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ABSTRACT

Although real-coded differential evolution (DE) algorithms can perform well on continuous optimization
problems (CoOPs), designing an efficient binary-coded DE algorithm is still a challenging task. Inspired by
the learning mechanism in particle swarm optimization (PSO) algorithms, we propose a binary learning
differential evolution (BLDE) algorithm that can efficiently locate the global optimal solutions by learning
from the last population. Then, we theoretically prove the global convergence of BLDE, and compare it
with some existing binary-coded evolutionary algorithms (EAs) via numerical experiments. Numerical
results show that BLDE is competitive with the compared EAs. Further study is performed via the change
curves of a renewal metric and a refinement metric to investigate why BLDE cannot outperform some
compared EAs for several selected benchmark problems. Finally, we employ BLDE in solving the unit

Renewal metric
Refinement metric

commitment problem (UCP) in power systems to show its applicability to practical problems.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction
1.1. Background

Differential evolution (DE) [26], a competitive evolutionary algo-
rithm emerging more than a decade ago, has been widely utilized in
the science and engineering fields [24,4]. The simple and straightfor-
ward evolving mechanisms of DE endow it with the powerful
capability to solve continuous optimization problems (CoOPs), but
hamper its applications to discrete optimization problems (DOPs).

To take full advantage of the superiority of mutations in classic
DE algorithms, Pampara and Engelbrecht [21] introduced a trigo-
nometric generating function to transform the real-coded indivi-
duals of DE into binary strings, and proposed an angle modulated
differential evolution (AMDE) algorithm for DOPs. Compared with
the binary differential evolution (BDE) algorithms that directly
manipulate binary strings, AMDE was much slower, but out-
performed BDE algorithms with respect to accuracy of the
obtained solutions [7]. Meanwhile, Gong and Tuson proposed a
binary DE algorithm by forma analysis [9], but it cannot perform
well on binary constraint satisfaction problems due to its weak
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exploration ability [31]. Attempting to simulate the operation
mode of the continuous DE mutation, Kashan et al. [14] designed
a dissimilarity based differential evolution (DisDE) algorithm
incorporating a measure of dissimilarity in mutation. Numerical
results show that DisDE is competitive with some existing binary-
coded evolutionary algorithms (EAs).

In addition, the performances of BDE algorithms can also be
improved by incorporating recombination operators of other EAs.
Hota and Pat [12] proposed an adaptive quantum-inspired differential
evolution algorithm (AQDE) applying quantum computing techni-
ques, while He and Han [10] introduced the negative selection in
artificial immune systems to obtain an artificial immune system
based differential evolution (AIS-DE) algorithm. With respect to the
fact that the logical operations introduced in AIS-DE tends to produce
“1” bits with increasing probability, Wu and Tseng [29] proposed a
modified binary differential evolution strategy to improve the perfor-
mance of BDE algorithms on topology optimization of structures.

1.2. Motivation and contribution
Existing research efforts tried to incorporate the recombination
strategies of various EAs to obtain efficient BDEs for DOPs,

however, there are still some points to be improved:

® AMDE [21] has to transform real values into binary strings,
which leads to an explosion of the computational cost for
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function evaluations. Meanwhile, the mathematical properties
of the transformation function can also influence its perfor-
mances on various DOPs;

® BDE algorithms directly manipulating bit-strings, such as binDE
[9], AIS-DE [10] and MBDE [29]cannot effectively imitate the
mutation mechanism of continuous DE algorithms. Thus, they
cannot perform well on high-dimensional DOPs due to their
weak exploration abilities;

® DisDE [14], which incorporates a dissimilarity metric in the
mutation operator, has to solve a minimization problem during
the mutation process. As a consequence, the computation
complexity of DisDE is considerably high.

Generally, it is a challenging task to design an efficient BDE
algorithm perfectly addressing the aforementioned points.
Recently, variants of the particle swarm optimization (PSO) algo-
rithm [15] have been successfully utilized in real applications
[6,1,23,2,17]. Although DE algorithms perform better than PSO
algorithms in some real world applications [28,25,22], it is still
promising to improve DE by incorporating PSO in the evolutionary
process [3,18,19]. Considering that the learning mechanism of PSO
can accelerate the convergence of populations, we propose a
hybrid binary-coded evolutionary algorithm learning from the last
population, named as the binary learning differential evolution
(BLDE) algorithm. In BLDE, the searching process of population is
guided by the renewed information of individuals, the dissim-
ilarity between individuals and the best explored solution in the
population. Using these, BLDE can perform well on DOPs.

The remainder of the paper is structured as follows. Section 2
presents a description of BLDE, and its global convergence is
theoretically proved in Section 3. Then, in Section 4, BLDE is
compared with some existing algorithms using numerical results.
To test the performance of BLDE on real-life problems, we employ
it to solve the unit commitment problem (UCP) in Section 5.
Finally, discussions and conclusions are presented in Section 6.

