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a b s t r a c t 

For sparse representation or sparse coding based image classification, the dictionary, which is required 

to faithfully and robustly represent query images, plays an important role on its success. Learning dictio- 

naries from the training data for sparse coding has shown state-of-the-art results in image classification 

and face recognition. However, for face recognition, conventional dictionary learning methods cannot well 

learn a reliable and robust dictionary due to suffering from the small-sample-size problem. The other sig- 

nificant issue is that current dictionary learning do not completely cover the important components of 

signal representation (e.g., commonality, particularity, and disturbance), which limit their performance. In 

order to solve the above issues, in this paper, we propose a novel robust, discriminative and comprehen- 

sive dictionary learning (RDCDL) method, in which a robust dictionary is learned from comprehensive 

training sample diversities generated by extracting and generating facial variations. Especially, to com- 

pletely represent the commonality, particularity and disturbance, class-shared, class-specific and distur- 

bance dictionary atoms are learned to represent the data from different classes. Discriminative regulariza- 

tions on the dictionary and the representation coefficients are used to exploit discriminative information, 

which effectively improves the classification capability of the dictionary. The proposed RDCDL method is 

extensively evaluated on benchmark face image databases, and it shows superior performance to many 

state-of-the-art dictionary learning methods for face recognition. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Inspired by sparse coding mechanism of human vision system,

parse representation represents a signal or an image vector as a

parse linear combination of representation bases which are atoms

f the dictionary. Recently sparse representation technology has

een successfully used in image restoration [1,2] , image classifi-

ation [3,4,7] , and face recognition [5,6] , etc. For the success of

parse representation, the dictionary is very important and should

ffectively represent the encoded signal or image vector [28] . As

he dictionary, the analytically designed off-the-shelf bases (e.g.,

avelets) might be universal to all types of images, but it will

ot be effective enough for specific tasks such as face recognition.

nstead, many latest methods that learn properly the desired dic-

ionary from the original training data have led to state-of-the-art
∗ Corresponding author at: School of Data and Computer Science, Sun Yat-Sen 

niversity, Guangzhou, China. 

E-mail address: yangm6@mail.sysu.edu.cn (M. Yang). 

i  

d  

s  

l  

c

ttps://doi.org/10.1016/j.patcog.2018.03.021 

031-3203/© 2018 Elsevier Ltd. All rights reserved. 
esults in many practical applications, which include image recon-

truction [1,8] , face recognition [10–12,14,15,21,36] , and image clas-

ification [8,13,37,49] . 

Dictionary learning aims to learn the desired dictionary from

he training samples. Basically the desired dictionary should well

epresent or code the given signal. One representative unsuper-

ised dictionary learning model is the KSVD algorithm [16] that

earns an over-complete dictionary from a set of image patches.

nother unsupervised dictionary learning model is the analysis-

ynthesis dictionary learning method which learns a pair of dic-

ionaries for image deblurring [47] . According to the relation-

hip between dictionary atoms and class labels, current super-

ised dictionary learning can be categorized into three main types:

lass-shared dictionary learning, class-specific dictionary learning

nd hybrid dictionary learning. For class-shared dictionary learn-

ng, each dictionary atom can be used to represent all classes of

ata. For class-specific dictionary learning, each dictionary atom

hould be corresponded to only a single class. For hybrid dictionary

earning, the hybrid dictionary includes class-shared dictionary and

lass-specific dictionary. 

https://doi.org/10.1016/j.patcog.2018.03.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2018.03.021&domain=pdf
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In the first category, a dictionary whose atoms are shared by

all classes of data is learned while the discrimination of coding

coefficients is exploited [8,10,11,19] . Marial et al. [19] proposed to

learn simultaneously discriminative dictionaries with linear clas-

sifiers of coding coefficients. Based on KSVD [16] , Zhang and Li

[10] proposed a dictionary learning method called discriminative

K SVD (DK SVD). Following DK SVD [10] , Jiang et al. [11] added a la-

bel consistent term and proposed so-called label-consistent KSVD

(LCKSVD). Recently, Mairal et al. [8] proposed a task-driven dictio-

nary learning framework which minimized different risk functions

of the representation coefficients for different tasks. Based on anal-

ysis dictionary learning (ADL) [40] , Guo et al. [46] proposed dis-

criminative ADL (DADL). Recently, Yang et al. [56] proposed a dis-

criminative model of class-shared analysis and synthesis dictionary

pair learning for face recognition. The class-shared dictionary that

can represent all classes of data loses the relationship between dic-

tionary atoms and class labels. Thus classifiers based on the class-

shared dictionary cannot perform classification based on the class-

specific representation residuals, which can weaken the classifica-

tion capability. 

In the second category, class-specific dictionary learning re-

quires that each dictionary atom should correspond to a single

class label, so that the class-specific reconstruction error can be

used for classification [20–22,26,36] . Wright et al. [5] proposed to

use the whole training set to sparsely encode a testing face image,

and then classify the testing image by evaluating which class leads

to the minimal class-specific reconstruction error. The sparse rep-

resentation based classification (SRC) [5] framework has shown im-

pressive face recognition results. Inspired by SRC, the class-specific

dictionary is widely applied to the design of classifiers. Based on

the KSVD [16] model, Mairal et al. [22] introduced a discriminative

reconstruction penalty term. Yang et al. [17] and Sprechmann and

Sapiro [18] learned a dictionary of sparse representation for each

class. In order to encourage the dictionaries of different classes

to be independent to each other, Ramirez et al. [20] proposed a

model of dictionary learning with structured incoherence (DLSI)

which minimized the coherence term of the dictionary to improve

the discriminative capability of the dictionary. In action recogni-

tion based on images, Castrodad and Sapiro [26] learned a set of

action-specific dictionaries with non-negative representation regu-

larization. Yang et al. [21,36] proposed Fisher discrimination dictio-

nary learning (FDDL), where both the representation residual and

the representation coefficients achieved discriminative information.

Inspired by FDDL, a new analysis and synthesis dictionary pair

with Fisher regularized was developed in [57] . Gu et al. [41] pro-

posed a projective class-specific dictionary pair learning algorithm

for pattern classification. Although class-specific dictionary learn-

ing can achieve good performance, the coherence among the dif-

ferent class-specific sub-dictionaries is inevitable. The number of

the dictionaries is usually large. 

In the third category, the hybrid dictionary is the dictionary

which combines the class-specific dictionary with the class-shared

dictionary. Recently, some hybrid dictionary learning methods are

proposed. Deng et al. [25] proposed extended sparse represen-

tation based classification (ESRC) which constructed an intraclass

variation dictionary as a shared dictionary. ESRC achieved promis-

ing performance for face recognition with a single sample per per-

son. Wei et al. [39] proposed undersampled face recognition via

robust auxiliary dictionary learning. Zhou et al. [13] proposed joint

dictionary learning (JDL) where a hybrid dictionary with a Fisher-

like regularization on the coding coefficients was learned. Kong

et al. [12] proposed dictionary learning with commonality and par-

ticularity (COPAR) which learned a hybrid dictionary by introduc-

ing an incoherence penalty term to the hybrid dictionary. Shen

et al. [27] proposed a hybrid dictionary learning method where

the desired dictionary had a hierarchical category structure. Yang
t al. [48] proposed a novel dictionary learning method which was

nalysis-synthesis dictionary learning for universality-particularity

epresentation based classification. Instead of predefining the re-

ationship between dictionary atoms and class labels, Yang et al.

42] proposed a latent dictionary learning (LDL) method to learn

 discriminative dictionary and build its relationship to class labels

daptively. However, these hybrid dictionary learning methods can-

ot well describe the disturbance such as noise, outliers and oc-

lusion. In addition, these methods do not introduce the discrim-

native information to both the dictionary and the representation

oefficients. 

Though dictionary learning has achieved promising perfor-

ance in face recognition, previous dictionary learning methods

ave some disadvantages. For example, for face recognition, con-

entional dictionary learning methods cannot well learn a reliable

nd robust dictionary due to suffering from the small-sample-size

roblem. Limited number of training samples cannot provide reli-

ble information of face identity and variations so that the learned

ictionary may not be robust in the practical application. Some

ethods about learning an occlusion dictionary [9,23,24] are pro-

osed to recognize the occluded face images and achieve robust

erformance. However, they may not well handle the general vari-

tion in the practical face recognition. The other significant issue

s that current dictionary learning do not completely cover the

mportant components of signal representation (e.g., commonality,

articularity, and disturbance), which limit their performance. In

rder to address the above problems, in the paper, we propose a

ovel robust, discriminative and comprehensive dictionary learn-

ng (RDCDL) model. 

We propose RDCDL to use the training sample diversities of the

ame face image to get a robust dictionary. To achieve the robust-

ess, RDCDL learns the dictionary from sample diversities by ex-

racting real face variations and generating virtual face images that

onvey new possible variations, such as poses, corruption, and oc-

lusion of the face. From original training samples, extracted face

ariations and virtual training samples, RDCDL learns the dictio-

ary including class-shared dictionary, class-specific dictionary and

isturbance dictionary in order to completely represent the prac-

ical data (e.g., the data of the different classes has class-shared

omponents, class-specific components and disturbance compo-

ents such as noise, outliers and occlusion). At the same time, the

iscriminative regularizations on the dictionary and the represen-

ation coefficients have exploited the discriminative information,

hich effectively improves the discriminative capability of the dic-

ionary. 

