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Recent advances in deep networks have achieved appealing performances on object recognition tasks, due
to their robust feature learning abilities. Besides the generated deep features, other network characteristics,
e.g., inter-layer weight matrix and their back-propagated derivatives, may behave complementarily in feature
learning in terms of generalization and robustness performances. However, characteristics adaptivity to
different databases is not well studied. Meanwhile, current algorithms are apt to explore the most salient
features for better generalization performance, while the hierarchically-salient features that may be beneficial
for network robustness are not fully explored. Thus, we propose an attention module to make network
characteristics adaptive to different training tasks, which can be further combined with the dynamic dropout
algorithm to suppress salient neurons to explore more SndMS (Second Most Salient) features for robust
recognition. The proposed algorithm has two main merits. First, the complementarity of network characteristics
is taken into account when conducting training on different databases; Second, with the exploration of
more SndMS neurons for hierarchically-salient feature representation learning, the network robustness against
adversarial perturbations or fine-grained differences can be enhanced. The extensive experiments on seven
public databases show that the proposed attention-based dropout largely improves the network robustness,
without compromising the generalization performance, compared with related variants and state-of-the-art
(SOTA) algorithms. Algorithm codes are available at https://github.com/lingjivoo/ACAD.

1. Introduction In addition to latent features and network’s weights, the informa-
tion embedded in back-propagated derivative w.r.t. (with respect to)
feature or weight is also informative for network adaptivity. Samples

contributing more to the back-propagation gradient should have a

With the development of computer vision, models for optimiz-
ing deep learning-based robust networks against data variations have

attracted increasing interest, which is frequently resorted to the opti-
mization of robust feature representation, and the learned information
is mainly specific to the considered training samples. In contrast,
network weights are optimized by all training samples, and can be
treated as a specific global representation for them [1], which are
complementary to network features. Specifically, for each sample, in
addition to the regular network feature, the network weights will also
be changed during the training according to this sample. Consequently,
combining these two types of information may result in a more robust
and complementary representation for this sample.

larger probability to be selected and augmented to improve the network
robustness and generalization performances [2], and using derivatives
to weigh feature maps allows features to be more transferable [3].
However, the application of the network’s weights to learn feature
representations has not been fully explored, let alone the use of their
derivatives for feature adaption.

To take weights and derivatives into account for the adaptivity of
feature representation and make use of their complementarity dur-
ing training, this paper resorts to the network adaptivity-resemble
modules, e.g. [4], where characteristics are defined as the features
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generated by fully connected (FC) layers, network weights, and the
related derivatives. Specifically, we employ an attention mechanism to
achieve training adaptivity by optimizing characteristics contributions
with back propagation [5].

Characteristics adaptivity allows networks to locate the most salient
features, which may yield reasonable generalization performance at
the inference stage. However, such an encoding strategy with the
most salient features is not robust against the sample perturbation,
since current effective adversarial attacks are often performed on the
most salient regions by imposing perturbation noises [6]. To learn
features for more robust recognition, the researchers have recently paid
attention to hierarchical features or the SndMS features [7], where
hierarchical saliency features are assertively defined as the features with
multiple saliency levels, i.e. the most salient, SndMS and non-salient
features, based on the intensity of the response. Xie et al. [8] explored
SndMS features for object localization and semantic segmentation.

To decrease network complexity, the dropout algorithm [9] has
been frequently employed to learn hierarchical feature representations.
It is suggested to dropout the feature maps deterministically [10] or
generate a dropout mask based on the attention output [11] to extend
the localization regions. Other variants of dropout are also proposed
to encourage neurons with small activations [12], strengthen the influ-
ence of less important units, or hide the most discriminative regions
stochastically. Though activated less-salient features, these studies did
not take into account the hierarchically-salient features for recognition.
Meanwhile, the update of dropout probabilities is mainly based on
the instance-specific feature cue, the dataset-common cues are not
sufficiently considered.

In this work, different from previous studies that drop the most
salient features mainly based on the activations, we resort to exploring
the hierarchically-salient features with dynamic dropout probability
based on characteristics adaptivity. Specifically, by making the dropout
probabilities adapt to network characteristics, i.e. features, weights and
their derivatives, our attention-based dropout enables the network to
dynamically explore SndMS features. In this way, we can trade off the
generalization and robustness performances, and especially improve
the network robustness against adversarial perturbations. The main
contributions of this work are summarized as follows:

+ An attention model is proposed to make use of the complementar-
ity of different network characteristics and adapt them to different
databases. To the best of our knowledge, this work is the first to
adapt network features, weights, and derivative w.r.t. weights for
feature representation;

An attention-based dropout is proposed to dynamically suppress
the salient features and activate more SndMS features, so as to
produce hierarchical features for robust recognition of objects
with fine-grained differences;

Extensive experimental results on seven publicly available
datasets show that the proposed algorithm can not only well
maintain the generalization performances, but also largely im-
prove network robustness against adversarial perturbations, com-
pared with the related variants and SOTAs.

This work is structured in the following sections. The related works
are surveyed in Section 2. The proposed algorithm is demonstrated
in Section 3. Then the experimental results and the corresponding
illustrations are demonstrated in Section 4. Finally, the conclusion and
discussions are presented in Section 5.

