smile expressions of a middle-
aged man using Fig. 9g and h as Fsn and Fse . e, f: The neutral and synthesized frown expressions of a boy
using Fig. 9c and d as Fsn and Fse

synthesized in Fig. 18c by ERI does not obtain wrinkles as distinct as those on the face
shown in Fig. 18a. However, the wrinkles on the left cheek synthesized by the proposed
algorithm shown in Fig. 18d are much more similar to those on the source expression, which
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Fig. 15 Synthesis of expressions with large deformation. The 1st-3rd rows demonstrate the expressions for
learning, the expressions synthesized with geometry deformation and wrinkle mapping, and the embedded
teeth regions, respectively

further illustrates that the proposed algorithm outperforms ERI on preserving non-obvious
features presented in the non-frontal face.

3.3 Expression synthesis comparison

To fully compare the performance of different expression synthesis algorithms, we first list
the operations included in each algorithm, and then compare the results of these algorithms
on an expression database with objective evaluation in Section 3.3.1 and subjective evalua-
tion in Section 3.3.2. Table 2 lists the preprocessing steps and parameters of the algorithms
ERI, VTC, MD and DaWF for the comparison. The ERI algorithm requires several pre-
processing steps and manual determination of the correspondences of feature points. The
correspondences of feature points in VTC also need manual adjustment. For MD algorithm,
it introduces several parameters and a database of expressions is needed for weight deci-
sion. Compared with these algorithms, the proposed DaWF needs less manual operations
and only the coefficients of weights need to be determined. The overall runtime cost of all
stages for the proposed algorithm is presented in Table 3, where runtime of correspondence
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a b c d

e f g h

Fig. 16 The synthesis of disgust, surprise and smile expressions with large lighting differences. Images
(a),(e) are the lighting histograms of Fsn and Ftn, respectively. b–d demonstrate the expressions of disgust,
surprise and smile for learning, f–h show the synthesized expressions of a little girl

matching only includes the processing time on Fse. It can be seen from the table that each
expression can be synthesized within one minute, which illustrates the applicability of the
proposed algorithm in the real application.

Fig. 17 The comparison of four algorithms on wrinkle mapping. a is the source sad expression, b–e are sad
expressions synthesized by the algorithm ERI [15], VTC [25], MD [34] and the proposed DaWF, respectively.
f reflects the lighting difference between Fsn and Fse on four key wrinkle regions, g–j demonstrate the
lighting differences between Ftn and Fte by the algorithms ERI, VTC, MD, DaWF, respectively
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a b c d

Fig. 18 The comparison of ERI and the proposed mapping for non-frontal expression synthesis

3.3.1 Objective evaluation of the synthesis results

To compare the performance quantitatively, two metrics are defined to compute the robust-
ness and similarity of the synthesis results. One metric formulated in (15) is defined as
the minimum sum of the largest N = 1000 biases of the lighting differences between two
faces, which reflects the robustness of an algorithm against noise. The other metric formu-
lated in (16) is defined as the correlation of the lighting differences between the source and
synthesized faces, which reflects the similarity of Fse and Fte.

BiasD = min
a

N∑

i=1

∣∣∣∣
∇Lsrc − a · ∇Lsyn

∇Lsrc

∣∣∣∣
(i)

. (15)

where ∇Lsrc is the lighting difference between the corresponding pixels on Fsn and Fse,
∇Lsyn is the lighting difference between Ftn and Fte, (·)(i) denotes the i-th largest number
of the considered vector.

CorD = < ∇Lsrc,∇Lsyn >

||∇Lsrc||2 · ||∇Lsyn||2 . (16)

where < ·, · > is the inner product of two vectors.
The runtime (RT ) of expression synthesis is also considered in the comparison, where

the time cost on extracting the wrinkle regions is not included, as all the considered algo-
rithms need to manually determine the locations of wrinkle regions. Only the runtime of
deformation and wrinkle mapping stage listed in Table 3 is considered. For the programming
implementation, hybrid of MATLAB and C++ is employed to make use of the advantage of
MATLAB software at the matrix computation and the efficiency of C++ at loop iteration.