Although Xu et al. [50] proposed a dictionary learning frame-

ork which also used training sample diversities of the same face

mage and tried to obtain effective representations of face images

nd a robust dictionary, our proposed RDCDL is quite different

rom the framework. First, different from the class-shared dictio-

ary learned in [50] , we learn a more complete dictionary to rep-

esent the commonality, particularity and disturbance of signals.

specially the disturbance dictionary will well represent the dis-

urbance component, with the clean part of signal represented by

lass-shared dictionary and class-specific dictionary. Second, our

roposed model can use the powerful class-specific reconstruc-

ion error as the classification criterion which is not used in [50] .

hird, apart from the sample diversities simulated by doing with

he original training face images only used in [50] , the practical

ace variations are extracted in our paper. What’s more, in the pro-

osed RDCDL, the discriminative information is introduced to the

ictionary and the representation coefficients. 

The rest of this paper is organized as follows. Section 2 briefly

ntroduces related works. Section 3 presents the proposed RDCDL

odel. Section 4 describes the optimization procedure of RDCDL.

ection 5 presents the RDCDL based classification. Section 6 con-
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ucts experiments and discusses the RDCDL with deep features.

inally, Section 7 concludes the paper. 

. Brief review of related works 

.1. SRC and ESRC 

Wright et al. [5] proposed the sparse representation based clas-

ification (SRC) method for robust face recognition. Suppose that

here are N classes of subjects. Let A = [ A 1 , A 2 , . . . , A N ] be the set

f training samples, where A i is the subset of the training samples

rom the i -th class. Denote by y a testing sample. We can sparsely

ode y over A . In this case, the coding coefficient can be got by

olving the following equation: 

ˆ = arg min 

α

{‖ 

y − Aα‖ 

2 
2 + λ‖ 

α‖ 1 

}
, (1) 

here λ is a scalar constant, ˆ α = [ ̂  α1 ; ˆ α2 ; . . . ; ˆ αN ] . The reconstruc-

ion error of each class is represented as follows: 

 i = 

∥∥y − A i ̂  αi 

∥∥
2 
, (2) 

here ˆ αi is the coefficient vector associated with the i -th class.

RC utilizes the reconstruction error e i associated with each class

o do classification. The classification is defined as follows: 

dentity (y) = arg min 

i 
{ e i } (3) 

Deng et al. [25] proposed ESRC to deal with occlusions by con-

tructing an intra-class variant dictionary D shared by different

ubjects. In ESRC, a testing sample y can be sparsely coded over

 and D . In this case, the coding coefficient can be got by solving

he following equation: 

ˆ x 
ˆ β

]
= arg min 

x , β

{ ∥∥∥∥y − [ A , D ] 

[
x 
β

]∥∥∥∥
2 

2 

+ λ

∥∥∥∥
[

x 
β

]∥∥∥∥
1 

} 

, (4) 

here x and ˆ x are the coding coefficients of y over A , β and 

ˆ β
re the coding coefficients of y over D . The reconstruction error of

ach class is represented as follows: 

 i = 

∥∥∥∥y − [ A , D ] 

[
δi ( ̂  x ) 

ˆ β

]∥∥∥∥
2 

, (5) 

here δi ( ̂  x ) is a new vector whose only nonzero entries are the

ntries in ˆ x which are associated with the i -th class. The criterion

f classification is Eq. (3) . 

.2. Hybrid dictionary learning 

Recently, hybrid dictionary learning [12,13,25,27] , which com-

ines the class-specific dictionary with the class-shared dictionary,

ecomes popular in the dictionary learning based pattern classifi-

ation. For instance, Kong et al. [12] proposed dictionary learning

ith commonality and particularity (COPAR) which learned a hy-

rid dictionary by introducing an incoherence penalty term to the

ybrid dictionary. 

Suppose that there are N classes of subjects. Let A =
 A 1 , A 2 , . . . , A N ] is the set of training samples, where A j ( j =
 , . . . , N) is the subset of the training samples from the j -th class

nd a training sample a i belongs the j -th class indexed by i ∈ χ j .

OPAR learned a hybrid dictionary D = [ D 1 , D 2 , . . . , D N , D N+1 ] ,

here [ D 1 , D 2 , . . . , D N ] is the class-specific dictionary, D N+1 is the

lass-shared dictionary. The learned D should well represent ev-

ry sample a i as a i ≈ D θi , where θi = [ θ1 
i 
; θ2 

i 
; . . . ; θN 

i 
; θN+1 

i 
] , θ j 

i 
( j =

 , . . . , N) is the coding coefficient of a i over D j , θ
N+1 
i 

is the cod-

ng coefficient of a i over D N+1 . The incoherence term ψ( D k , D l ) =

�

 D 

T 
k 

D l ‖ 2 F 
( k � = l ) is introduced to the hybrid dictionary. The COPAR

odel [12] is written as follows: 

in 

D 

N ∑ 

j=1 

∑ 

i ∈ χ j 

{ ∥∥a i − D θi 

∥∥2 

2 
+ λ

∥∥θi 

∥∥
1 

+ 

∥∥a i − D j θ
j 
i 
− D N+1 θ

N+1 
i 

∥∥2 

2 

} 

+ η
N+1 ∑ 

k =1 

N+1 ∑ 

l=1 ,k � = l 
ψ( D k , D l ) , (6) 

here λ and η are scalar constants. 

The hybrid dictionary learning methods only learn the class-

pecific dictionary and the class-shared dictionary, which can well

epresent the commonality and particularity of data. However, the

isturbance part of data, such as noise, outliers and occlusion, is

eglected in these models. 

. Model of robust, discriminative and comprehensive 

ictionary learning 

In order to improve the performance of previous dictionary

earning methods, we propose a new robust, discriminative and

omprehensive dictionary learning (RDCDL) model. Suppose that

here are N classes of subjects. The RDCDL model learns the com-

rehensive dictionary D . including a class-shared dictionary D c , a

lass-specific dictionary [ D 1 , D 2 , . . . , D N ] and two disturbance dic-

ionaries D b (i.e., the simulated disturbance dictionary) and D p (i.e.,

he real disturbance dictionary). The class-shared dictionary can

epresent all classes of data. The class-specific dictionary can only

epresent the particularity of data from a certain class, so that

he high-performance class-specific representation residual can be

sed as the criterion of classification. The disturbance dictionary

an represent the disturbance components (e.g., noise, outliers and

cclusion) of data. Although the disturbance components have no

irect contribution to the final classification, they are very impor-

ant to the representation of facial images, which has close rela-

ion with the final classification. For instance, when the facial oc-

lusion component is represented on the class-shared dictionary

nd the class-specific dictionary, the representation coefficients as-

ociated to these two kinds of dictionaries will be destroyed since

hey cannot well recover the identity of the query face image.

n the ideal case, a clean face image without disturbances is ex-

ected to be only represented on the class-shared dictionary and

he class-specific dictionary, so that the identity of the query face

mage can be well recovered based on the representation coeffi-

ients. However, in the practical face recognition, there are vari-

us disturbances (e.g., noise, lighting changes, expression changes,

cclusion, etc.) happened in the query face images. To make the

lass-shared dictionary and the class-specific dictionary only rep-

esent the clean face components, in this paper, two kinds of dis-

urbance dictionaries are introduced to be learned jointly with the

ther two kinds of dictionaries. 

.1. Extraction of real variation for D p 

Denote by A = [ A 1 , A 2 , . . . , A N ] ∈ � 

d×S the set of training sam-

les, where A i ∈ � 

d×S i ( S = 

∑ N 
i =1 S i ) is the training samples from

he i -th class. Denote by G = [ G 1 , G 2 , . . . , G L ] ∈ � 

d×T ( L ≤ N ) the set

f generic subject samples, the subjects of G are all different from

he subjects of A . We use the matrix low rank decomposition

29] method to extract the disturbance components (e.g., noise,

utliers, and occlusion) from each class images of G . Here, we sup-

ose that the disturbance component only accounts for a small

art of the image feature, i.e., the sparse component of the image.

e take G j ∈ � 

d×T j ( T = 

∑ L 
i =1 T j ) as an example, G j is decomposed

s follows: 

in 

j , E j 
rank 

(
� j 

)
+ γ

∥∥E j 

∥∥
0 

s.t. G j = � j + E j , (7) 
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Fig. 1. The images of G j , �j and E j . (a) The images of G j . (b) The images of �j . (c) The images of E j . 

Fig. 2. The left two images are the original training samples, the right two images 

are the alternative training samples by corrupting the left two images using the Salt 

& Pepper noise. 
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Fig. 3. The left two images are the original training samples, the right two images 

are the alternative training samples by occluding the left two images using the ran- 

dom square block occlusion. 

Fig. 4. The left two images are the original training samples, the right two images 

are the alternative training samples by mirroring the left two images. 
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where γ > 0 is a scalar constant that trades off the rank of the

solution versus the sparsity of the error, �j represents the approx-

imate clear images of G j , while E j ∈ � 

d×T j ( T = 

∑ L 
j=1 T j ) represents

the disturbance components (e.g., noise, outliers, and occlusion) of

G j . Denote by E = [ E 1 , E 2 , . . . , E L ] ∈ � 

d×T the set of the disturbance

components. Fig. 1 shows the images of G j , �j and E j . 