2. The binary learning differential evolution algorithm

2.1. Framework of the binary learning differential evolution
algorithm

Algorithm 1. The binary learning differential evolution (BLDE)
algorithm.

11 Randomly generate two populations X" and AV of
windividuals; Set t:=1;

2: whilethe stop criterion is no satisfied do

3: Let Xgp = (Xgh 1, ---» Xghn) 2 Arg Max, _ xo {f(X)};

4 for all we X® do

5: Randomly select X = (X1, ...,X;) andy = (¥y, ..., y,) from
X®, as well as z= (z1, ..., z,) from A?;

6: X = (tx1, ..., txn) £ arg max{f(y).f(2)};

7: forj=1,2,...,ndo

8: if yj=z; then

9: if x4 # x; then

10: Xj = Xgp j;

11: else

12: if rand(0, 1) < p then

13: . |
tx; = { 0 with probability 5

1 otherwise.

14: end if

15: end if

16: end if

17: end for

18: if f(tx) > f(w) then
19: w=tx;

20: end if

21:  end for

22:  t=t+1;

23: A(t)zx(ffl):
24: end while

For a binary optimization problem (BOP)!
max  f(x)=f(x,....xn), SC{0,1)", M
€

the BLDE algorithm illustrated by Algorithm 1 possesses two
collections of x solutions, the population X® and the archive A®.
At the first generation, the population X" and the archive A are
generated randomly. Then, repeat the following operations until
the stopping criterion is satisfied.

For each individual w e X a trial solution is generated by three
randomly selected individuals x, yeX® and zeA®. At first,
initialize the trial individual tx = {txq,...,tx,} as the winner of
two individuals ye X® and zeA®. vje{1,2,...n}, if y and z
coincide on the jth bit, the jth bit of tx is changed as follows.

® If the jth bit of x differs from that of X, tx; is set to be X, ;, the
jth bit of Xgp;
® otherwise, tx; is randomly mutated with a preset probability p.

Then, replace w with tx if f(tx)>f(w). After the update of
population X® is completed, set t =t+1 and A =X*~ D,

2.2. The positive functions of the learning scheme

Generally speaking, the trial solution tx is generated by three
randomly selected individuals. Meanwhile, it also incorporates
conditional learning strategies in the mutation process.

® By randomly selecting yeX®, BLDE can learn from any
member in the present population. Because the elitism strategy
is employed in the BLDE algorithm, BLDE could learn from any
pbest solution in the population, unlike PSO, where particles
can only learn from their own pbest individuals.

® By randomly selecting ze A®, BLDE can learn from any mem-
ber in the last population. In the early stages of the iteration
process, individuals in the population X are usually different
with those in A® =X*~V, Combined with the first strategy,
this scheme actually enhances the exploration ability of the
population and to some extent, accelerates convergence of the
population.

® When bits of y coincide with the corresponding bits of z, trial
solutions learn from the gbest on the condition that randomly
selected x e X differs from Xz, on these bits. This scheme
imitates the learning strategy of PSO. The scheme can also
prevent the population from being governed by dominating
patterns because the increased probability P{xg,; = x;} will lead
to a random mutation performed on tx, thus preventing
duplicates of the dominating patterns in the population.

In PSO algorithms, each particle learns from the pbest (the best
solution it has obtained so far) and the gbest (the best solution the
swarm has obtained so far), and particles in the swarm exchange

! When a CoOP is considered, the real-value variables can be coded as bit-
strings, and consequently, a binary optimization problem is constructed to be
solved by binary-coded evolutionary algorithms.
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information via the gbest solution only. The simple and uncondi-
tional learning strategy of PSO usually results in its fast conver-
gence rate, however, it sometimes leads to its premature
convergence to local optima. The BLDE algorithm, learning from
X® as well as A, can explore the feasible region in a better way,
and by conditionally learning from X, it will not be attracted by
local optimal solutions.

3. Convergence analysis of BLDE

Denote x* to be an optimal solution of BOP (1), the global
convergence of BLDE can be defined as follows.

Definition 1. Let {X®, t=1,2,...} be the population sequence of
BLDE. It is said to converge in probability to the optimal solution x*
of BOP (1), if it holds that

lim Pix*eXPy=1.

To confirm the global convergence of the proposed BLDE algo-
rithm, we first show that any feasible solution can be generated
with a positive probability.

Lemma 1. In two generations, BLDE can generate any feasible
solution of BOP (1) with a probability greater than or equal to a
positive constant c.

Proof. Denote xO(i) = (x{ (i), ..., xiy ()) and a® (i) = (a{ (i), ..., a} (i)
to be the ith individuals of X® and A®, respectively. Let
txO (i) = (x(i), ..., tx{ (i) be the ith trial individual generated at
the tth generation. There are two different cases to be investigated.

1. If X® and A® include at least one common individual, the
probability P{y =z} is greater than or equal to 1/x%, where
yeX® and ze A® are selected randomly from X® and A®,
respectively. Then, the random mutation illustrated by Lines
12-14 of Algorithm 1 will be activated with probability 1/x,
which is the minimum probability of selecting x to be x{), the
best individual in the present population X®. For this case, both
P{tx; =0} and P{tx;=1} are greater than or equal to p/2>.
Then, any feasible solution can be generated with a positive
probability greater than or equal to (p/243)".