2. Related works
2.1. Dynamic feature representation learning

For dynamic feature learning, the attention mechanism has been
widely employed to allow networks to focus on the specific activa-
tion region [13], features of object parts [14], subtle visual struc-
ture [15], what and where to emphasize or suppress the interme-
diate features [10], weakly supervised metric and template learning
integrated with sample reliability representation [16].
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However, these algorithms mainly used the information of a training
batch for the feature representation of a specific sample. By con-
trast, network weights encode the information of the entire training
samples [1]. However, they are rarely used for the dynamic feature
representation, let alone the complementarity of these features and
weights for adapting to different databases. In this work, this com-
plementarity will be taken into account for the feature representation
training based on the attention mechanism.

2.2. Hierarchical feature exploration

While traditional feature representation learning mainly highlights
the most salient features, the usefulness of SndMS features for the
network’s robustness against perturbation noises, especially for the
adversarial noises [6], is not explored. Various algorithms [7] for
exploring hierarchical features with different levels of salient responses
were developed.

By randomly dropping or suppressing features, the variants of the
dropout algorithm [17,18], and attention-based region and channel
zeroing were widely used to enhance network representation capacity
and improve its robustness against perturbation noises. Based on the
attention output, the dropout mask was generated with the proposed
iterative ADL (attention and dropout layer) [10] or the prior of salient
regions [11], which is further used to guide networks to explore less
discriminative parts for object localization. Keshari et al. [12] proposed
a deterministic dropout, i.e. the guided dropout, to take into account
the neurons with small activations.

In contrast, we explore the hierarchically-salient features based
on dynamic dropout probabilities of characteristics adaptivity, thus,
SndMS features could be activated in the way of characteristic dynamic
perception, for robust recognition. More importantly, characteristics
adaptivity-based dropout can generate adaptive hierarchical features
for different datasets.

2.3. Trade off between generalization and robustness

The network generalization, as well as robustness, are both popular
metrics to evaluate the performance of a network. Stutz et al. [19]
revealed that the robustness metric is not contradictory to generaliza-
tion when the attacked samples are embedded to a low-dimensional
manifold. Pang et al. [20] proposed a diversity-promoting regularizer
to improve adversarial robustness, without deteriorating generalization
performance.

Wang et al. [21] suggested to automatically adapt attention to
facial regions with different discrimination abilities and scales to im-
prove generalization capacity. Correspondingly, by suppressing atten-
tion maps or distracting from the original heat map, Chen et al. [6]
introduced a successful attack on recognition models.

Although network generalization and robustness are not contradic-
tory, it is a challenge to trade off these two goals. In this work, we use
the characteristics adaptivity to maintain the network generalization,
an attention-based dropout is then proposed to dynamically activate the
SndMS responses and produce hierarchical features, so as to improve
network robustness.

3. The proposed algorithm

In this section, we introduce the main motivation, the overall frame-
work, and the specific modules of the proposed algorithm sequentially.

3.1. Motivation

The main motivations of the network characteristic adaptivity and
hierarchical feature exploration in our algorithm are shown in Fig. 1.
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Fig. 1. Motivation of network characteristic adaptivity and hierarchical feature exploration. Left: four different characteristics represent complementary information for recognition.
Right: general recognition with only the most discriminative regions performs less robust than that with more discriminative cues. When attacked by FGSM [22], a network with
plain training attends to suppress discriminative regions (a). (b) The network that explores more discriminative cues keeps attending to complete class-related regions.
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Fig. 2. Diagram of network framework with the proposed ACAD (Adaptive Characteristic Attention-based Dropout). ACAD is performed on the last FC layer, which is clarified in

Fig. 4. W and % are obtained in the preceding BST (batch-size training).

» As shown in Fig. 1, feature vector f represents instance-specific
information; learned weight matrix W implies common infor-
mation among the whole training set; and the backpropagated
gradient (Z—L or %) implies sensitive parts of features or weight
matrix. It is also revealed in [23] that different network char-
acteristics behave diversely on different databases, which moti-
vates us to leverage the complementarity of these characteristics
based on their adaptivity. In this work, we use this comple-
mentary information, instead of solely instance-specific features,
for maintaining the generalization capacity in robust network
learning.

Fig. 1 shows that learning-based classifiers easily attend to ob-
jects’ most discriminative regions. However, they may ignore the
less discriminative cues for recognition robustness, i.e. it may
cause a large performance drop when their focused regions are
attacked and distracted. To alleviate this problem, we attend to
the most discriminative regions and suppress their contribution
to recognition with characteristic-adaptive dropout probabilities.
In this way, classifiers could explore less discriminative cues
and produce hierarchical features to improve network robustness
against image corruptions or adversarial attacks.

3.2. Algorithm overview

The proposed algorithm is illustrated in Fig. 2, it is shown that
our algorithm is applied to the embedding feature representation.
Specifically, given a FC (fully connected) layer at the (z + 1)th training
iteration, we jointly feed (1) its input f¢+D € R”, (2) its weight matrix
W@ g Riclassxn and (3) the derivatives %O € Rifelassxn of the network
loss £ w.r.t. the weight matrix, into an attention model, aiming to adapt
characteristic contributions to the training on different databases. The
attention output is further used for the dynamic update of dropout

probabilities to enable the network to explore hierarchical features,
i.e. f/“+D_ for robust recognition.

3.3. Characteristic selection

It is revealed in the study [24] that the gradient information w.r.t.
network parameters before the current iteration is beneficial for feature
representation, which motivated us to leverage the derivatives w.r.t.
weights and feature representation from the preceding BST (batch-size
training), for the optimization of feature representation in current BST.
However, mismatching of latent information representation may hap-
pen due to the possible large variation of features or weights between
consecutive BSTs. If this case happens, the derivatives w.r.t. features
or weights in each two consecutive BSTs also represent mismatched in-
formation cues, indicating that the features or weights in the preceding
BST are unsuitable to be equipped with those in current BST for feature
representation learning. To study this variation, the evolution curves
of their averages against the numbers of batch sizes are presented in
Fig. 3.