3.2. Generation of simulated variation for D b 

Denote by Z = [ Z 1 , Z 2 , . . . , Z N ] ∈ � 

d×S the set of alternative

training samples with simulated facial variation. The alternative

training samples Z i ∈ � 

d×S i ( S = 

∑ N 
i =1 S i ) has the same size and

structure as the original training samples A i . In order to make the

learned dictionary robust to the variations of facial poses and ex-

pressions, illuminations and disguises of the same person, we ob-

tain Z by using a special scheme. In this paper, the procedures to

generate the alternative training samples are presented as follows:

1] We take the corrupted images of original training samples as

the alternative training samples by using the Matlab function

"imnoise" on the original face images. We can obtain the alter-

native training samples by corrupting the original face images

by using salt & pepper noise. For example, a 

′ = imnoise( a , ‘salt

& pepper’, 0.2 ), where a and a 

′ are the original face image and

the alternative training sample, respectively, and 0.2 is the den-

sity of noise. Fig. 2 shows the original training samples and the

alternative training samples. 

2] We use the original training samples with the random square

block occlusion (i.e., the location and size of the block is ran-

dom) as the alternative training samples. The gray values of the
random square block occlusion are set as 0. Fig. 3 shows the

original training samples and the alternative training samples. 

3] We use the mirror face images of original training samples as

the alternative training samples. For a original training image a ,

its mirror face image is defined as follows: 

a 

∗( i, j ) = a ( i, r − j + 1 ) , (i = 1 , . . . , q ; j = 1 , . . . , r) , (8)

here q and r are the numbers of the rows and columns of the

ace image matrix, respectively. a ( i, j ) and a 

∗( i, j ) represent the pix-

ls located in the i -th row and j -th column of a and a 

∗, respec-

ively. Fig. 4 shows the original training samples and the alterna-

ive training samples. 

.3. RDCDL model 

Here, we denote C = [ C 1 , C 2 , . . . , C N ] ∈ � 

K c ×S , X =
 X 1 , X 2 , · · · , X N ] ∈ � 

K×S , B = [ B 1 , B 2 , . . . , B N ] ∈ � 

K b ×S , and

 = [ P 1 , P 2 , . . . , P L ] ∈ � 

K p ×T . For the comprehensive dictionary

 = [ D c , D 1 , D 2 , . . . , D N , D b , D p ] ∈ � 

d×( K c + K+ K b + K p ) , we propose the
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DCDL model: 

 ( D,C,X,B,P ) 

= arg min 

D,C,X,B,P 

N ∑ 

i =1 

⎡ 

⎢ ⎢ ⎣ 

∥∥∥∥A i − D c C i − D i X 

i 
i 
−

N ∑ 

j =1 , j � = i 
D j X 

j 
i 

∥∥∥∥
2 

F 

+ λ1 

∥∥Z i − D c C i − D i X 

i 
i 
− D b B i 

∥∥2 

F + λ2 ( ‖ 

C i ‖ 1 + ‖ 

X i ‖ 1 + ‖ 

B i ‖ 1 ) + λ3 φ( X i ) 

⎤ 

⎥ ⎥ ⎦ 

+ 

L ∑ 

j=1 

(∥∥E j − D p P j 
∥∥2 

F 
+ λ2 

∥∥P j 
∥∥

1 

)
+ λ4 ϕ ( D ) , (9) 

here λ1 , λ2 , λ3 and λ4 are scalar parameters, X 

i 
i 

is the coding co-

fficient matrix of A i over the dictionary D i , X 

j 
i 

is the coding co-

fficient matrix of A i over the dictionary D j . In Eq. (9) , C i ∈ � 

K c ×S i 

nd X i ∈ � 

K×S i ( S = 

∑ N 
i =1 S i ) are the coding coefficient matrices of

 i over the dictionary D c ∈ � 

d×K c and the dictionary [ D 1 , D 2 , ���,

 N ] ∈ � 

d × K , respectively. B i ∈ � 

K b ×S i ( S = 

∑ N 
i =1 S i ) is the coding co-

fficient matrix of Z i over the simulated disturbance dictionary

 b ∈ � 

d×K b , while P j ∈ � 

K p ×T j ( T = 

∑ L 
j=1 T j ) is the coding coefficient

atrix of E j over the real disturbance dictionary D p ∈ � 

d×K p . φ( X i )

s the representation coefficient discrimination constraint term and

( D ) is the dictionary discrimination constraint term. 

For the i -th class, X i = [ X 

1 
i 
; X 

2 
i 
; . . . ; X 

N 
i 

] ∈ � 

K×S i is the coding co-

fficient matrix of A i over the dictionary [ D 1 , D 2 , . . . , D N ] , where

 

i 
i 

∈ � 

K i ×S i ( K = 

∑ N 
i =1 K i ) is the coding coefficient matrix of A i over

he dictionary D i . In order to improve the classification capabil-

ty of the representation coefficient, we require that A i should be

nly represented over D i and not be represented over the other

lass-special sub-dictionaries, i.e., X 

j 
i 

= 0 ( i � = j ). Therefore the term
 

j � = i D j X 

j 
i 

will be eliminated. 

For the alternative training samples Z i generated by using ways

escribed in Section 3.2 , we require that the representation coeffi-

ients of Z i over D c and D i are the same to those of A i over D c and

 i . For instance, the representation coefficients of Z i over D c and D i 

nd the representation coefficients of A i over D c and D i are C i and

 

i 
i 
, respectively. This requirement will protect the representation

oefficients of the clean facial components over D c and D i , with

he simulated disturbance components represented by the simu-

ated disturbance dictionary D b . 

.4. Discriminative regularization of φ( X i ) and ϕ( D ) 

At the same time, we also require that the within-class scatter

f the representation coefficients X 

i 
i 

should be small, i.e., the rep-

esentation coefficients of data from the same class over the class-

pecial sub-dictionary should be similar. Thus, the discrimination

onstraint of X i can be defined as: 

( X i ) = 

∥∥X 

i 
i − M i 

∥∥2 

F 
, (10) 

here M i is the coefficient mean value matrix, each column of M i 

s the column mean vector of the representation coefficient ma-

rix X 

i 
i 
. Because the sparse constraint on X 

j 
i 

( i � = j ) results in X 

j 
i 

= 0 ,

ere, we do not show X 

j 
i 

= 0 . 

In order to improve the discriminative capability of the dic-

ionary, the coherence among the different class-special sub-

ictionaries should be very small, i.e., ‖ D i 
T D j ‖ 2 F 

is small for i � = j ,

 D b 
T D i ‖ 2 F and ‖ D p 

T D i ‖ 2 F are also small. Therefore the dictionary

iscrimination constraint term is designed as follows: 

(D ) = 

N ∑ 

i =1 

N ∑ 

j =1 , j � = i 

∥∥D j 
T D i 

∥∥2 

F 
+ 

N ∑ 

i =1 

(∥∥D b 
T D i 

∥∥2 

F 
+ 

∥∥D p 
T D i 

∥∥2 

F 

)
(11) 
By incorporating Eqs. (10) and (11) into Eq. (9) and the discrim-

nation representation coefficient constraint X 

j 
i 

= 0 , ∀ i � = j , we have

he RDCDL model: 

 ( D,C,X,B,P ) 

= arg min 
D,C,X,B,P 

N ∑ 

i =1 

⎡ 

⎢ ⎢ ⎣ 

∥∥A i − D c C i − D i X 

i 
i 

∥∥2 

F 
+ λ1 

∥∥Z i − D c C i − D i X 

i 
i 
− D b B i 

∥∥2 

F 

+ λ2 

(‖ C i ‖ 1 + 

∥∥X 

i 
i 

∥∥
1 

+ ‖ B i ‖ 1 
)

+ λ3 

∥∥X 

i 
i 
− M i 

∥∥2 

F 

+ λ4 

(
N ∑ 

j =1 , j � = i 

∥∥D j 
T D i 

∥∥2 

F 
+ 

(∥∥D b 
T D i 

∥∥2 

F 
+ 

∥∥D p 
T D i 

∥∥2 

F 

))
⎤ 

⎥ ⎥ ⎦ 

+ 

L ∑ 

j=1 

(∥∥E j − D p P j 
∥∥2 

F 
+ λ2 

∥∥P j 
∥∥

1 

)
(12) 

We also require that l 2 -norm of each atom of the dictionary

 should be less than or equal to 1 (i.e., ‖ d‖ 2 
2 

≤ 1 ) to avoid the

rivial solution. Although the objective function J in Eq. (12) is not

ointly convex to ( D , C , X , B , P ), it is convex with respect to each

f D (i.e., D c , D i , D b , D p ) and ( C , X , B , P ) when the other is fixed.

hus, Eq. (12) can be solved by alternatively optimizing D and ( C ,

 , B , P ). The detailed optimization procedures are presented in

ection 4 . 

. Optimization of RDCDL 

We can solve Eq. (12) by alternatively optimizing D and ( C , X ,

 , P ): Updating ( C , X , B , P ) by fixing D ; Updating D by fixing ( C , X ,

 , P ). 

.1. Update C, X, B, P 

When D is fixed, the optimization of ( C , X , B , P ) in Eq. (12) is

he convex sparse coding problem. To simplify the optimization,

e solve C , X , B and P one by one. 

When D , C, B , P , X 

j 
j 

( j = 1 , 2 , . . . , N, j � = i ) are fixed, we can up-

ate X 

i 
i 

( i = 1 , 2 , . . . , N) atom by atom. The objective function J in

q. (12) is reduced to: 

 ( X i i ) 
= arg min 

( X i i ) 

{
Q 1 

(
X 

i 
i 

)
+ 2 τ

∥∥X 

i 
i 

∥∥
1 

}
(13) 

here Q 1 ( X 

i 
i 
) = ‖ A i − D c C i − D i X 

i 
i 
‖ 2 F + λ1 ‖ Z i − D c C i − D i X 

i 
i 
− D b B i ‖ 2 F 

 λ3 ‖ X 

i 
i 
− M i ‖ 2 F , τ = 

λ2 
2 . 