2 If all individuals in X® differ from those in A, two different
solutions y e X¥ and ze A® are located at the same index ig
with probability
P{y =x9(ip).z=a"(p)} = %

Becausey #z, I = {j; y; # z;} is not empty. Moreover, the elitism

update strategy ensures that the trial individual tx®(ig) is

initialized to be tx“(iy) =y. Then,

t"xj(-r)(io) =Yj =X}f)(i0)= vjel,

and V j¢l;, tx®P(ip) will remain unchanged with a probability
greater than (1—p)/u, the probability of selecting X =X,, and
not activating the mutation illustrated by Lines 12-14 of
Algorithm 1. That is to say, the probability of generating a trial
individual tx©(ip) =y =x"(ig) is greater than or equal to
A-p)/u.

For this case, the igth individual of the population will remain
unchanged at the tth generation, and at the next generation
(generation t+ 1), x*+D(iy) will coincide with a®+ V(). Then, it
comes to the first case, and consequently, the trial individual
x®+ V(i) can reach any feasible solution with a positive

probability greater than or equal to (p/2x>)". For this case, any
feasible solution can be generated with a probability greater
than (1—p)/i3(p/2u®)".

In conclusion, in two generations the trial individual tx will reach
any feasible solution with a probability greater than or equal to a
positive constant ¢, where ¢ =(1-p)/u3(p/243)". ©

Theorem 1. BLDE converges in probability to the optimal solution x*
of OP (1).

Proof. Lemma 1 shows that there exists a positive number ¢ > 0
such that

Pix* e XD x*¢XOy > ¢, vi>1.
Denoting

P=P{x* e X(t+2)lx*¢x(t)},

we know that

Pix*¢ X "2 |x*¢ XV} =1-P.

Thus,

P(x* e XV} = 1-P{x*¢XV) = 1 -Px* ¢ XV x*¢ X~ 2).

If t is even,

tlin;oP{x* eXP)=1- lim P{x*¢ X"}
—1— }LH;U —p)2P{x*¢X )
=1;

otherwise,

tlimP{x* eXxOy=1- rlim P{x*¢ X"}
=1-lim(1—-p)*~"2Px*¢ XV}
— 00
=1

In conclusion, BLDE converges in probability to the optimal
solution x* of BOP (1). ©

4. Numerical experiments

Although Theorem 1 validates the global convergence of the
BLDE algorithm, its convergence characteristics have not been
investigated. In this section, we try to show its competitiveness
through numerical experiments.

4.1. Benchmark problems

Table 1 illustrates the selected benchmark problems, the
properties and settings of which are listed in Table 2. As for the
continuous problems Ps;—P7, all real variables are coded by bit-
strings. For the multiple knapsack problem (MKP) Pg, we test BLDE
via five test instances characterized by data files “weing6.dat,
sent02.dat, weish14.dat, weish22.dat and weish30.dat” [30],
termed as Pg_1, Pg_», Ps_3, Ps_4 and Pg_s, respectively. When a
candidate solution is evaluated, it is penalized by PT(X)=1+
max; p;/min; jw;; - max;{max;(w;;x; — W), 0} [27].

4.2. Parameter settings

For numerical comparisons, BLDE is compared with the angle
modulated particle swarm optimization (AMPSO) [20], the angle
modulated differential evolution (AMDE) [21], the dissimilarity
artificial bee colony (DisABC) algorithm [13], the binary particle
swarm optimization (BPSO) algorithm [16], the binary differential
evolution (binDE) [9] algorithm and the self-adaptive quantum-
inspired differential evolution (AQDE) algorithm [12]. As is suggested
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Table 1
Descriptions of the selected benchmark problems.

Problems Descriptions.
Py: max f1 (%)= X/_ I} _ 1%, %€ (0,1}, j=1,...n.
Py: Long Path Problem : Root2path [11]
Ps: max f3(X)= —max;_1__mlXil, X;e[—10,10],i=1,...,D.
Pa: max f4(x) = 7L2P, 1% —100)2 +TTP_, cos (ﬂ) —1, x;€[—300,300], i=1,...,D.
4000 ~i = i- 7i
Ps: max f5(x)= — YP_,ix! —rand[0,1), x; e[~1.28,1.28], i=1,...,D.
Pg: max fg(x) = — Y- 1(100(x; 4 1 —x2)* +(1—x))*), x;€[—2.048,2.048], i=1,...,D.
P max f7(X) = —20+20exp(70.2\/% m lxiz)+exp(%2{":1 cos(2nx1-)) —e, X;€[—30,30], i=1,...,D.
Pg : max fg(X) = max Zlepjxj,s.t. 2}1:1W[‘/‘Xj <W; i=1,...mx;e{0,1}, j=1,...,n

Table 2
Properties and settings of the benchmark problems.