As shown in Fig. 3, the features behave relatively unstably com-
pared with the weights for both two networks, that is, the features
between two consecutive BSTs, i.e. f® and f(*D, show relatively
larger variations compared with W® and W(+D. This is because the
feature derivatives from the preceding BST are specific to the preceding
batch of samples, which are likely to be largely different from the
feature derivatives specific to the current batch. By contrast, the weight
derivatives behave stably since they reflect all the information of the
already learned samples.

Consequently, %(’) represents mismatched information with that by
%(IH), which is not applicable for the following feature representation
learning in the (t + 1)th BST, while only W, o ©

- and Fe+D are
employed.
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Fig. 3. Evolutions of means and std (standard deviations) of FC layer features f and weights W for CIFAR100 against the number of training batches for ResNet18 and VGG16.
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Fig. 4. Diagram of the proposed ACAD module, which consists of two sub-modules, i.e. characteristic attention and attention-based dropout.

3.4. Characteristic attention

To make characteristic contributions adaptive to different databases,
an attention operator is proposed to dynamically adjust the regulariza-
tion weights of different characteristics. The diagram of the proposed
ACAD is presented in Fig. 4, where a MLP (multi-layer perception) is
employed to normalize different characteristics before the attention.

As shown in Fig. 4, the proposed attention mechanism involves
three characteristics, the input vector of the last FC layer in the current
BST, i.e. f0*D, the weight matrix between the FC layer input and
output in the preceding BST, i.e. W, and the derivatives of the loss
w.r.t. W@ in the preceding BST, i.e. 2£ “ In order to unify the

ow
. . . c . U]

dimensions of different characteristics, W® and 25 are compressed

by the corresponding convolution operation (k' and h)3!, respec-

tively) with a filter size of 1 x 1. In addition, regularization weight

a = (a1, ,a3) is introduced to scale each characteristic, which also

determines the characteristic contribution for recognition. The fusion

of different characteristics is followed by a MLP with an activation
function to generate an attention vector v, € R" as follows

(€8]

v, =o(c3)

where o denotes the added sigmoid activation function, c¢; is the MLP
representation of the weighted FC output, and formulated as follows

e3 = MLP(c)) £ Wic, = Wi(Wye)) (2)

where ¢, denotes the hidden layer output in Fig. 4, whose dimension
varies in different models. The weighted FC output ¢, is formulated as
follows

®
¢ = @y D + aph XA WO 4 gy p1X (25 oL )T

we W ®

where A and h}ﬂ’g denote convolution operations with the filter size
of 1 x 1 to compress characteristic dimensions, and T denotes the
transpose operation.
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(a) Non.

(b) Ori.

(c)ADL (d) ACAD

Fig. 5. Grad-CAM (Gradient-weighted Class Activation Mapping) of the last convolution layer output of ResNet18 using different dropout strategies. Notations of ‘Non.’, ‘Ori.” and
‘ADL’ are the abbreviations of ‘Non-Dropout’, ‘Original Dropout’, and ‘Iterative Attention and Dropout Layer’ [10], respectively.

With the proposed characteristic attention, adaptive contribution
weighting of various characteristics for different datasets is achieved,
which not only explores both instance-specific and dataset-common
cues but also takes the network training situation and iteration direc-
tion into account.

3.5. Attention-based dropout

While the attention mechanism can explore the most salient features
to enhance generalization performance, the SndMS features that are
critical to robustness performance have not received enough attention.
Thus, an attention-based dropout is proposed to enable the network
to explore the attention features with hierarchical-salience levels, so
as to alleviate the influence of perturbation noises, e.g. adversarial
noises on recognition performance. Specifically, the distribution of the
attention map is regularized, i.e. dropout is employed to suppress the
most salient features, which encourages the characteristics attention
module to explore the SndMS features.

As shown in Fig. 4, the proposed dropout is based on the attention
vector obtained in Eq. (1). More precisely, the output of the attention
module, i.e. v,, is mapped to the dropout probability p, in a normalized
range as follows

pq =1Cv,) 4

where IC(-) is an increasing function of v, for mapping the attention
of more salient features to higher dropout probabilities. Fig. 5 shows
the motivation of the employed positive correlation between p, and v,,
i.e. the network is enabled to explore more diverse attentions in SndMS
regions. In this work, IC(-) is set as the affine transformation as follows

ICw) =7 v, +p %)

where y = 0.6 and = 0.2, i.e. the dropout probability falls in the region
of [0.2,0.8]. In this way, the most salient features are still retained but
suppressed with a relatively larger dropout probability.

Based on the updated dropout probabilities p,, a dropout mask m,
is generated with independently and identically distributed sampling,
i.e. each unit of m,; obeys the Bernoulli distribution as follows

m, ~ Bernoulli(1 — p,) (6)

For attention-based dropout, the Hadamard product of three vec-
tors, i.e. f¢*+D, attention vector v, in Eq. (1), and dropout mask m, in
Eq. (6) yields a new fusion feature f’¢+D as:

f/(t+1) — f(t+l) * 0, % my (7)

where * denotes the Hadamard product, f'¢+D is further used to infer
the classification probabilities and yield the Softmax loss for network
training.