Similarly, when D , X , B , P , C j ( j = 1 , 2 , . . . , N, j � = i ) are fixed, we

an update C i ( i = 1 , 2 , . . . , N) atom by atom. When D , C , X , P , B j

 j = 1 , 2 , . . . , N, j � = i ) are fixed, we can update B i ( i = 1 , 2 , . . . , N)

tom by atom. When D , C , X , B , P i ( i = 1 , 2 , . . . , L , i � = j ) are fixed,

e can update P j ( j = 1 , 2 , . . . , L ) atom by atom. Thus, the objec-

ive function J in Eq. (12) is reduced respectively to: 

 ( C i ) = arg min 

( C i ) 
{ Q 2 ( C i ) + 2 τ‖ 

C i ‖ 1 } (14) 

 ( B i ) = arg min 

( B i ) 
{ Q 3 ( B i ) + 2 τ‖ 

B i ‖ 1 } (15) 

 ( P j ) = arg min 

( P j ) 

{
Q 4 

(
P j 
)

+ 2 τ
∥∥P j 

∥∥
1 

}
, (16) 

here Q 2 ( C i ) = ‖ A i − D c C i − D i X 

i 
i 
‖ 2 F + λ1 ‖ Z i − D c C i − D i X 

i 
i 
− D b B i ‖ 2 F ,

 3 ( B i ) = λ1 ‖ Z i − D c C i − D i X 

i 
i 
− D b B i ‖ 2 F 

, Q 4 ( P j ) = ‖ E j − D p P j ‖ 2 F 
. The

terative projection method (IPM) [30] can be used to solve

qs. (13) – (16) . For instance, the IPM algorithm to solve the prob-

em of J ( X i ) = arg min ( X i ) 
{ Q( X i ) + 2 τ‖ X i ‖ 1 } is shown in Table 1 . 

.2. Update D 

When the coding coefficients C , X , B and P are learned, the op-

imization to D (i.e., updating D i , D c , D b and D p one by one) in

q. (12) is convex. Therefore in this section, we update D i , D c , D b 

nd D p one by one when the other three dictionaries are fixed. 
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Table 1 

The update of representation coefficients in RDCDL. 

Algorithm of updating representation coefficients in RDCDL 

1. Input: σ , τ > 0. 

2. Initialize: ˜ X (1) 
i 

= 0 and s = 1 . 

3. While convergence or the maximal iteration number is not reached do 

s = s + 1 

˜ X (s ) 
i 

= �τ/σ

(
˜ X (s −1) 

i 
− 1 

2 σ ∇Q( ̃  X (s −1) 
i 

) 
)

where ∇Q( ̃  X (s −1) 
i 

) is the derivative of Q ( X i ) with regard to ˜ X (s −1) 
i 

, and �τ / σ is a component-wise soft thresholding operator and defined as: 

[ �τ/σ (x ) ] j = 

{
0 | x j | ≤ τ/σ

x j − sign ( x j ) τ/σ otherwise 

4. Return ˜ X i = 

˜ X (s ) 
i 

. 
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4.2.1. Update D i 

We can update D i ( i = 1 , 2 , . . . , N) atom by atom when C , X , B ,

P , D c , D b , D p and all D j ( j = 1 , 2 , . . . , N, j � = i ) are fixed. Thus the ob-

jective function J in Eq. (12) reduced to: 

D i = arg min 

D i 

[ ∥∥A i − D c C i − D i X 

i 
i 

∥∥2 

F 
+ λ1 

∥∥Z i − D c C i − D i X 

i 
i −D b B i 

∥∥2 

F 

]

+ λ4 

[ 

N ∑ 

j =1 , j � = i 

∥∥D j 
T D i 

∥∥2 

F 
+ 

(∥∥D b 
T D i 

∥∥2 

F 
+ 

∥∥D p 
T D i 

∥∥2 

F 

)] 

(17)

Let Ā i = A i − D c C i , D −i = [ D 1 , . . . , D i −1 , D i +1 , . . . , D N ] and Z̄ i = Z i −
D c C i − D b B i , then Eq. (17) can be rewritten as: 

D i = arg min 

D i 

[ ∥∥Ā i − D i X 

i 
i 

∥∥2 

F 
+ λ1 

∥∥Z̄ i − D i X 

i 
i 

∥∥2 

F 

] 

+ λ4 

[ 

N ∑ 

j =1 , j � = i 

∥∥D j 
T D i 

∥∥2 

F 
+ 

(∥∥D b 
T D i 

∥∥2 

F 
+ 

∥∥D p 
T D i 

∥∥2 

F 

)] 

(18)

We can update D i = [ d 1 
i 
, d 2 

i 
, . . . , d 

K i 
i 

] atom by atom, where

d k 
i 

( k = 1 , 2 , . . . , K i ) is one of atoms in D i . We denote X 

i 
i 

=
[ x 1 ; x 2 ; . . . ; x K i ] ∈ � 

K i ×S i , where x k ∈ � 

1 ×S i is the k -th row of X 

i 
i 
. Let

ˆ A i = ̄A i −
∑ 

j � = k d 
j 
i 
x j and 

ˆ Z i = ̄Z i −
∑ 

j � = k d 
j 
i 
x j , then we can get: 

d 

k 
i = arg min 

d k 
i 

{ 

f 
(
d 

k 
i 

)
= 

∥∥ ˆ A i − d 

k 
i x k 

∥∥2 

F 
+ λ1 

∥∥ ˆ Z i − d 

k 
i x k 

∥∥2 

F 

+ λ4 

(∥∥∥(d 

k 
i 

)T 
D −i 

∥∥∥2 

F 
+ 

∥∥∥(d 

k 
i 

)T 
D b 

∥∥∥2 

F 
+ 

∥∥∥(d 

k 
i 

)T 
D p 

∥∥∥2 

F 

)}
(19)

Let ∂ f ( d k 
i 
) /∂ d k 

i 
= 0 , then we can obtain the updated d k 

i 
as fol-

lows: 

d 

k 
i = 

[
( 1 + λ1 ) ‖ 

x k ‖ 

2 
2 I + λ4 

(
D −i D −i 

T + D b D b 
T + D p D p 

T 
)]−1 (

ˆ A i + λ1 ̂
 Z i 

)
x k 

T (20)

As an atom of dictionary, d k 
i 

should be unitized, i.e. ˆ d k 
i 

=
d k 

i 
/ ‖ d k 

i 
‖ 2 , the corresponding coefficient should be ˆ x k = ‖ d k 

i 
‖ 2 x k .

When all d k 
i 

( k = 1 , 2 , . . . , K i ) are updated, D i is learned. With the

similar optimization strategy, all class-specific sub-dictionary D i 

( i = 1 , 2 , · · · , N) are updated. 

4.2.2. Update D c 

We can update D c atom by atom when C , X , B , P , D b , D p

and [ D 1 , D 2 , . . . , D N ] are fixed. Thus the objective function J in

Eq. (12) is reduced to: 

D c = arg min 

D c 

N ∑ 

i =1 

[ ∥∥A i − D c C i − D i X 

i 
i 

∥∥2 

F 

+ λ1 

∥∥Z i − D c C i − D i X 

i 
i − D b B i 

∥∥2 

F 

] 
(21)

Let A = [ A 1 , A 2 , . . . , A N ] , Z = [ Z 1 , Z 2 , . . . , Z N ] , B =
[ B 1 , B 2 , . . . , B N ] , W = [ D 1 X 

1 , D 2 X 

2 , . . . , D N X 

N ] , Ā = A − W ,

1 2 N 
¯
 = Z − W − D b B and C = [ C 1 , C 2 , . . . , C N ] , then Eq. (21) can be

ewritten as: 

 c = arg min 

D c 

∥∥Ā − D c C 
∥∥2 

F 
+ λ1 

∥∥Z̄ − D c C 
∥∥2 

F 
(22)

As well, we can update D c = [ d 1 c , d 
2 
c , . . . , d 

K c 
c ] atom by atom,

here d k c ( k = 1 , 2 , . . . , K c ) is one of atoms in D c . We denote C =
 t 1 ; t 2 ; . . . ; t K c ] ∈ � 

K c ×S , where t k ∈ � 

1 × S is the k -th row of C . Let

ˆ 
 = Ā − ∑ 

j � = k d 
j 
c t j and 

ˆ Z = Z̄ − ∑ 

j � = k d 
j 
c t j , then we can get: 

 

k 
c = arg min 

d k c 

{ 

g 
(
d 

k 
c 

)
= 

∥∥ ˆ A − d 

k 
c t k 

∥∥2 

F 
+ λ1 

∥∥ ˆ Z − d 

k 
c t k 

∥∥2 

F 

} 

(23)

Let ∂ g( d k c ) /∂ d 
k 
c = 0 , then we can obtain the updated d k c as fol-

ows: 

 

k 
c = 

[
( 1 + λ1 ) ‖ 

t k ‖ 

2 
2 I 
]−1 (

ˆ A + λ1 ̂
 Z 

)
t k 

T (24)

The unitization of d k c is ˆ d k c = d k c / ‖ d k c ‖ 2 with the corresponding

oefficient ˆ t k = ‖ d k c ‖ 2 t k . After all dictionary atoms in D c are up-

ated, the whole dictionary D c is learned. 