Table 3
Parameter settings for the tested algorithms.

Problem Binary/ Dimension Bit- Constraints Maximum objective

Real length value
Py Binary 30 30 - 30
P, Binary 29 29 - 49992
Ps Real 30 180 - 0
Py Real 30 480 - 0
Ps Real 30 240 - 0
Ps Real 30 300 - 0
Py Real 30 300 - 0
Pg 1 Binary 28 28 2 130 623
Ps_» Binary 60 60 30 8722
Pg_5 Binary 60 60 5 6954
Pg_4 Binary 80 80 5 8947
Pg_s Binary 90 90 5 11191

by the designers of these algorithms, the parameters of AMPSO,
AMDE, DisABC, BPSO, binDE and AQDE are listed in Table 3.
Prerun for BLDE shows that when the mutation ability p is less than
0.05, its weak exploration ability leads it prematurely to the local
optima of multi-modal problems; while when p is greater than
min{0.15, 10/n}, it cannot efficiently exploit the local region of global
optima. Thus, in this paper we set p = max{0.05, min{0.15, 10/n}} to
keep a balance between exploration and exploitation. All compared
algorithms are tested with a population of size 50, and the results are
compared after 300 xn FEs, except that numerical results are
compared after 300 x n x m function evaluations (FEs) for MKPs,
where n is the bitstring length, m is the number of constraints
for MKP.

4.3. Numerical comparisons

Implemented by the MATLAB package, the compared algo-
rithms are run on a PC with an INTEL(R) CORE(R) CPU, running at
2.8 GHZ with 4 GB RAM. After 50 independent runs for each
problem, the results are compared in Table 4 via the average best
fitness (AveFit), the standard deviation of best fitness (StdDev), the
success rate (SR) and the expected runtime (RunTime). Taking
AveFit and StdDev as the sorting indexes, the overall ranks of the
compared algorithms are listed in Table 5.

Numerical results in Table 4 show that BLDE is generally
competitive with the compared algorithms for the selected bench-
mark problems, which is also illustrated by Table 5, where BLDE,
on an average, ranks first for the benchmark problems. Addition-
ally, because it contains no time-consuming operations, for most
cases, BLDE spends less CPU time for the selected benchmark
problems. Considering that AveFit and StdDev are two overall
statistical indexes of the numerical results, we also perform a
Wilcoxon rank sum test [8] with a significance level of 0.05 to

Algorithm Parameter settings

AMPSO c1 =1.496180, c; = 1.496180, ¢ =0.729844, Vpax =4.0.
AMDE CR=0.25,F=1.

DisABC Pmax = 0.9, Pmin =0.5, p; =0.5, Njpeqs =50, Ppoer = 0.01.

BPSO C=2, Viax =6.0.

binDE F=0.8, CR=05.

AQDE F=0.1%r %15, CR=0.5+0.0375%r3, 11,12 ~ U(0, 1), 3 ~ N(0, 1).
BLDE p =max(0.05, min(0.15,10/n)).

compare performances of the tested algorithms, and the results
are listed in Table 6.

The results of Wilcoxon rank sum tests demonstrate that BPSO
performs significantly better on Ps and P, the noisy quadric
problem and the maximization problem of Ackley's function,
respectively. Because BPSO imitates the evolving mechanisms of
PSO by simultaneously changing all bits of the individuals, it can
quickly converge to the global optimal solutions. However, BLDE
sometimes mutates bit by bit; consequently, its evolutionary
process is more vulnerable to noise and the multimodal land-
scapes of benchmark problems. Thus, BPSO also performs better
than BLDE on Ps and P,. For similar reasons, BPSO outperforms
BLDE on Pg_1, a low-dimensional MKP.

Meanwhile, binDE obtains better results than BLDE on the low-
dimensional MKPs Pg_ ; — Pg _ 3, but performs worse than BLDE on the
other problems; this is attributed to the fact that the exploitation
ability of binDE descends with the expansion of the search space.
Consequently, binDE cannot perform well on the high-dimensional
problems. Similarly, AQDE, which is specially designed for Knapsack
problems, outperforms BLDE only for the low-dimensional MKP Pg _ 4
and cannot perform better than BLDE for other selected benchmark
problems.

4.4. Further comparison on the exploration and exploitation abilities

To further explore the underlying causes for BLDE performing
worse than BPSO, binDE and AQDE on the given test problems, we
try to investigate how their exploration and exploitation abilities
change during the evolutionary process. Thus, a renewal metric
and a refinement metric are defined to respectively quantify the
exploration and exploitation abilities.

Definition 2. Denote the population of an EA at the tth generation
to be X, which consists of x n-bit individuals. Let HammDist(X,y)
to be the Hamming distance between two binary vectors x and y.
The renewal metric of an EA at the tth generation is defined as

a2 5 Hamx (), txO i), @)
HoTT



Table 4

Numerical results of AMPSO, AMDE, DisABC and BLDE on the 12 test problems. The best results for each problem are highlighted by boldface type.