Table 2 Comparison of
operations and parameters among
different algorithms

Algorithm Preprocessing
Needed

Lighting
Mapping

Additional
Parameters

ERI [15] Smoothness
filtering

ERI c

VTC [25] Correspondence
modification

Covariance
of ratios

−

MD [34] A database of
expressions

Shift ERI h(u0, v0), λk ,
wdb , r(u0, v0)

DaWF − Lighting difference λ1-λ3
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Table 3 Overall runtime (seconds) of the proposed algorithm to process the faces shown in Fig. 16

Expression
(Size Ftn)

Feature Point Location
and Correspondence
Matching

Wrinkle
Extracting

Deformation
and Wrinkle
Mapping

Overall
Runtime

Disgust (746 × 621) 10.4 10.8 8.1 29.3

Surprise (746 × 621) 11.2 11.2 7.4 29.8

Smile (746 × 621) 10.9 8.6 7.6 27.1

The smoothing operator and lighting mapping in ERI, the lighting mapping with shift ERI
in MD algorithm and the procedures of constructing coefficient matrices in VTC and DaWF
are coded in C++ to accelerate the implementation.

A face database consists of neutral faces of 20 subjects with lighting and pose variations
is employed for testing. Each neutral face was used as Ftn to synthesize the six expres-
sions shown in the last row of Fig. 9. The BiasD, CorD and RT of the four competing
algorithms are then recorded and listed in Table 4. Figure 19 shows the six expressions
synthesized by different algorithms for an example subject.

Considering the runtime of expression synthesis in Table 4, ERI and MD algorithms
require the least computational time as these algorithms map the lighting ratios pixel by
pixel onto the target face directly. While the runtime of ERI mainly concentrates on the
smoothness operation and lighting mapping, that of MD mainly concentrates on the weight
and lighting intensity computation. However, ERI algorithm requires manual location of
feature point correspondence and MD needs a procedure of variable determination, which
increase their time costs. For the VTC algorithm, normal direction of the mesh, an additional
point in the normal direction and matrix inverse calculation for constructing the equation
system make the algorithm more time consuming than ERI and MD, when the wrinkle
regions are large. The proposed DaWF also needs to construct an equation system, which
makes it more time consuming than ERI and MD. However, the runtime of VTC and DaWF
relies on not only the size of face Ftn but also the sizes of wrinkle regions. When the size
of wrinkle region is small, these fitting-based algorithms outperform ERI based algorithms
because the overall smooth operation is not needed.

Regarding to the metric of maximum bias, the proposed DaWF almost achieves the best
performance among the four algorithms. As the ERI algorithm in [15] learns from the pixel-
by-pixel ratio of the lighting intensities on Fsn and Fse, it is easy to introduce lighting
noise even after a smoothness filtering. Meanwhile, the ERI formula will introduce some

Table 4 Objective and subjective evaluations of the six expressions synthesized by different algorithms

Algo. Objective Subjective

RT(s) BiasD(%) CorD(%) Fear Surprise Sadness Angry Disgust Happy

ERI 5.1 8.4 ± 0.7 72 ± 6 7.5 ± 1.1 6.6 ± 1.0 7.2†± 0.7 6.8†± 0.7 6.6†± 1.2 7.0 ± 1.2

VTC 8.3 4.5 ± 0.8 78 ± 8 7.5 ± 0.8 7.3 ± 0.9 7.1†± 0.7 6.9†± 0.5 6.5†± 1.0 6.9†± 0.8

MD 5.6 4.9 ± 0.7 77 ± 5 7.3†± 1.4 7.4 ± 1.0 7.3 ± 0.9 7.0†± 0.6 6.8†± 1.0 7.3 ± 0.8

DaWF 7.1 41 ± 0.8 81 ± 8 7.7 ± 1.1 6.9 ± 0.9 7.7 ± 0.8 8.2 ± 0.6 7.7 ± 0.9 7.6 ± 1.0

† indicates that the proposed DaWF achieves significantly better performance than the considered algorithm
with Wilcoxon rank sum test at 5% significance level
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Fig. 19 The comparison of four algorithms on six expressions

abnormal target lighting intensities when the ratio of the lighting intensities of Fsn and Fse is
large, e.g. the lighting lsni,j is a small number compared with lsei,j . Adopting a modified form
of ERI operator (shift ERI), the muscle model in [34] has similar problem although Gaussian
damping operator is adopted. The VTC algorithm in [25] adopts a fitting of the lighting
intensities and tries to preserve the lighting covariance before and after expression synthesis.
However, this algorithm is still based on the ratio of the lighting intensity, it can not solve
large lighting variation when lighting lsni,j is a small value compared with lsei,j . Different
from these algorithms, the proposed DaWF adopts a fitting of the lighting difference for the
wrinkle mapping. Thus, the noise is restrained and abnormally large lighting intensities on
Fte are not introduced. It can be seen from BiasD values in Table 4 that VTC and DaWF
achieve relatively better performance than ERI and MD.