.2.3. Update D b 

We can update D b atom by atom when C , X , B , P , D c , D p

nd [ D 1 , D 2 , . . . , D N ] are fixed. Thus the objective function J in

q. (12) is reduced to: 

 b = arg min 

D b 

N ∑ 

i =1 

λ1 

∥∥Z i − D c C i − D i X 

i 
i − D b B i 

∥∥2 

F 
+ λ4 

N ∑ 

i =1 

∥∥D b 
T D i 

∥∥2 

F 

(25)

Let Z = [ Z 1 , Z 2 , . . . , Z N ] , ˜ D = [ D 1 , D 2 , . . . , D N ] , B =
 B 1 , B 2 , . . . , B N ] , W = [ D 1 X 

1 
1 , D 2 X 

2 
2 , . . . , D N X 

N 
N ] , C = [ C 1 , C 2 , . . . , C N ]

nd Z̄ = Z − W − D c C (note Z̄ here is different from Z̄ in the

pdate of D c ), then Eq. (25) can be rewritten as: 

 b = arg min 

D b 
λ1 

∥∥Z̄ − D b B 

∥∥2 

F 
+ λ4 

∥∥D b 
T ˜ D 

∥∥2 

F 
(26)

Similarly, we can update D b = [ d 1 
b 
, d 2 

b 
, . . . , d 

K b 
b 

] atom by atom,

 

k 
b 

( k = 1 , 2 , . . . , K b ) is one of atoms in D b . We denote B =
 u 1 ; u 2 ; . . . ; u K b 

] ∈ � 

K b ×S , where u k ∈ � 

1 × S is the k -th row of B . Let

ˆ 
 = Z̄ − ∑ 

j � = k d 
j 

b 
u j , then we can get: 

 

k 
b = arg min 

d k 
b 

{
h 

(
d 

k 
b 

)
= λ1 

∥∥ ˆ Z − d 

k 
b u k 

∥∥2 

F 
+ λ4 

∥∥∥(d 

k 
b 

)T 
˜ D 

∥∥∥2 

F 

}
(27)

Let ∂ h ( d k 
b 
) /∂ d k 

b 
= 0 , then the updated d k 

b 
is described as fol-

ows: 

 

k 
b = 

[
λ1 ‖ 

u k ‖ 

2 
2 I + λ4 

(
˜ D ̃

 D 

T 
)]−1 

λ1 ̂
 Z u k 

T (28)

We can unitize d k 
b 

to get ˆ d k 
b 

= d k 
b 
/ ‖ d k 

b 
‖ 2 with the corresponding

oefficient ˆ u k = ‖ d k 
b 
‖ 2 u k . After all the dictionary atoms in D b are

pdated, the whole dictionary D is learned. 
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Table 2 

Robust, discriminative and comprehensive dictionary learning algorithm. 

Robust, discriminative and comprehensive dictionary learning 

1. Initialize D = [ D c , D 1 , D 2 , . . . , D N , D b , D p ] . 

We use A i ( i = 1 , 2 , . . . , N), Z − A and E as atoms of D i , D b and D p , respectively. 

We use PCA to initialize the atoms of D c by using the set of training samples A . 

2. Update the representation coefficient C , X , B , P . 

Fix D , C, B , P, X j 
j 

( j = 1 , 2 , . . . , N, j � = i ) and update X i 
i 

( i = 1 , 2 , . . . , N) atom by atom. 

Fix D , X , B , P , C j ( j = 1 , 2 , . . . , N, j � = i ) and update C i ( i = 1 , 2 , . . . , N) atom by atom. 

Fix D , C , X , P , B j ( j = 1 , 2 , . . . , N, j � = i ) and update B i ( i = 1 , 2 , . . . , N) atom by atom. 

Fix D , C , X , B , P i ( i = 1 , 2 , . . . , L , i � = j ) and update P j ( j = 1 , 2 , . . . , L ) atom by atom. 

3. Update the dictionary D = [ D c , D 1 , D 2 , . . . , D N , D b , D p ] . 

Fix C , X , B , P , D c , D b , D p and all D j ( j = 1 , 2 , . . . , N, j � = i ) and update D i ( i = 1 , 2 , . . . , N) atom by atom. 

Fix C , X , B , P , D b , D p and [ D 1 , D 2 , . . . , D N ] and update D c atom by atom. 

Fix C , X , B , P , D c , D p and [ D 1 , D 2 , . . . , D N ] and update D b atom by atom. 

Fix C , X , B , P , D c , D b and [ D 1 , D 2 , . . . , D N ] and update D p atom by atom. 

4. Output. 

Return to step 2 until the values of J ( D, C, X, B, P ) between two adjacent iterations are closed enough, 

or the maximum number of iterations is reached. Output C , X , B , P and D . 
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Fig. 5. The flowchart of the proposed RDCDL. 
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.2.4. Update D p 

We can update D p atom by atom when C , X , B , P , D c , D b 

nd [ D 1 , D 2 , . . . , D N ] are fixed. Thus, the objective function J in

q. (12) is reduced to: 

 p = arg min 

D p 

L ∑ 

j=1 

∥∥E j − D p P j 
∥∥2 

F 
+ λ4 

N ∑ 

i =1 

∥∥D p 
T D i 

∥∥2 

F 
(29) 

Let E = [ E 1 , E 2 , . . . , E L ] , ˜ D = [ D 1 , D 2 , . . . , D N ] , P = [ P 1 , P 2 , . . . , P L ] ,

hen Eq. (29) can be rewritten as: 

 p = arg min 

D p 
‖ 

E − D p P ‖ 

2 
F + λ4 

∥∥D p 
T ˜ D 

∥∥2 

F 
(30) 

As well, we can update D p = [ d 1 p , d 
2 
p , . . . , d 

K p 
p ] atom by atom,

 

k 
p ( k = 1 , 2 , . . . , K p ) is one of atoms in D p . We denote P =
 v 1 ; v 2 ; . . . ; v K p ] ∈ � 

K p ×T , where v k ∈ � 

1 × T is the k -th row of P . Let

ˆ 
 = E − ∑ 

j � = k d 
j 
p v j , then we can get: 

 

k 
p = arg min 

d k p 

{
ρ
(
d 

k 
p 

)
= 

∥∥ ˆ E − d 

k 
p v k 

∥∥2 

F 
+ λ4 

∥∥∥(d 

k 
p 

)T 
˜ D 

∥∥∥2 

F 

}
(31) 

Let ∂ ρ( d k p ) /∂ d 
k 
p = 0 , then the updated d k p can be derived as fol-

ows: 

 

k 
p = 

[‖ 

v k ‖ 

2 
2 I + λ4 

(
˜ D ̃

 D 

T 
)]−1 

ˆ E v k T (32) 

The unitization of d k p is ˆ d k p = d k p / ‖ d k p ‖ 2 with the corresponding

oefficient ˆ v k = ‖ d k p ‖ 2 v k . After all the dictionary atoms in D p are

pdated, the whole dictionary D p is learned. 

.3. Algorithm of RDCDL 

The algorithm of RDCDL is summarized in Table 2 . Fig. 5 shows

he flowchart of RDCDL. From Fig. 5 , we can observe that there are

hree inputted data, such as labeled training data, real variation

nd samples with simulated variation. With the proposed robust,

iscriminative, and comprehensive dictionary learning, the class-

hared dictionary D c , the class-specific dictionary [ D 1 , D 2 , . . . , D N ] ,

he simulated disturbance D b and the real disturbance D p are

earned. The testing sample is sparsely represented on the com-

rehensive dictionary of D c , [ D 1 , D 2 , . . . , D N ] , D b and D p , and then

lassified to the class with minimal reconstruction error. 

In the experiments, the number of iterations is set as 10. Since

he objective function of RDCDL is lower bounded and can de-

rease in both updating dictionaries and updating coding coeffi-

ients, the algorithm of RDCDL can converge. The objective func-

ion value versus the iteration number on different face databases

s shown in Fig. 6 . 
In order to further understand the learned dictionaries, Fig. 7

hows some atoms of class-specific dictionary, atoms of class-

hared dictionary, some atoms of the simulated disturbance dic-

ionary and some atoms of the real disturbance dictionary on the

R database with 55 × 40 face images. 

.4. Time complexity 

In the proposed RDCDL algorithm, the time complexity of up-

ating the coding coefficients X is approximately 
∑ 

i S i O ( d 2 K i 
ε )

44] , where ɛ ≥ 1.2 is a constant, d is the feature dimension, K i is

he number of dictionary atoms in D i , S i is the number of training

amples from the i -th class. K = 

∑ 

i K i is the number of dictionary

toms in [ D 1 , D 2 , . . . , D N ] . S = 

∑ 

i S i is the total training samples.

he time complexity of updating the coding coefficients B is ap-

roximately 
∑ 

i S i O ( d 2 K b 
ε ) , where K b is the number of dictionary

toms in D b . The time complexity of updating the coding coeffi-

ients C is approximately 
∑ 

i S i O ( d 2 K c 
ε ) , where K c is the number of

ictionary atoms in D c . The time complexity of updating the cod-

ng coefficients P is approximately 
∑ 

j T j O ( d 2 K p 
ε ) , where T j is the

umber of disturbance components in E j , T = 

∑ 

j T j is the number

f disturbance components in E , K p is the number of dictionary

toms in D p . 
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Fig. 6. The objective function value versus the iteration number on different face databases. (a) Extended Yale B. (b) AR. (c) Multi-PIE. (d) LFW. 