Problem AMPSO AMDE DisABC BPSO binDE AQDE BLDE
AveFit + StdDev AveFit + StdDev AvefFit + StdDev AveFit + StdDev AveFit + StdDev AveFit + StdDev AveFit + StdDev
(SR, Runtime) (SR, Runtime) (SR, Runtime) (SR, Runtime) (SR, Runtime) (SR,Runtime) (SR,Runtime)

Py 3.00E+01 + 0.00E+00 3.00E+01 + 0.00E+00 3.00E+01 + 0.00E+00 3.00E+01 + 0.00E-+00 2.94E+01 + 3.14E-01 2.34E+01 + 2.88E+00 3.00E-+01 + 0.00E+00
(100, 3.01E—01) (100, 2.78E—01) (100, 1.60E+01) (100, 2.95E—01) (96, 4.07E—01) (4, 2.44E-01) (100, 2.15E—01)

Py 5.0E+04 + 0.00E+00 5.0E+04 + 1.54E+02 4.53E+04 + 7.19E+03 3.96E+04 + 1.65E+ 04 4.52E+04 + 8.92E+03 3.46E+04 + 1.37E+ 04 5.00E+04 + 6.09E+01
(100, 2.34E+02) (88, 2.03E+02) (34, 2.92E+02) (66, 2.81E+02) (40, 2.79E +02) (16, 2.96E+02) (96, 3.07E+02)

Ps —8.92E+00 + 2.15E+00 —5.48E+00 + 3.21E+00 —6.88E+00 + 2.86E—01 —4.88E+00 + 7.39E-01 —6.34E+00 + 3.04E-01 —6.55E+00 + 3.68Ev01 —3.22E+ 00 + 8.74E—01
(0, 3.45E+02) (2, 3.47E+02) (0, 3.75E+02) (0, 3.53E+02) (0, 3.53E+02) (0, 3.55E+02) (0, 3.53E+02)

Py —4.55E+01 + 3.53E+01 —112E+01 + 1.99E+01 —5.70E+01 4+ 5.48E+00 —6.18E+00 + 2.40E+00 —4.07E+01 +4.27E+00 —1.57E+01 + 3.79E4+00 —1.12E+00 + 1.10E-01
(0, 1.03E+03) (48, 1.04E +03) (0, 1.21E+03) (0, 1.06E +03) (0, 1.04E+03) (0, 1.05E+03) (0, 1.05E+03)

Ps —113E+01 + 1.15E+01 —1.27E+00 + 3.67E+00 —3.11E+01 £+ 5.55E+00 —1.90E - 02 + 8.20E—-03 —2.35E+01 +3.91E+00 —2.32E+01 +4.37E+00 —5.79E—-02 + 2.24E—02
(22, 4.72E+02) (22, 4.76E+02) (0, 5.21E+02) (10, 4.82E+02) (0, 4.83E+02) (0, 4.85E+02) (0, 4.84E+02)

Ps —2.94E+03 + 9.26E+02 —1.18E+02 + 3.51E+02 —4.23E+03 + 4.05E+02 —5.54E+02 + 2.82E+02 —3.58E+03 +2.92E+02 —2.02E+03 +4.17E+02 —4.55E+01 + 9.68E+01
(0, 6.37E+02) (8, 6.41E+02) (0, 7.00E+02) (0, 6.49E+02) (0, 6.48E+02) (0, 6.51E+02) (0, 6.45E+02)

P, —7.87E+00 + 3.29E+00 —4.57E+00 + 2.84E+00 —1.10E+01 + 3.19E-01 —1.67E+00 + 5.40E - 03 —1.06E+01 + 2.74E—01 —1.00E+01 + 6.43E-01 —1.93E+00 + 3.84E—-02
(0, 6.02E+02) (0, 6.08E+02) (0, 6.72E+02) (0, 6.22E+02) (0, 6.20E+02) (0, 6.19E+02) (0, 6.20E+02)

Pg_4 1.21E+05 +4.61E+03 1.23E+05 + 2.70E+03 1.28E+05 + 1.14E+03 1.29E+05 + 2.99E+03 1.30E+ 05 + 2.04E+02 1.30E+05 + 2.89E+02 1.28E+05 + 2.66E+03
(0, 7.35E—01) (0, 6.85E—01) (2, 3.28E+00) (18, 9.82E—01) (52, 1.25E+00) (20, 9.39E—01) (10, 8.97E—01)

Pg_> 7.62E+03 + 4.80E+02 8.02E+03 + 1.19E+02 8.49E+03 +4.21E+01 8.66E+03 + 3.56E+01 8.72E+03 + 4.45E+ 00 8.70E+03 + 1.47E+01 8.70E+03 + 1.62E+01
(0, 2.71E+01) (0, 2.61E+01) (0, 1.20E+02) (0, 3.65E+01) (84, 441E+01) (4, 3.43E+01) (4, 3.25E+01)