The proposed attention-based dropout can suppress the most salient
features with characteristics-adaptivity probabilities to produce
hierarchically-salient features, and thus it differs from the iterative
ADL (attention and dropout layer) [10] that discards these salient
features deterministically. Fig. 5 presents the difference between the
feature maps generated with non-dropout, original dropout, ADL, and

our dropout, it shows that our dropout can locate broader and inter-
connected attention regions, i.e. hierarchically-salient features, which
enable the network to better discriminate objects with fine-grained
differences.

Consequently, the proposed characteristics attention-based dropout
enables networks to explore the attention units with hierarchical-
salience levels, and learn features with better robustness performance.

3.6. Network training and inference

For the forward propagation of ACAD, the Softmax loss is calculated
as:

erVrH) eW;’)f/(!+l)
£E£(x,y)=—log(W)=—10g(w) ®

j¢’ j¢’
where y is the ground-truth label of the sample x, f/¢*D is the output
feature vector of attention-based dropout in Eq. (7), and the bias term
is omitted for brevity.

For the back-propagation of the ACAD, the regularization weights of
different characteristics, i.e. {a;, &y, @3} in Eq. (3) are updated based on
the derivations of £ w.r.t. these characteristics, where chain rule based
on the correlation between {a;,a,,a3} and ¢; in Eq. (3) is employed as

follows

9L _ 9L 0 p(i+1)
,

day dv, dcy
9L _ OL 9% pixi /(YT
day v, dc = W), 9

9L _ 9L 9vy pixy 0L Oy
dag dv, dc; oW

where the derivative % is easily derived based on Egs. (1) and (2).

In order to calculate ;T’ the derivative of £ w.r.t. the intermediate

variable of f/(*+1 in Eq. (7) is used, i.e. % is formulated as % *

£ % m,, as back-propagation of m, is not required.

In the inference stage, only the attention module before the FC layer
is applied, while the dropout module is omitted. For the attention mod-
ule, only f and W are used to calculate the attention vector v,, since
% is unavailable at the inference stage. For a better understanding
of our hierarchically-salient features, the diffusion model is used to
explain their generation in the supplementary material.

4. Experimental results
4.1. Database and experimental setting

We test our algorithm using a four-kernel Nvidia TITAN GPU
Card and Pytorch platform. Seven publicly employed object databases,
i.e. FM (FashionMNIST) [25], C10 (CIFAR10) [26], C100 (CIFAR100)
[26], CUB (CUB-200-2011) [27], Cars (Stanford-Cars) [28], Aircraft
(FGVC-Aircraft) [29], and ImgN-1K (ImageNet-1K) [30] are used to
evaluate the performance.

We use ResNet18 as the backbone in our main experiment. For fine-
grained datasets, i.e. CUB, Cars, and Aircraft, we resized images to
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Non. Ori. ACAD Non.

ACAD Non. Ori. ACAD

Fig. 6. Grad-CAM (Gradient-weighted Class Activation Mapping) of ‘Non.’, ‘Ori.” and ‘ACAD’ dropout on samples of CUB-200-2011, Stanford-Cars, and FGVC-Aircraft.

512 x 512 and randomly cropped them with the size of 448 x 448
for data augmentation. The models are pre-trained on the ImageNet-
1K dataset [30] and fine-tuned for 200 epochs. The learning rate is
decreased by a factor of 0.1 for every 80 epochs, and set to 0.001 for
the pre-trained weights or 0.01 for new parameters.

4.2. Algorithm analysis

4.2.1. Toy experiment of quantitative analysis for hierarchically-salient
features

To unveil the fundamental contribution of the SndMS (second most
salient) features (or less salient features) to the network robustness
in an intuitive way, a toy experiment was conducted to evaluate the
accuracy, and robustness of the most salient or SndMS features against
adversarial noises or corruption.

In this toy experiment, we split each image in the training set
of CUB-200-2011 into different regions (including the most salient
region, SndMS region, and non-salient region), according to its Grad-
CAM. These Grad-CAMs indicate how much different parts of the object
contribute to its classification. The warmer the color is, the more salient
the region is. The experimental setting is presented in Fig. 7. As shown
in Fig. 7(c), to show the importance of the SndMS regions, we erase
the most salient regions and fill these blanks with random patterns,
and enforce the model training to focus more on the SndMS regions.
For comparison, we erase the SndMS regions and fill these blanks with
random patterns in Fig. 7(b). We also evaluate these models’ classi-
fication accuracy, robustness against FGSM, and corruption (Gaussian
noise) in Table 1.

Table 1 shows that training with the most salient regions could
get better classification performance, whereas training with the SndMS
regions has better robustness. We can conclude that the SndMS regions
are crucial for robust classification, as they provide complementary ob-
ject cues to the most salient regions that are perturbed with adversarial
attack or corruption.

4.2.2. Visualization of feature maps
To give insight into the feature maps generated by the proposed
algorithm, the feature maps of the last convolution layer generated with
the dropout variants of ‘Non.’, ‘Ori.” and ‘ACAD’ are shown in Fig. 6.
As shown in Fig. 6, the proposed attention-based dropout ACAD can
explore broader salient regions with larger latent semantic variations
compared with ‘Non.” and ‘Ori.’. Take the image in the 2nd row and 6th

(a) Grad-CAM

-4

(b) Most salient region (c) Second most salient region
Fig. 7. (a) Grad-CAM and the image generated by replacing (b) the second most salient
region and (c) the most salient region, with random patterns.