Fig. 7. The learned dictionaries on the AR database. (a) Some atoms of class-specific dictionary. (b) Atoms of class-shared dictionary. (c) Some atoms of the simulated 

disturbance dictionary D b . (d) Some atoms of the real disturbance dictionary D p . 
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Table 3 

The recognition rates (%) and computing time for training 

dictionaries and classifying a testing sample on the Extended 

Yale B database. 

Algorithm 100 130 150 TrT (s) TtT (s) 

SVM 30.2 31.1 31.3 – 7.8e–5 

SRC[5] 81.7 84.6 85.1 – 5.9e–3 

CRC[43] 79.4 84.2 83.6 – 3.4e–4 

DKSVD[10] 71.5 71.8 72.9 13.0 3.9e–3 

LCKSVD[11] 69.8 70.9 71.2 6.7 9.6e–4 

COPAR[12] 81.6 86.3 85.8 7.5 3.5e–4 

FDDL[21] 82.8 85.2 85.2 16.4 9.1e–3 

DLSI[20] 83.4 85.2 85.9 6.6 4.3e–3 

LDL[42] 83.8 84.9 84.7 2.7 3.1e–3 

ESRC[25] 85.9 87.9 88.2 – 6.1e–3 

RDCDL 91.6 91.6 92.4 4.7 7.1e–3 
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The time complexity of updating dictionary atoms in

 D 1 , D 2 , . . . , D N ] (i.e., Eq. (20) ) is O ( d 2 K b + d 2 K p ) + 2 O ( d 2 K ) +
O ( m d 2 ) , where D b D 

T 
b 

+ D p D 

T 
p is computed only once, D −i D 

T 
−i 

eeds compute at most twice, and m is the number of itera-

ions in conjugate gradient method [45] to solve the unknown

ictionary atom instead of computing the inverse of a ma-

rix. The time complexity of updating dictionary atoms in D c 

i.e., Eq. (24) ) is K c O ( md 2 ). The time complexity of updating

ictionary atoms in D b (i.e., Eq. (28) ) is K b O ( m d 2 ) + O ( d 2 K ) ,

here ˜ D ̃

 D 

T is computed once. The time complexity of up-

ating dictionary atoms in D p (i.e., Eq. (32) ) is K p O ( md 2 ). In

otal, the time complexity of updating all dictionary atoms is

 ( d 2 K b + d 2 K p + 3 d 2 K ) + ( K + K c + K b + K p ) O ( m d 2 ) . 

. The classification scheme 

Once the dictionary D (i.e., the comprehensive dictionary of D c ,

 D 1 , D 2 , . . . , D N ] , D b and D p ) is learned, it can be used to effec-

ively represent a testing sample y and recognize the identity of

 . According to the dictionary D , different information can be used

o perform the classification task. In SRC [5] , the original train-

ng samples are utilized as a dictionary to represent the testing

ample, and the reconstruction error associated with each class is

sed for classification. In ESRC [25] , the original training samples

nd the intra-class variation dictionary are combined into the hy-

rid dictionary to represent the testing sample, and the reconstruc-

ion error associated with each class is used for classification. In

OPAR [12] , the class-specific dictionary and the class-shared dic-

ionary are combined into the hybrid dictionary to represent the

esting sample, and the reconstruction error associated with each

lass is used for classification. The classification methods of [5, 12,

5] achieve promising performance in face recognition, so the pro-

osed RDCDL also use the similar classification method. 

After the comprehensive dictionary D =
 D c , D 1 , D 2 , . . . , D N , D b , D p ] is got, we can code a testing sam-

le y over the dictionary D . In this case, the coding coefficient can

e got by solving: 

ˆ = arg min 

α
{ ‖ 

y − [ D c , D 1 , D 2 , . . . , D N , D b , D p ] 

[ αc ;α1 ; . . . ;αN ;αb ;αp ] ‖ 

2 
2 

+ λ‖ [ αc ;α1 ; . . . ;αN ;αb ;αp ] ‖ 1 

}
, (33) 

here λ is a constant. Denote by ˆ α = [ ̂  αc ; ˆ α1 ; . . . ; ˆ αN ; ˆ αb ; ˆ αp ] . The

econstruction error of each class is represented as: 

 i = 

∥∥y − D c ̂  αc − D i ̂  αi − D b ̂  αb − D p ̂  αp 

∥∥
2 
, (34) 

here ˆ αi is the coefficient vector associated with the i -th class. The

lassification is defined as: 

dentity (y) = arg min 

i 
{ e i } (35) 

. Experimental results and discussion 

In order to well show the advantage of RDCDL, we compare it

ith SVM, SRC [5] , CRC [43] , DKSVD [10] , LCKSVD [11] , COPAR [12] ,

DDL [21] , DLSI [20] , LDL [42] and ESRC [25] algorithms by experi-

ents on the Extended Yale B [31,32] , AR [33] , Multi-PIE [34] , FRGC

38] and the aligned labeled face in the wild (LFWa) [35] . 

.1. Experimental setting 

In this section, we give the experimental details. The program-

ing environment is MATLAB R2013a, 3.40 GHz CPU and 8 G RAM.

s shown in Eq. (12) , there are four parameters (i.e., λ , λ , λ , λ )
1 2 3 4 
o be determined. λ1 controls the importance of simulated sam-

le representation, λ2 determines the sparsity of the representa-

ion coefficients, with the discrimination regularized by λ3 and λ4 .

herefore, we set the values of ( λ1 and λ2 ) and ( λ3 and λ4 ) al-

ernatively. The cross-validation method is used to select the val-

es of λ1 , λ2 , λ3 , λ4 . We select λ1 , λ4 from a small set {0.01,

.0 01, 0.0 0 01} and λ2 , λ3 from a small set {0.1, 0.05, 0.01, 0.005,

.001}. We evaluate the parameter setting on the LFW database

the experiment setting is given in Section 6.6 , the dimension of

istograms is 500). With fixed λ1 = 0.001 and λ2 = 0.05, Fig. 8 (a)

hows the recognition rates versus λ3 and λ4 . From Fig. 8 (a), it can

e seen that the recognition rate is not sensitive to the values of

3 and λ4 , and λ3 = 0.05 and λ4 = 0.0 0 01 can achieve good perfor-

ance. With fixed λ3 = 0.05 and λ4 = 0.0 0 01, Fig. 8 (b) shows the

ecognition rates versus λ1 and λ2 . From Fig. 8 (b), it can be seen

hat the recognition rate is not sensitive to the values of λ1 and

2 , and λ1 = 0.001 and λ2 = 0.05 can achieve good performance.

n the experiment, for convenience, if no specific instruction is

iven, the parameters are fixed as λ1 = 0.001, λ2 = 0.05, λ3 = 0.05,

4 = 0.0 0 01 in all the experiments. With the learned dictionary,

he parameter of sparse representation is set as λ= 0.001. 

.2. Experimental results on the Extended Yale b database 

The Extended Yale B database consists of 2414 frontal face

mages from 38 individuals (about 64 images per subject) cap-

ured under various laboratory controlled lighting conditions. Fig. 9

hows images of one person from the Extended Yale B face

atabase. In the experiment, the size of the original face images

s 96 × 84, we select the former 32 subjects and the former 5 im-

ges per subject from subset 1 for training and the same 32 sub-

ects from subset 3 and subset 4 for testing. Because there are very

rastic illumination changes in the face images of subset 3 and

ubset 4, the alternative training samples are produced by occlud-

ng the original training samples using the random square block

cclusion, whose level is 0.2. In this test, the parameters of sparse

onstraint and discriminative representation are set as λ2 = 0.005

nd λ3 = 0.1. In order to construct the set of disturbance compo-

ents, the remainder 6 subjects from subset 5 are selected. The

isturbance components are computed by Eq. (7) . We evaluate the

ompared methods by reducing the feature dimension of images to

00, 130 and 150 via PCA. The number of dictionary atoms is the

ame as the number of original training samples. 

Table 3 shows the recognition results of the proposed algorithm

nd ten compared algorithms. In Table 3 , “TrT” and “TtT” mean the

omputing time of training dictionaries and classifying a testing

ample when the feature dimension of images is 150. From Table 3 ,

t can be seen that RDCDL achieves higher recognition rates than

he compared algorithms. ESRC achieves the second best recogni-

ion rates. The recognition rate of RDCDL is 5.7%, 3.7% and 4.2%
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Fig. 8. The recognition rates versus parameters on the LFW database. (a) The recognition rates versus λ3 and λ4 . (b) The recognition rates versus λ1 and λ2 . 

Fig. 9. The first line: images of one person from subset 1. The second line: images of one person from subset 3. The third line: images of one person from subset 4. 
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Fig. 10. The recognition rates versus the number of atoms on the Extended Yale B 

database. 
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higher than that of ESRC when the feature dimension of images

is 100, 130 and 150, respectively. RDCDL takes less training time

than all the compared algorithms except LDL. The training speed

of RDCDL is 1.4 times and 3.5 times faster than that of DLSI and

FDDL, respectively. RDCDL takes a small testing time similar to all

the compared algorithms. In order to further evaluate the perfor-

mance of the proposed algorithm, we compare it with some dictio-

nary learning algorithms such as COPAR, DLSI and LCKSVD. Fig. 10

shows the recognition rates of COPAR, DLSI, LCKSVD and RDCDL

with the different number of atoms ( K = 32 , 64 , 96 , 128 , 160 ) when

the feature dimension of images is 150. From Fig. 10 , we can see

that the recognition rate of RDCDL is much higher than that of the

compared algorithms. For example, when the number of atoms is
60, the recognition rate of RDCDL is at least 6% higher than that

f the compared algorithms. 