Pg_3 5.30E+03 + 2.12E+02 5.24E+03 + 1.83E+02 6.01E+03 + 1.19E+4-01 6.87E+03 + 7.85E+01 6.95E+03 + 0.00E+00 6.84E+03 + 7.11E+01 6.93E+03 + 3.66E+01
(0, 4.29E+00) (0, 413E+00) (0, 1.92E+01) (26, 5.88E+00) (100, 7.16E+00) (2, 5.51E+00) (58, 5.23E+00)

Pg_4 6.52E+03 + 4.14E+02 6.43E+03 +2.22E+02 7.19E+03 + 1.89E+02 8.81E+03 + 1.02E+ 02 8.71E+03 + 1.06E+02 8.70E+03 +9.21E+01 8.87E+03 + 5.43E+01
(0, 6.04E+00) (0, 5.90E +00) (0, 2.75E+01) (8, 8.31E+00) (0, 1.01E+-01) (0, 7.73E+00) (4, 7.28E+00)

Ps_5 8.10E+03 + 5.96E+02 8.37E+03 + 2.87E+02 9.33E+03 + 2.29E+02 1.11E+04 + 4.40E+01 1.09E+04 + 7.01E+01 1.10E+04 + 8.22E+01 1.12E+ 04 + 1.86E+ 01

(0, 7.09E+00)

(0, 6.91E+00)

(0, 3.28E+01)

(2, 9.64E+00)

(0, 117E+01)

(0, 8.87E+00)

(6, 8.29E+00)

[470)8

2b01-8€01 (S10Z) 671 Sunndwodonan / b 32 uay) &
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Table 5

Ranked performances of the compared algorithms for the selected benchmark problems.

Problem AMPSO AMDE DisABC BPSO binDE AQDE BLDE
D1 1 1 1 1 6 7 1
D2 1 3 4 6 5 7 2
P3 7 3 6 2 4 5 1
Da 5 2 6 7 4 3 1
Ds 4 3 7 1 6 5 2
Pe 5 2 7 3 6 4 1
D7 7 3 6 1 5 4 2
Ds_1 7 6 5 3 1 2 4
Ps_2 7 6 5 4 1 2 3
Ds_3 6 7 5 3 1 4 2
Ds_a 6 7 5 2 3 4 1
Ps_s 7 6 5 2 4 3 1
Average 53 4.1 5.2 29 38 4.2 1.8
Table 6

Wilcoxon rank sum tests of the compared algorithms on the benchmark problems. The notation +(—) means the algorithm for comparison is significantly superior to
(inferior to) BLDE with significance level 0.05; ~ means the compared algorithm is not significantly different from x BLDE.

Algorithm HBPD Algorithm HBPD
AMPSO +:2 AMDE +:0
~ :P1,Py ~ 1 P1,P2,P4.Ps

— :P3,P4,P5,P6,P7,Pg_1,Pg_3,P3_3,P3_4,P3_5

DisABC +:2

~ :P1,Pg_1,

— :Py,P3,P4,P5,Ps,P7,Pg _3,Pg _3.P3_4,Pg_5
binDE :Pg_1,P5_2,P3 3

X+

: Py
— :Py,P3,P4,P5,Pg,P7,Ps_4,P5_5

:P3,Ps,P7,P3_1,Pg_2,Pg_3,Pg_4,Pg s

BPSO +:Ps,P7
~ :P1,Pg_q
— :Py,P3,P4,P,Pg_2.Pg_3,P3_4,Ps_5

AQDE +:Pg 4
~ 1Py »
— :P1,P3,P3,P4,P5,P6,P7,P3_3,P3_4,Pg_5

where x®(i) is the ith individual in X?, and tx®(i) is the
corresponding candidate solution. The refinement metric of an EA
at the tth generation is defined as

LORS (n—Ham(xV(i), Xg (1)), 3

1

I ™M=

1
IZARLE

where X,,(t) is the best explored solution before the tth
generation.

The Hamming distance between x©(i) and the corresponding
trial vector tx(i) denotes the overall changes that is performed on
the bit-string by the variation strategies. Accordingly, the average
value over the whole population can indicate the overall changes
of the population. Then, a(t) properly reveals the exploration
abilities of EAs at generation t. An EA which harbors a big value
of p(t) can intensely exploit the local region around the best
explored solution Xg,; therefore, it harbors a powerful exploitation
ability.

For the comparison, we illustrate the changing curves of the
renewal metric and the refinement metric for BLDE, BPSO, AQDE
and binDE in Fig. 1. Fig. 1(a) and (b) shows that when BPSO is
employed to solve Ps and P, the renewal metric quickly descends
to about zero, and the refinement metric ascends to a high level,
which demonstrates that the population of PSO quickly converges.
Meanwhile, the diversity of the population rapidly descends to a
low level, and the population focuses on local search around the
obtained best solution. Because the intensity of noise in Ps is small,
the convergence of BPSO is not significantly influenced. For P;, the
massive local optimal solutions are regularly distributed in the
feasible region, BPSO can also quickly locate the global optimal
solution. However, BLDE tries to keep a balance between explora-
tion and exploitation, and the bit-by-bit variation strategies make
it more vulnerable to be frustrated by the noise of P5 as well as the

multi-modal landscape of P;. As a consequence, BPSO performs
better than BLDE on Ps and P;.