Table 1

The classification accuracy (Acc. %) and robustness against RobAdv
(adversarial perturbations, %) and RobCor (corruptions, %) with the
Complete (complete image), the contribution of the MostSalient (most
salient) regions, i.e. the SndMS (second most salient) regions are refilled,
and the contribution of SndMS regions, i.e. the most salient regions are

refilled.
Metric Complete MostSalient SndMS
Acc. 85.57 77.65 75.92
RobAdv 10.58 8.72 8.91
RobCor 9.84 8.31 8.66

column for example, the large activation responses on the headlamp
and the side window show the most salient and the SndMS regions,
respectively. In this way, ACAD is able to locate attention regions
that are more hierarchical, thus enabling the network to better encode
object details with fine-grained features.

4.2.3. Characteristic evolution

To study the variation of regularization weights of the employed
characteristics for different databases, the evolution of the coefficients
{a;} in Eq. (3) during the training of four datasets are demonstrated in
Fig. 8.

Fig. 8 shows that the weights of different characteristics varied
dynamically with the iteration epochs, which tend to approach con-
stants as the learning rate decays. Meanwhile, the contributions of the
weight derivatives are decreasing for Fashion-MNIST and CIFAR10,
while increasing for CIFAR100, due to the reason that the training
of CIFAR100 converges relatively slower. From another aspect, while



W. Xie et al.

°
©
2
g

as 0.8 as

o
®

=)
S

0.6

Value of alpha
e o €

n o

Value of alpha

I
w

0.2

0.0

e
N

5 10 15 20 25 30 10 20 30 40 50 60 70 80 90
Epoch Epoch
(a) Fashion-MNIST (b) CIFAR10
1.6 — ¥ —
— — @

3 B
N >

I
o
Value of alpha

Value of alpha

o
®

o
o
-

N~

14
'S

20 40 60 80 100 25 50 75 100 125 150 175 200
Epoch Epoch
(c) CIFAR100 (d) CUB-200-2011

Fig. 8. The evolutions of weights {«,,a,,a;} in Eq. (3) for Fashion-MNIST, CIFAR10,
CIFAR100 and CUB-200-2011.

0.9

w/o DM
W/ DM

o
@
s

Dropout probabilities
o o o
w [=)] ~

o
'S
L

o
w
s

0.2

10000 15000 20000

Iteration

0 5000 25000

Fig. 9. Evolutions of dropout probabilities p, in Eq. (4) with (w/) DM (Dropout
Module) and without (w/0) DM during training on Fashion-MNIST. Each vertical slice
shows a histogram of p,. The solid curve indicates the mean of p, and the shade shows
the distribution of p,.

the weight dropout of W outperforms the feature dropout of f for
Fashion-MNIST and CIFAR100, the feature dropout performs better for
CIFAR10. As shown in Fig. 1, the features reflect the salient neurons,
and the weights reflect the correlation between the feature neurons
and the categories. When object features show large granularity, the
exploration of salient neurons is preferred. The correlation between
features and categories performs better for fine-grained objects.

4.2.4. Dropout probability evolution

Besides of characteristic evolution, we also study the variation of
dynamic dropout probabilities by showing their evolution in Fig. 9.
Fig. 9 shows that the distribution of dropout probabilities by DM
converges to a range between 0.7 and 0.8 as the training progresses.
By contrast, the probability distribution via the method without DM
still has a wide range between 0.25 and 0.8 at the end of training.
This observation demonstrates that the proposed DM helps activate
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Table 2

The computational complexities of different models.
Methods FLOPs Parameters Training time
Non-dropout (ResNet-18) 502.87M 11.437M 1.50 h
Guided 5,9, [12] 502.87M 11.439M 2.60 h
ADL 519y [10] 502.87M 11.437M 313 h
Disout p050) [31] 502.87M 11.436M 213 h
R-Dropygy, [32] 502.87M 11.437M 1.80 h
DropChanBlock yy;y [33] 502.91M 11.437M 1.58 h
Focused-Drop 59,2 [34] 502.99M 11.437M 3.15h
Fre-Drop(aoz [35) 502.87M 11.463M 253 h
Late-Dropygp3) [36] 502.87M 11.437M 1.55 h
ACAD (ours) 502.89M 11.447M 1.88 h

unattended neurons with low dropout probabilities, encouraging the
network to take into account the contributions of more neurons.

4.2.5. Computational complexity analysis

To study the computational complexity and the training overhead
of the proposed algorithm, we show the FLOPs (Floating-point Oper-
ations), the number of parameters and the training time of different
models in Table 2.

Table 2 shows that our model does not introduce obvious increases
in FLOPs and parameters compared with other related models, while
this additional overhead primarily arises from the computation of
attention scores for activation units. Regarding the training time, our
algorithm requires much less training overhead than Guided Dropout,
ADL, Focused-Drop and Fre-Drop.

4.2.6. Recognition and generalization performance

To evaluate the generalization recognition performance over the
testing dataset, the proposed algorithm is compared to other related
variants and several state-of-the-art algorithms (run by ourselves with
the same learning rate strategy as our method), including the dropout
variants with different clustering variables [23] and the attention vari-
ants on a single characteristic. We demonstrate the comparison of
the performances in Table 3, and the performances of the ‘Non.’,
‘Ori.” dropout and the proposed ACAD on Fashion-MNIST, CIFAR1O0,
CIFAR100 in Table 3. For a fair comparison, the same random seeds
are employed.