.3. Experimental results on the AR database 

The AR database consists of over 4,0 0 0 frontal images from 126

ndividuals. For each individual, 26 pictures were taken in two sep-

rated sessions. Fig. 11 shows images of one person from the AR

ace database. As in [5] , we choose a subset consisting of 50 male

ubjects and 50 female subjects in the experiment. The size of the

riginal face images is 165 × 120. In the experiment, we randomly

elect 90 subjects from session 1 for training and the same 90 sub-

ects from session 2 for testing. For each subject, the 7 images with

llumination and expression change from session 1 are used for

raining, the 13 images with illumination, expression change, sun-

lasses and scarf from session 2 are used for testing. Because there

re drastic illumination and expression changes in the face images

f the AR database, the alternative training samples are produced

y mirroring the original training samples. Here the parameters

f sparse constraint and discriminative representation are set as

2 = 0.005 and λ3 = 0.05. In order to construct the set of distur-

ance components, the remainder 10 subjects from session 1 are

elected. There are 13 images with illumination, expression change,

unglasses and scarf per subject in session 1. The disturbance com-

onents are computed by Eq. (7) . The number of dictionary atoms

s the same as the number of original training samples and the

eature dimension of images is reduced to 40 0, 50 0 and 600 via

CA. 

Table 4 shows the recognition results of the proposed algorithm

nd ten compared algorithms. When the feature dimension of im-

ges is 600, the computing time of training dictionaries and clas-

ifying a testing sample is also shown in Table 4 . From Table 4 , we

an see that RDCDL achieves the highest recognition rates among

ll the algorithms. The recognition of RDCDL is at least 15% higher

han that of the compared algorithms except ESRC. ESRC is the

econd best algorithm. Moreover, the recognition rate of RDCDL is

.4%, 2.0% and 1.8% higher than that of ESRC when the feature di-
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Fig. 11. The first line: images of one person from session 1. The second line: images of one person from session 2. 

Table 4 

The recognition rates (%) and computing time for train- 

ing dictionaries and classifying a testing sample on the AR 

database. 

Algorithm 400 500 600 TrT (s) TtT (s) 

SVM 38.7 38.8 38.9 – 1.2e–3 

SRC[5] 70.1 70.2 70.7 – 4.2e–2 

CRC[43] 70.1 70.3 70.7 – 1.6e–3 

DKSVD[10] 66.7 68.1 68.8 1339.4 2.3e–1 

LCKSVD[11] 67.6 69.1 69.7 21.9 2.5e–3 

COPAR[12] 66.8 67.0 67.5 464.5 1.4e–3 

FDDL[21] 71.1 70.7 71.0 993.9 4.6e–2 

DLSI[20] 71.2 71.5 71.5 258.4 4.3e–2 

LDL[42] 69.7 70.1 70.4 16.1 5.9e–2 

ESRC[25] 85.2 85.4 85.6 – 4.6e–2 

RDCDL 86.6 87.4 87.4 105.3 6.4e–2 
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Fig. 12. The recognition rates versus the number of atoms on the AR database. 
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Table 5 

The recognition rates (%) and computing time for training 

dictionaries and classifying a testing sample on the Multi-PIE 

database. 

Algorithm 210 240 270 TrT (s) TtT (s) 

SVM 55.2 55.2 55.2 – 3.3e–4 

SRC[5] 91.5 91.3 91.7 – 9.7e–3 

CRC[43] 91.5 90.5 91.7 – 6.5e–4 

DKSVD[10] 88.8 87.8 89.2 152.6 4.4e–2 

LCKSVD[11] 88.8 88.2 88.2 22.8 9.3e–4 

COPAR[12] 88.0 87.8 87.5 26.4 1.2e–3 

FDDL[21] 91.8 91.7 91.8 156.6 1.2e–2 

DLSI[20] 90.8 90.8 91.2 28.2 9.9e–3 

LDL[42] 90.8 91.0 91.3 7.2 1.1e–2 

ESRC[25] 92.3 92.2 92.5 – 1.1e–2 

RDCDL 92.5 94.2 95.7 8.6 1.2e–2 
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ension of images is 40 0, 50 0 and 60 0, respectively. RDCDL takes

ess training time than DKSVD, COPAR, FDDL and DLSI. For exam-

le, the training speed of RDCDL is 12.7 times and 9.4 times faster

han that of DKSVD and FDDL, respectively. RDCDL takes more

raining time than LCKSVD and LDL. RDCDL takes a small testing

ime similar to all the compared algorithms except DKSVD. In or-

er to test the performance of the proposed algorithm, we also

ompare it with some dictionary learning algorithms such as CO-

AR, DLSI and LCKSVD. Fig. 12 shows the recognition rates of CO-

AR, DLSI, LCKSVD and RDCDL with the different number of atoms

 K = 90 , 180 , 270 , 360 , 450 , 540 , 630 ) when the feature dimension

f images is 600. From Fig. 12 , we can see clearly that RDCDL sig-

ificantly outperforms the compared algorithms, and the recogni-

ion rate of RDCDL is more than 12% higher than that of the com-

ared algorithms when the number of atoms is from 90 to 630. 
.4. Experimental results on the Multi-PIE database 

The CMU Multi-PIE face database is a large scale database of

37 subjects including four sessions with simultaneous variations

f pose, expression and illumination. Fig. 13 shows some images

f one person from the Multi-PIE face database. Among the 337

ubjects, we choose the former 60 subjects from session 1 as the

raining set and the same subjects from session 3 as the testing

et. For each subject, we choose the 5 frontal images with illu-

ination {0, 1, 3, 4, 6} and smile expression from session 1 for

raining and the 10 frontal images with illumination {0, 2, 4, 6, 8,

0, 12, 14, 16, 18} and smile expression from session 3 for test-

ng. Due to the mild variations of illumination in the face images

f the Multi-PIE database, the alternative training samples are pro-

uced by corrupting the original training samples using the salt &

epper noise, whose density is 0.5. In order to construct the set of

isturbance components, we select 10 subjects different to the 60

raining subjects from session 1, each of these 10 subjects has the 5

rontal images with illumination {1, 3, 7, 11, 13} and smile expres-

ion. The disturbance components are computed by Eq. (7) . The

umber of dictionary atoms is the same as the number of original

raining samples and the feature dimension of images is reduced

o 210, 240 and 270 via PCA. 

Table 5 shows the recognition results of the proposed algorithm

nd ten compared algorithms. When the feature dimension of im-

ges is 270, the computing time of training dictionaries and clas-

ifying a testing sample is also shown in Table 5 . As shown in

able 5 , we can see that the recognition rate of RDCDL is higher

han that of the compared algorithms. ESRC achieves the second

est recognition rates. FDDL achieves the third best recognition

ates. The recognition rate of RDCDL is 0.7%, 2.5% and 3.9% higher

han that of FDDL when the feature dimension of images is 210,

40 and 270, respectively. What’s more, the recognition rate of RD-

DL is 2.0% and 3.2% higher than that of ESRC when the feature di-

ension of images is 240 and 270, respectively. RDCDL takes less

raining time than all the compared algorithms except LDL. The

raining speed of RDCDL is 2.7 times faster than that of LCKSVD,
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Fig. 13. Top: some images of one person from session 1. Bottom: some images of one person from session 2. 
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Fig. 14. The recognition rates versus the number of atoms on the Multi-PIE 

database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

The recognition rates (%) and computing time for training 

dictionaries and classifying a testing sample on the FRGC 

database. 

Algorithm 300 400 500 TrT (s) TtT (s) 

SVM 7.2 7.2 7.2 – 1.5e–3 

SRC[5] 25.7 25.8 26.5 – 6.0e–2 

CRC[43] 25.9 25.9 25.4 – 2.4e–3 

DKSVD[10] 16.2 19.6 20.3 2934.8 3.5e–1 

LCKSVD[11] 19.0 20.0 21.0 71.9 2.3e–3 

COPAR[12] 19.8 19.9 20.0 909.8 1.2e–3 

FDDL[21] 25.9 26.5 26.7 30 0 0.3 5.9e–2 

DLSI[20] 21.4 22.4 23.8 249.1 6.9e–2 

LDL[42] 23.0 23.4 23.8 30.4 5.2e–2 

ESRC[25] 25.2 26.0 26.2 – 6.3e–2 

RDCDL 32.9 34.2 35.9 139.8 1.6e–1 
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which is the third fastest algorithm. RDCDL takes more testing time

than all the compared algorithms except DKSVD and FDDL. The

testing time of RDCDL is equal to that of FDDL. The testing speed

of RDCDL is 3.7 times faster than that of DKSVD. Fig. 14 shows the

recognition rates of COPAR, DLSI, LCKSVD and RDCDL with the dif-

ferent number of atoms ( K = 60 , 120 , 180 , 240 , 300 ) when the fea-

ture dimension of images is 270. From Fig. 14 , it can be seen that

RDCDL outperforms the compared algorithms. 