However, the local optimal solutions of MKPs are not regularly
distributed. Thus, to efficiently explore the feasible regions, it is
vital to keep a balance between exploration and exploitation. Fig. 1
(c—f) demonstrates binDE and AQDE can keep a balance between
exploration and exploitation for the compared algorithms. Thus,
AQDE performs better than BLDE on the test problem Pg_q, and
binDE performs better than BLDE on Pg_1, Pg_, and Pg_3.

5. Performance of BLDE on the unit commitment problem

In this section, we employ BLDE for solving the unit commit-
ment problem (UCP) in power systems. To minimize the produc-
tion cost over a daily to weekly time horizon, UCP involves the
optimum scheduling of power generating units as well as the
determination of the optimum amounts of power to be generated
by committed units? [5]. Thus, UCP is a mixed integer optimization
problem, the decision variables of which are the binary string
representing the on/off statuses of units and the real variables
indicating the generated power of units.

5.1. Objective function of UCP

The objective of UCP is to minimize the total production cost

T N
F= ¥ Z][¢i(Pit)‘uit+‘l/it'(1_ui,t—1)'ui,t] 4

t=1i=

2 To compare with the work reported in [5], we employ similar notations and
descriptions in this section.
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Fig. 1. Comparisons of the renewal and refinement metrics for test problems Ps, P;, Pg_1, Pg_», Pg_3. (a) Ps : BLDE vs. BPSO. (b) P;: BLDE vs. BPSO. (c) Pg_1: BLDE vs. AQDE.

(d) Pg_1: BLDE vs. binDE. (e) Pg_,: BLDE vs. binDE. (f) Pg_3: BLDE vs binDE.

where N is the number of units to be scheduled and T is the time
horizon. When the ith unit is committed to generating power P; at
time t, the binary variable u; is set to be 1; otherwise, u; = 0. The
function ¢;(P;) represents the fuel cost of unit i at time t, which is
frequently approximated by

$i(Pi) = @i+ bip; +CiP; 5)

where a;, b; and ¢; are known coefficients of unit i. If the ith unit
has been off prior to start-up, there is a start-off cost
di, if rfown <o < pdown y f,

6
e;, if T?[ff > I"?"W” +fi ( )

Vit =

where d;, e;, f; and 7" are the hot start cost, cold start cost, cold
start time and minimum down time of unit i, respectively. %7, the
continuously off time of unit i, is determined by

it

of _

0 ifu,‘tzl

if uy =0, t=1and 6; >0
1-0;  ifu;=0, t=1and o;<0 @
1+ ifuyz=1and t>1

it—1

where g; is the initial status of unit i, which shows for how long the
unit was on/off prior to the start of the time horizon.
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5.2. Constraints in UCP

The minimization of the total production cost is subject to the
following constraints.

Power balance constraints: The total generated power at time
t must meet the power demand at that time instant, i.e.,

N
> uiPi=D¢, t=1,2,...,T 8)
i=1

where D, is the power demand at time t. In practice, it is hardly
possible to exactly meet the power demand; therefore, an error e
is allowed for the generated power, i.e.,

’Zf]: Uit Py B

D, ]‘Sé‘, t=1,2,...,T. 9

Spinning reserve constraints: Due to the possible equipment
outages, it is necessary for power systems to satisfy the
spinning reserve constraints. Thus, the sum of the maximum
power generating capacities of all committed units should be
greater than or equal to the power demand plus the minimum
spinning reserve requirement, i.e.,

N

z u,'[PImGXZD[—FRt, t:1,2,...,T (10)
i=1

where P"* is the maximum power generating capacity of unit
i, and R, is the minimum spinning reserve requirement at time
t.

Minimum up time constraints: If unit i is on at time t and
switched off at time t+ 1, the continuous up time z{{* should be
greater than or equal to the minimum up time 77? of unit i, i.e.,

Minimum down time constraints: If unit i is off at time t and
switched on at time t+ 1, the continuous up time %/ should be
greater than or equal to the minimum off time 7¢°"" of unit i,
ie.,

> pdown i wy =0,ui . =1and t<T, i=1,.,N (13)

Range of generated power: The generated power of a unit is
limited in an interval, i.e.,

PMM <Py <P™* i=1,2,..,Nand t=1,2,....T (14)

where PP" and PP is the minimum power output and the
maximum power output of unit i, respectively.

5.3. Implement of BLDE for UCP

The optimal commitment of power units in UCP is obtained by
combining BLDE with real-coded DE operations. In BLDE, each binary
individual represents an on/off scheduling plan of units, accompanied
with a real-coded individual representing the specific power outputs
of units. When the binary individuals are recombined during the
iteration process, the real-coded individuals are recombined via the
DE/rand/1 mutation and binary crossover strategies of the real-coded
DE. Then, binary individuals and the corresponding real individuals are
integrated together for evaluation. If the combined mixed-integer
individuals violate the constraints in UCP, they are repaired via the
repairing mechanisms proposed in [5].