Table 3 shows that ACAD outperforms the original dropout by the
margins of 0.18% on FashionMNIST, 0.23% on CIFAR10, and 1.21% on
CIFAR100. Compared with other variants and state-of-the-art dropout
algorithms, our method also shows competitive performances on these
three datasets.

4.3. Robustness performance

4.3.1. Robustness metric
To quantitatively evaluate the robustness of the proposed algorithm,
the metric introduced in [38] is employed:

Pado(F) = E,[A,4,(x, F)] w0
Aqo(x. F) = argming {16x|l, : F(x +8x) # F(x)).

where E, is the expectation w.r.t. the sample distribution, F(x) out-
puts the predicted label of the sample x, 6x denotes the perturbation
direction of an adversarial attack. The robustness performances of the
related variants against FGSM [22] on FM and C100 are shown in
Table 4.

Table 4 shows that the proposed ACAD achieves the largest
maximum-allowed perturbation intensity, i.e. p,4,, for both FM and
C100, among eight related variants. Since the proposed attention-based
dropout is based on characteristics adaptivity, it enables the network
to explore more hierarchically-salient features to alleviate the attack,
and hence improve robustness over the related variants.
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Fig. 10. Distributions of maximum-allowed perturbation intensities (¢) by ‘Non.’, ‘Ori.” dropout and ACAD trained on Fashion-MNIST and CIFAR100.

Table 3

The average accuracies (%) and their standard deviations (%) of several related
variants, state-of-the-art dropout algorithms, and the proposed ACAD on FM, C10, and
C100 with ResNet18. The best performance is marked in bold.

Method FM C10 C100

Non-dropout 94.05 + 0.09 94.56 + 0.14 76.02 + 0.35
Original g5, [9] 94.14 + 0.04 94.55 + 0.03 76.20 + 0.27
Spatial y;5) [17] 94.09 + 0.15 94.55 + 0.12 76.25 + 0.21
Biased 591g) [18] 94.01 + 0.09 94.50 + 0.03 76.12 + 0.09
Crossmap ,g1g) [18] 94.02 + 0.17 94.60 + 0.15 76.00 + 0.20
Cluster — f(5010) [23] 94.13 + 0.15 94.56 + 0.15 76.30 + 0.34
Cluster — Wy19) [23] 94.14 + 0.12 94.66 + 0.17 76.87 + 0.18
Cluster — 2 [23] 94.12 + 0.12 94.54 + 0.22 76.68 + 0.30
Cluster — %(2019) [23] 94.26 + 0.15 94.50 + 0.19 76.66 + 0.15
Cluster — f + %(2019) [23] 94.22 + 0.25 94.55 + 0.13 76.34 + 0.38
Cluster — f + W10y [23] 94.13 + 0.11 94.58 + 0.14 76.33 + 0.30
Guidedyg;9) [12] 94.22 + 0.13 94.71 + 0.10 75.73 + 0.29
ADL 54,9, [10] 94.06 + 0.19 94.22 + 0.13 74.01 + 0.34
Disout 050y [31] 94.15 + 0.13 94.66 + 0.10 76.28 + 0.29
FDD-2D 59,0, [371] 94.37 + 0.05 94.73 + 0.02 76.80 + 0.11
R-Dropgyga1y [321 94.08 + 0.12 93.84 + 0.72 73.29 + 0.64
DropChanBlock(zozn [33] 94.15 + 0.09 94.32 + 0.11 72.54 + 040
Focused-Drop g2, [34] 92.94 + 0.14 93.54 + 0.15 74.60 + 0.14
Fre-Drop 5022 [351 94.33 + 0.12 94.57 + 0.20 75.02 + 0.27
Late-Drop a3y [36] 94.28 + 0.12 94.76 + 0.14 75.99 + 0.22
ACAD 94.32 + 0.05 94.78 + 0.12 77.41 + 0.31

To study the distributions of maximum-allowed perturbation in-
tensities, the densities of these intensities based on ‘Non.’, ‘Ori.” and
‘ACAD’ for Fashion-MNIST and CIFAR100 are shown in Fig. 10.

Fig. 10 shows that the maximum-allowed perturbation intensities
of the proposed ACAD distribute more on large values than ‘Non.’
and ‘Ori.” for both Fashion-MNIST and CIFAR100, which illustrates the
robustness of the proposed algorithm in terms of the quantitative metric
in Eq. (10).

4.3.2. Adversarial robustness

We further evaluate the robustness of the proposed ACAD against
widely used adversarial attacks. To make the comparison convincing
and comprehensive, both white and black box attacks are employed
for the evaluation. More precisely, four adversarial attack algorithms,
i.e. FGSM [22], PGD [39], JSMA [40], Newtonfool [41], are employed
for the testing. For robustness evaluation against two additional latest
attack algorithms, please refer to the supplementary material.

PGD [39] performed the iterative attack via projecting the per-
turbed samples into the feasible region. JSMA (Jacobian Saliency
Map) [40] used the Jacobian matrix to derive the saliency map from
input to output, so as to attack the output structure by perturbing only
a small part of the input features. Newtonfool [41] is an untargeted

attacker that tries to decrease the largest predicted probability by
gradient descent, where the step size is determined adaptively. The
adversarial robustness toolbox' is employed to implement these attack
algorithms.