6.5. Experimental results on the FRGC database 

In this experiment, we perform the test on the FRGC 4-th ex-

periment, which has a target set with 16,028 samples and a query

set with 8014 samples collected from 466 subjects. The samples in

the target set were captured under controlled illumination, while

the samples in the query set were captured uncontrolled illumina-

tion. Fig. 15 shows some images of one person from the FRGC face

database. We select the former 100 subjects and the former 10 im-

ages per subject from the target set for training and the same 100

subjects from the query set for testing. There are relatively dras-

tic illumination changes in the face images of the FRGC database,

so the alternative training samples are produced by occluding the

original training samples using the random square block occlu-

sion, whose level is 0.05. In order to construct the set of distur-

bance components, we directly use 10 subjects for constructing the

set of disturbance components of the experiment on the Multi-

PIE database. Each of these 10 subjects has the 10 frontal images

with illumination {0, 1, 3, 4, 6, 7, 8, 11, 13, 14} and smile expres-

sion. The disturbance components are computed by Eq. (7) . When

the feature dimension of images is reduced to 30 0, 40 0 and 50 0
ia PCA, the recognition results of the proposed algorithm and the

ompared algorithms are listed in Table 6 . 

When the feature dimension of images is 500, Table 6 also

hows the computing time of training dictionaries and classify-

ng a testing sample. From Table 6 , we can see that the recog-

ition rate of RDCDL improves at least 7% over the compared

lgorithms. RDCDL takes less training time than DKSVD, CO-

AR, FDDL and DLSI. The training speed of RDCDL is 21.0, 6.5,

1.5 and 1.8 times faster than that of DKSVD, COPAR, FDDL

nd DLSI, respectively. RDCDL takes more testing time than all

he compared algorithms except DKSVD. RDCDL takes less test-

ng time than DKSVD. The testing speed of RDCDL is 2.2 times

aster than that of DKSVD. When the feature dimension of im-

ges is 500, Fig. 16 shows the recognition rates of COPAR, DLSI,

CKSVD and RDCDL with the different number of atoms ( K =
0 0 , 20 0 , 30 0 , 40 0 , 50 0 , 60 0 , 70 0 , 80 0 , 90 0 , 10 0 0 ). From Fig. 16 , it

an be seen that the recognition rate of RDCDL is much higher

han that of the compared algorithms. When the number of atoms

s 10 0 0, the recognition rate of RDCDL is about 16%, 15% and 12%

igher than that of COPAR, LCKSVD and DLSI, respectively. 

.6. Experimental results on the LFW database 

RDCDL is evaluated on the application of face recognition in the

ild. The aligned labeled face in the wild (LFWa) is used here. LFW

s a large-scale database, which contains variations of pose, illumi-

ation, expression, misalignment and occlusion, etc. Fig. 17 shows

mages of one person from LFWa. In the experiment, 136 subjects

ith no less than 11 samples per subject are chosen, we choose

he former 100 subjects from 136 subjects. For each subject, we

hoose the former 10 images for training and the remainder im-

ges for testing. There are variations of pose and misalignment in

he face images of the LFW database, so the alternative training

amples are produced by mirroring the original training samples.

n order to construct the set of disturbance components, the re-

ainder 36 subjects from LFWa are selected. The disturbance com-

onents are computed by Eq. (7) . Histogram of Uniform-LBP is ex-

racted via dividing a face image into 10 × 8 patches. When the di-
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Fig. 15. Top: some images of one person from the target set. Bottom: some images of one person from the query set. 
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Fig. 16. The recognition rates versus the number of atoms on the FRGC database. 
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Table 7 

The recognition rates (%) and computing time for training 

dictionaries and classifying a testing sample on the LFW 

database. 

Algorithm 300 400 500 TrT (s) TtT (s) 

SVM 51.5 53.1 53.9 – 2.2e–3 

SRC[5] 67.9 70.0 70.8 – 4.0e–2 

CRC[43] 69.7 71.1 72.2 – 2.2e–3 

DKSVD[10] 61.7 64.8 67.9 654.3 2.7e–2 

LCKSVD[11] 62.4 65.1 67.3 157.1 7.2e–4 

COPAR[12] 63.1 65.6 68.6 517.9 2.2e–3 

FDDL[21] 71.8 73.3 74.1 501.8 5.2e–2 

DLSI[20] 70.7 72.8 73.6 309.3 4.9e–2 

LDL[42] 71.8 72.1 73.4 10.9 7.1e–2 

ESRC[25] 70.3 71.0 73.1 – 7.6e–2 

RDCDL 74.4 77.0 76.7 175.6 2.2e–1 
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f  
ension of histograms is reduced to 30 0, 40 0 and 50 0 via PCA,

able 7 shows the recognition results of the proposed algorithm

nd ten compared algorithms. 

When the dimension of histograms is 500, Table 7 also shows

he computing time of training dictionaries and classifying a test-

ng sample. From Table 7 , we can see that RDCDL achieves the

ighest recognition rates among all the algorithms. FDDL achieves

he second highest recognition rates. When the dimension of

istograms is 30 0, 40 0 and 50 0, the recognition rate of RD-

DL is 2.6%, 3.7% and 2.6% higher than that of FDDL, respec-

ively. RDCDL takes less training time than DKSVD, COPAR, FDDL

nd DLSI. The training speed of RDCDL is 3.7, 2.9, 2.9 and 1.8

imes faster than that of DKSVD, COPAR, FDDL and DLSI, respec-

ively. RDCDL takes more testing time than all the compared al-
Fig. 17. Images of one p
orithms. Fig. 18 shows the recognition rates of COPAR, DLSI,

CKSVD and RDCDL with the different number of atoms ( K =
0 0 , 20 0 , 30 0 , 40 0 , 50 0 , 60 0 , 70 0 , 80 0 , 90 0 , 10 0 0 ) when the dimen-

ion of histograms is 500. As shown in Fig. 18 , we can see that the

DCDL outperforms the compared algorithms. 

.7. Experimental analysis 

The above experiments show that the proposed RDCDL achieves

igher recognition rates than SVM, SRC and CRC, which directly

se the original training samples for face recognition. This clearly

emonstrates that the learned dictionaries have more discrimina-

ive ability than the original training samples. The experiments

how that the recognition rate of the proposed RDCDL is higher

han that of DKSVD, LCKSVD, COPAR, FDDL, DLSI and LDL. Although

hey all aim to learn the dictionary from the training data, the

xperiments effectively demonstrate that the proposed RDCDL has

ore power discriminative ability than them. The experiments also

how that the proposed RDCDL outperforms ESRC, which directly

ses the original training samples and the disturbance components

or face recognition. This demonstrates that the learned dictionar-
erson from LFWa. 
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Fig. 18. The recognition rates versus the number of atoms on the LFW database. 
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ies have more discriminative ability than the original training sam-

ples and the disturbance components. 

The experiments show that the proposed RDCDL takes less

training time than DKSVD, COPAR, FDDL and DLSI and slightly

more training time than LDL. Although the experiments show that

the proposed RDCDL takes more testing time than all the com-

pared algorithms except FDDL and DKSVD, the testing time of the

proposed RDCDL is less than 0.3 s, RDCDL can be applied to the

practical face recognition. 

6.8. Discussion on RDCDL with deep features 

Recently deep learning has been used to learn deep features for

the face image and achieved good performances in face recogni-

tion [51-55] . Sun et al. [51] proposed to learn the high-level deep

features called Deep hidden IDentity features (DeepID) by using

the deep convolutional neural networks for face verification. Sun

et al. [52] proposed to learn the Deep IDentification-verification

features (DeepID2) by using the well-designed deep convolutional

networks, with the human-level accuracy achieved in face recogni-

tion. Taigman et al. [53] used the identity labeled dataset of four

million facial images belonging to more than 40 0 0 identities to

train a deep network to achieve the approximate human-level per-

formance in face verification. Lu et al. [54] proposed a discrimi-

native deep metric learning method to train a deep neural net-

work for face and kinship verification in wild conditions. Li et al.

[55] proposed a distance metric optimization driven deep learning

model for age invariant face recognition, which learned features

and a distance metric simultaneously. 

Obviously the proposed RDCDL using deeps feature will possi-

bly achieve better performance in face recognition. For instance,

deep convolutional neural network features can be extracted from

the original training samples and the samples with simulated vari-

ations. The powerful deep features have more discriminative ability

for face representation, which will have better performance than

the hand-crafted features. For the extraction of real variation, one

possible way is to extract the deep features of the generic train-

ing samples first, and then to extract the deep feature matrix of

real variations via Eq. (7) . Since we mainly focus on the design of

robust classifiers, in this paper we proposed the model of RDCDL

based on the hand-craft features for face recognition. We will de-

velop the model of RDCDL with deep features in the future. 
. Conclusion 

In the paper, we propose a new robust, discriminative and

omprehensive dictionary learning (RDCDL) model. The proposed

odel uses the extracted real facial variation and the alternative

raining samples which are produced by various schemes to obtain

he robust dictionary. The proposed model has learned the dictio-

ary including class-shared dictionary atoms, class-specific dictio-

ary atoms and disturbance dictionary atoms to completely rep-

esent the commonality, particularity and disturbance components

n the data belonging to different classes. The discrimination of the

ictionary and the representation coefficients is exploited via the

esigned discriminative regularizations and it effectively improves

he classification capability of the learned dictionary. Extensive ex-

eriments on face recognition have demonstrated the effectiveness

f RDCDL to those state-of-the-art methods. The proposed RDCDL

ot only can be used for face recognition but also can be applied

o other pattern classification. In the future, we will apply RDCDL

o other pattern classification. 
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