The performance of BLDE is tested via a 10-unit power system,
the parameters and forecasted power demands of which are
respectively listed in Tables 7 and 8. To fairly compare BLDE with
the method proposed in [5], we also set the population size to be
100, and the results are compared after 30 independent runs of

> fug=1u=0andt<T, i=1,..,N (11) ! 3 )
) ) ) 2500 iterations, where the scalar factor F is set to be 0.8. The
where the continuously up time is statistical results are listed in Table 9.
0 if u; =0 The comparison results show that when the power balance
1 ifuy=1, t=1and o; <0 error e is small, performance of BLDE is a bit worse than that of the
0 . ’ binary-real-coded differential evolution (BRCDE) algorithm pro-
W=\ 140, ifuz=1, t=1and ;>0 12) y-! ( ) alg P
14400 if 1 and t> 1 posed in [5]. However, when the power balance is relaxed to
e Wle=Tlandi>1. a relatively great extent, BLDE outperforms BRDE for UCP of the
Table 7
Unit parameters for the 10-unit power system.
Unit (i) PI"™(MW) Pt (MW) a; ($/h) b; (8/MWh) ¢ ($/MW?h) d; (8) e (3) fi (h) r'P(h réown(hy ai (h)
1 455 150 1000 16.19 0.00048 4500 9000 5 8 8 8
2 455 150 970 17.26 0.00031 5000 10 000 5 8 8 8
3 130 20 700 16.60 0.00200 550 1100 4 5 5 -5
4 130 20 680 16.50 0.00211 560 1120 4 5 5 -5
5 162 25 450 19.70 0.00398 900 1800 4 6 6 -6
6 80 20 370 22.26 0.00712 170 340 2 3 3 -3
7 85 25 480 27.74 0.00079 260 520 2 3 3 -3
8 55 10 660 25.92 0.00413 30 60 0 1 1 -1
9 55 10 665 27.27 0.00222 30 60 0 1 1 -1
10 55 10 670 27.79 0.00173 30 60 0 1 1 -1
Table 8
Forecasted power demands for the 10-unit system over 14-h time horizon.
Hour 1 2 3 4 5 6 7 8 9 10 11 12
Demand (MW) 700 700 850 950 1000 1100 1150 1200 1300 1400 1450 1500
Hour 13 14 15 16 17 18 19 20 21 22 23 24
Demand (MW) 1400 1300 1200 1050 1000 1100 1200 1400 1300 1100 900 800
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Table 9
Results comparison between BLDE and BRCDE [5] for the 10-unit power system.“-"
means that the corresponding item was not presented in the literature.

Method Power balance Best cost Average cost Worst cost Standard
error e (%) deviation
BRCDE 0.0 563938 - - =
0.1 563446 563514 563 563 30
0.5 561876 - - -
1 559357 - - _
BLDE 0.0 563977 564 005 564 088 24
0.1 563552 563636 563 745 49
0.5 561677 561847 - 50
1 559155 559207 559 426 48

10-unit power system. The reason could be that crossover opera-
tion for real variables is not appropriately regulated for UCP, and
accordingly, simultaneous variations on all real variables usually
lead to violations of constraints. Thus, BLDE can only outperform
BRCDE when the constraints are relaxed greatly.

6. Discussions

In this paper, we propose a BLDE algorithm appropriately
incorporating the mutation strategy of binary DE and the learning
mechanism of binary PSO. For the majority of the selected bench-
mark problems, BLDE can outperform the compared algorithms,
which indicate that BLDE is competitive with the compared
algorithms. However, statistical test results show that BPSO per-
forms better than BLDE on Ps and P;, AQDE is more efficient for
Ps_1, and binDE obtains better results on Pg_1, Pg_1> as well as
Pg_3. When generating a candidate solution, BLDE first initiates it
as the winner of two obtained solutions and then regulates it by
learning from the best individual in the population. This strategy
simultaneously incorporates the synchronously changing strategy
and the bitwise mutation strategy of candidate generation. Thus,
BLDE can perform well on most of the high-dimensional bench-
mark problems. However, when BLDE is employed to solve P5 and
P, the global optimal solutions of which are easy to be locate, it
performs worse than BPSO; when it is implemented to solve the
low-dimensional problems Pg_+, Pg_» and Pg_ 3, the local optimal
solutions of which are irregularly distributed in the feasible
regions, it cannot perform better than binDE.

7. Conclusions

Generally, the proposed BLDE is competitive with the existing
binary evolutionary algorithms. However, its performance can be
improved. Thus, future work will focus on designing an adaptive
strategy appropriately managing the synchronously changing
strategy and the bitwise mutation strategy employed in BLDE.
Meanwhile, we will try to further improve its performances on
mixed-integer optimization problems by efficiently incorporating
it with real-coded recombination strategies.
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