Recognition accuracies (%) against the FGSM attack with increasing
normalized perturbation intensities on Fashion-MNIST and CIFAR100
are shown in Fig. 11. The robustness performances of the proposed al-
gorithm and other related dropout variants against the four adversarial
attacks are shown in Table 5. Robustness (%) of ‘Non.’, ‘Ori.” dropout
and the proposed ACAD against FGSM and PGD for CUB, Cars, Aircraft,
and ImgN-1K are demonstrated in Table 6.

Fig. 11 shows that the proposed ACAD achieves the best robustness
against FGSM attack with varying perturbation intensities.

Table 5 further justifies that ACAD outperforms its variants and
state-of-the-art dropout algorithms in terms of robustness. For the
Fashion-MNIST dataset, ACAD outperforms the original dropout [9] by
the margins of 14.79% and 13.80% when ¢ = 0.03 and ¢ = 0.12. For
the CIFAR100 dataset, ACAD greatly outperforms the original dropout
by the margins of 37.09% and 11.58% when ¢ = 0.03 and e = 0.25.

Table 6 shows that the robustness improved by the proposed ACAD
is impressive on fine-grained databases and ImageNet-1K, where ACAD
outperforms the original dropout by 16.63%, 36.04%, 40.00%, and
25.59% for CUB, Cars, Aircraft, and ImageNet-1K, respectively. These
results show that the proposed characteristics-adaptivity dropout can
largely enhance the network adversarial robustness, due to the better
exploration of hierarchically-salient features.

4.4. Ablation study

To investigate the performance of each characteristic or module on
the proposed ACAD, we provide an ablation study on FM (Fashion-
MNIST) and C100 (CIFAR100) in terms of recognition accuracy and
robustness in Table 7, where ResNet-18 is used as the baseline.

As shown in Table 7, AM (Attention Module) based on a single
characteristic, i.e. f or W, could improve the baseline performance,
which indicates that instance-specific information (represented by f)
and dataset-common information (represented by W) both contribute
to classification. Meanwhile, f and W turn out to be complementary in
terms of generalization and robustness, since the variant with f+ W +
DM outperforms both variants with f + DM and W + DM. Since the
% is not as stable as W, mere % is unable to bring improvements.
However, on the basis of f and W, the characteristic % further brings
a performance gain.

1 https://github.com/Trusted- Al/adversarial-robustness-toolbox
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Table 4

Robustness comparison of related dropout variants on FM and C100 in terms of the metric in Eq. (10) with FGSM.
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Dataset ~ Non. Ori. [9] Spatial [17] Biased [18] Crossmap [18] Cluster-f [23] Focused-Drop [34] Late-Drop [36] ACAD
FM 0.040  0.034 0.041 0.038 0.046 0.053 0.034 0.038 0.072
C100 0.048  0.047 0.050 0.044 0.040 0.083 0.052 0.045 0.110
80
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Fig. 11. Robustness accuracy (%) of different dropout variants against FGSM with increasing ¢ in L norm for Fashion-MNIST and CIFAR100.

Table 5

Robustness (%) against various non-targeted adversarial attacks on FM, C10, and C100. The perturbation intensity of FGSM is 0.03 in L, norm. The perturbation intensities of
PGD on FM , C10, and C100 are 0.03, 8 (out of 255), and 8 (out of 255) in L, norm, respectively. The intensity step is 10. The maximum distortion of JSMA is set as 0.1.
tmeans that the improvement is significant under the significance level of 0.05 with t-testing.

Method FGSM PGD JSMA NewtonFool

FM C10 C100 FM C10 C100 FM C10 C100 FM C10 C100
Non. 40.55 58.28 23.60 10.81 41.03 7.86 13.07 2.17 18.89 32.48 18.01 1.42
Ori.(5019y [9] 36.64 59.66 24.95 7.71 41.75 8.50 12.20 2.54 15.30 27.37 19.03 1.17
Spatial o5y [171 39.17 55.94 24.03 8.37 37.37 7.79 13.67 2.48 13.30 30.20 12.31 1.18
Crossmapyg;gy [18] 40.59 58.31 23.03 8.23 43.57 7.50 11.96 1.72 12.97 33.30 27.41 1.49
Biased 5014y [18] 36.75 58.79 23.95 8.25 41.15 8.26 12.22 2.98 16.54 29.45 17.48 1.27
Cluster-f(50,9y [23] 41.59 52.60 41.35 10.88 37.07 21.54 14.29 291 15.55 30.67 16.16 1.65
Cluster-W(y0,9) [231] 48.03 57.94 57.72 19.75 41.42 35.60 14.86 3.38 20.21 32.43 16.03 2.41
Cluster—%(zmg) [23] 48.67 52.27 44.46 21.02 36.45 23.71 13.95 3.07 17.24 33.99 17.59 1.81
Cluster»%mlg) [23] 48.40 54.40 57.09 21.54 38.79 35.12 14.41 3.79 16.83 35.02 17.08 2.46
Cluster-f + %(2019) [23] 44.27 51.84 60.31 17.10 36.13 17.63 14.49 3.13 11.06 33.82 16.54 1.56
Cluster-f + Wy019y [23] 43.11 51.78 47.62 13.12 37.45 25.92 13.23 2.80 16.83 31.49 16.10 1.84
ADL 5019, [10] 44.90 48.18 27.64 13.33 32.92 10.57 12.62 1.85 20.26 36.90 3.22 1.64
Disoutygygy [31] 29.91 59.57 20.90 6.72 41.85 5.15 11.80 2.21 20.59 29.33 15.73 1.02
Guided 59, [12] 47.98 62.79 25.04 21.98 45.04 8.89 14.27 2.57 17.38 37.83 17.17 1.37
FDD-2D 59,0y [371 50.87 - 60.04 21.39 - 39.44 - - - - - -
R-Dropyg,;y [32] 33.80 61.56 27.66 10.93 48.54 12.07 11.67 8.49 30.21 27.43 15.83 2.78
DropChanBlock 927y [33] 29.94 57.91 27.31 5.10 46.12 16.87 9.30 1.46 16.54 27.35 17.30 2.69
Focused-Drop 5oz, [34] 42.63 61.03 24.25 12.19 42.68 7.84 14.96 2.24 18.47 31.91 19.93 2.46
Fre-Drop 592, [35] 41.08 56.82 22.57 17.69 44.76 9.55 14.37 0.61 13.51 37.85 21.03 1.58
Late-Drop(ygy3y [36] 39.58 62.62 29.71 10.30 47.51 12.73 14.69 2.84 19.47 34.42 26.86 2.85
ACAD-f 50.15 58.04 61.417 23.86F 42.58 42.27F 16.967 5.041 19.23 38.467 18.50 3.067
ACAD-w 48.10 57.87 61.49¢ 15.10 42.83 42.901 13.36 5.11% 20.25 31.45 18.10 2.34
ACAD-f + W 51.14% 58.04 62.05 23.607 43.48 43.427 16.237 5.137 19.76 38.897 19.22 2.95%
ACAD-f + W + % 51.437 59.83 62.047 25.387 41.72 43.487 16.237 5.207 20.48 39.507 19.11 3.27%