Figure 20 gives an example of the fear expression synthesized by different algorithms
for Mona Lisa’s face, where the red pixels record the high biases with BiasD larger than
0.05, and the green pixels record the moderate biases with BiasD between 0.02 and 0.05.
It can be seen that the mouth shape of the synthesized frown expression by DaWF is more
similar to the source fear expression in Fig. 9n than those by other algorithms. Mean-
while, the size of regions labeled with colors in Fig. 20h is smaller than those of regions in
Fig. 20e–g. Thus, biases of lighting differences between the synthesized and source faces
are smaller than those obtained by other algorithms, which further proves the advantages of
the proposed DaWF over the competing algorithms.

Considering the metric of similarity, the difference form of the lighting adopted in the
proposed DaWF achieves comparable results with the other algorithms. Wrinkle mappings
in ERI and MD are based on the ratio of lighting intensities, which may introduce abnormal
lighting intensities into the target face when the corresponding lighting intensities on the
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Fig. 20 The fear expressions synthesized by ERI, VTC, MD and the proposed DaWF are presented in (a–
d). The corresponding values of BiasD are demonstrated in e–h: high (red), moderate (green) and low
(non-labeled)

pixels of Fsn andFse differ much. Although trying to preserve the covariances of the lighting
intensities, the VTC algorithm adopts a similar ratio form of lighting which may result in
similar abnormal results. While the proposed DaWF attempts to preserve the difference of
lighting intensities insensitive to abnormal lighting ratios, it is more robust and can map
subtle lighting differences when the lighting intensity lsni,j on Fsn is small. One can observe
from CorD values in Table 4 that DaWF achieves relatively better performance than the
other algorithms.

3.3.2 Subjective evaluation of the synthesis results

We further evaluate the performance of the these algorithms subjectively with the help of
ten volunteers. In the testing, each volunteer independently scores each synthesized expres-
sion with scores from five to ten, where higher score corresponds to more genuine and
similar expression to the source expression. The ten scores of each synthesized expression
are recorded to derive the average score and the standard deviation, Wilcoxon rank sum test
method [7] (nonparametric method) with significance level 5% is employed to study the
performance difference between the competing algorithms and the proposed algorithm in
Table 4. It can be seen from Table 4 that the proposed DaWF achieves the highest scores on
most of the six expressions and significantly better performance is achieved on some testing
expressions.

More expressions synthesized by the proposed algorithm are presented in Figs. 21
and 22. It can be seen from the two figures that the proposed algorithm achieves visually
genuine expressions on most of the faces despite of different lighting conditions and head
poses.
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Fig. 21 Expression synthesis with face database. The first column demonstrates source neutral face Fsn

and six source expression faces Fse . The first row demonstrates target neutral faces Ftn, the others are the
synthesized faces Fte

Fig. 22 Expression synthesis with face database. The first column demonstrates source neutral face Fsn

and six source expression faces Fse . The first row demonstrates target neutral faces Ftn, the others are the
synthesized faces Fte
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4 Discussion and conclusion

In this work, an algorithm of expression synthesis (DaWF) with novel strategies of corre-
spondence matching, mesh deformation and wrinkle mapping is proposed. The proposed
DaWF has several advantages. Firstly, the algorithm is semi-automatic in obtaining the cor-
respondences between sets of feature points. Secondly, statistical learning of the expressions
w.r.t. the considered person is not needed. Thirdly, not only the displacements of the feature
points but also the geometry features of the expression are learned in the face deformation.
Lastly, the fitting form of the lighting differences makes the generated wrinkles more robust
and complete.

Experimental results on various expressions and comparison with state-of-the-art algo-
rithms illustrate the effectiveness of the proposed deformation algorithm on geometry shape
preservation and the robustness of the wrinkle mapping on detail texture preservation.
Although visually genuine expressions are synthesized by the proposed algorithm, there
is still much margin for further improvements. Firstly, the algorithm of view morphing in
[24] or 3D reconstruction algorithm in [5] can be integrated to synthesize expressions for
largely rotated face in 3D space. Secondly, the runtime of lighting fitting in the procedure
of wrinkle mapping needs to be improved by incorporating the GPU parallel computation.
Thirdly, wrinkle detection algorithm should be designed and incorporated into the proposed
algorithm to automatically locate the wrinkle regions. Since the embedded teeth region
may significantly influence the genuineness of the synthesized expression, it is important
to select the most similar teeth region. Based on the assumption that the teeth texture is
most related with the surrounding mouth region, sparse dictionary learning could be used
to match teeth regions in terms of face color, lighting condition and mouth shape. Further
work will concentrate on the applications of the proposed DaWF such as tinting, which
needs a good correspondence between each pixel between the source and target faces. Other
applications are expression recognition and expression invariant face recognition.
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