Since the proposed ACAD without DM is actually an attention
model, we compare this variant with the baseline to test the perfor-
mance of AM. Table 7 shows that there are gains of accuracy over the
baseline on both two datasets, this is because AM enables the network
to dynamically explore the salient features based on characteristics-
adaptivity. However, overdependence on salient features in recognition
reduces the robustness of the network against noise or corruption.
This analysis is supported as AM seems to be helpless for robustness
improvement.

Compared to the network trained with sole AM, the additional DM
could further improve network robustness on the basis of retaining
recognition performance. For example, the last two rows of Table 7
indicate that DM achieves an improvement of accuracy by the mar-
gin of 1.05% on CIFAR100, and the last two rows indicate that DM
achieves improvements of 11.62% and 38.45% in terms of robustness
on Fashion-MNIST and CIFAR100, respectively. These appealing results
in terms of both accuracy and robustness performances indicate the
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Table 6
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Robustness performances (%) of ‘Non.’, ‘Ori.” dropout and the proposed ACAD against FGSM and PGD for
CUB, Cars, Aircraft, and ImgN-1K. The perturbation intensities of FGSM and PGD on ResNet18 for CUB,
Cars, and Aircraft are 0.03 and 2 (out of 255) in L norm. The perturbation intensity of FGSM and PGD
on ResNet152 for ImgN-1K are 0.03 and 8 (out of 255) in L, norm. The intensity step is 10.

FGSM PGD

CUB Cars Aircraft ImgN-1K CUB Cars Aircraft ImgN-1K
Non. 0.77 0.33 0.55 14.15 3.00 7.55 3.15 0.62
Ori. 1.41 1.61 1.84 18.50 5.47 17.20 11.38 1.33
ACAD 18.047 37.651 41.847% 44.097 12.647 46.77 1 47.52% 11.487

Table 7

Ablation study of ACAD in terms of recognition and robustness performances on FM and
C100. DM is the abbreviation of the dropout module based on different combinations of
characteristics in Eq. (3). The best and second best are labeled with bold and underline,
respectively.

AM DM Accuracy Robustness

f w % FM C100 FM C100

X X X X 94.05 76.02 40.55 23.60
v X X X 94.14 76.37 40.28 23.51
v X X v 94.31 77.16 50.15 61.41
X v X X 94.19 76.13 39.61 23.80
X v X v 94.17 77.22 48.10 61.49
v v X X 94.23 76.12 38.91 23.91
v v X v 94.34 77.33 51.14 62.05
v X v X 94.27 76.05 37.82 23.11
v X 4 v 94.33 76.98 45.06 61.37
v v v X 94.23 76.36 39.81 23.59
v v 4 v 94.32 77.41 51.43 62.04

effectiveness of hierarchically-salient features explored by the proposed
DM.

5. Discussion and conclusion

During the learning of robust feature representation, network char-
acteristics, i.e. FC features, inter-layer weights, and their derivatives,
perform diversely on different databases. Meanwhile, hierarchically-
salient features are not fully explored in the discrimination of fine-
grained object differences. To this end, this work proposes an attention
module for dynamic adaption of characteristics contributions during
training, as well as an attention-based dropout to explore hierarchical-
salience levels of features. Extensive results on four general and three
fine-grained object recognition problems show that our algorithm can
largely improve the network robustness, without compromising its
generalization performance, compared with the related variants and
state-of-the-art algorithms.

Although competitive robustness is achieved by our algorithm, there
is still room for further improvement. First, more characteristics on net-
work’s lower layers should be investigated for adaptivity. Second, since
additional runtime overhead primarily arises from the computation
of attention scores for activation units, we will develop more effi-
cient methods for estimating attention scores to reduce this overhead.
Third, while our approach is specifically designed to enhance network
robustness, it achieves only marginal improvements in classification
performance, which demands further exploration. Lastly, our algorithm
is general and shall be explored for other tasks, like object localization
or segmentation.
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