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a b s t r a c t 

While weight sparseness-based regularization has been used to learn better deep features for image 

recognition problems, it introduced a large number of variables for optimization and can easily con- 

verge to a local optimum. The L2-norm regularization proposed for face recognition reduces the impact 

of the noisy information, while expression information is also suppressed during the regularization. A 

feature sparseness-based regularization that learns deep features with better generalization capability is 

proposed in this paper. The regularization is integrated into the loss function and optimized with a deep 

metric learning framework. Through a toy example, it is showed that a simple network with the proposed 

sparseness outperforms the one with the L2-norm regularization. Furthermore, the proposed approach 

achieved competitive performances on four publicly available datasets, i.e., FER2013, CK + , Oulu-CASIA 

and MMI. The state-of-the-art cross-database performances also justify the generalization capability of 

the proposed approach. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

With the development of human-machine interaction, FER (Fa-

ial Expression Recognition) has been popular topic in recent

ecades. As reviewed by Zeng et al. [1] , various algorithms have

een proposed to directly model the recognition of expression im-

ges. A sparse linear model with Gabor phase shifts computed

rom facial videos is proposed to learn bases of activity for FER

2] . Common features and expression-specific features were dis-

ntangled with feature selection in [3] and de-expression residue

earning [4] . For 2D FER, deep learning-based algorithms have sur-

assed the traditional methods that employ hand-crafted features

5] . However, the generalization ability of the recognition network

s still limited. The limited discriminative ability of the traditional

oftmax loss function could be one of the reasons. Overfitting due

o the large number of parameters is another problem. The gener-

lization performance can be low when the variations in the geom-

try and texture among different persons and databases are large. 

To improve the discrimination ability of the softmax loss func-

ion, a number of so-called deep metric learning approaches have

een proposed to decrease the intra-class variance and increase

he inter-class difference. Liu et al. [6] proposed the large-margin
∗ Corresponding author at: Computer Vision Institute, School of Computer Science 
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oftmax loss to improve the intersection angle θ in the represen-

ation. More examples are the center loss [7] , SphereFace [8] , lifted

tructured loss [9] and tuplet loss with hard negative mining [10] .

hile these strategies encourage accurate identification, feature

FC input) norm regularization is another way to improve the dis-

rimination ability. The study [11] has argued that enlarged || x || 2 
or correctly classified samples is beneficial to push the feature

ector away from the origin to encourage inter-class separability.

2-norm feature normalization [12,13] was employed to decrease

he influence of noise, the image resolution variation and the ex-

ression. However, the improved deep losses can increase the in-

uence of noisy samples and the possibility of overfitting. Feature

ormalization useful for face verification also eliminates the infor-

ation about the facial expressions. 

When the diversity of the expression database used for train-

ng is not large enough, deep learning is likely to result in over-

tting, and low generalization performance will occur on other

atabases. Currently, different algorithms, such as data augmenta-

ion [14] , dropout [15] , DropConnect [16] , deep salient feature ex-

raction [17] , and sparse regularization [18,19] , have been proposed

o address the overfitting to improve the network’s generalization

bility. 

Deep networks with sparseness constraints can be used to de-

rease the possibility of overfitting [19] . Sparse learning, namely,

ompressed sensing, was proposed to reconstruct the original sig-

al with sparse sampling [20] . Sparse representations are robust to

https://doi.org/10.1016/j.patcog.2019.106966
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2019.106966&domain=pdf
mailto:llshen@szu.edu.cn
https://doi.org/10.1016/j.patcog.2019.106966
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noisy samples, can decrease the redundancy and extract common

features among different databases, and can help to decrease the

computational complexity of the training, which has been stud-

ied for face recognition [21,22] . Algorithms such as discriminant

non-negative matrix factorization [23] and atlas sparse features

[24] have been applied for FER. At the same time, sparse features

are beneficial to the generalization performance [25] . Two forms

of sparsity, i.e., network weight sparsity and feature sparsity, are

often employed for generalization ability improvement. 

Some studies in the literature achieved weight sparseness by

imposing the sparseness constraint on the weight matrix W of a

deep network [25–27] . Ranzato et al. [28] imposed feature sparse-

ness constraints on both the code vector and the weight coefficient

for deep belief networks. Yan et al. [29] proposed sparse kernel

reduced-rank regression to weight the contributions of the train-

ing data samples. Yu et al. [26] added L 1 sparseness to the weight

matrix to reduce the number of nonzero weight coefficients. Liu

et al. [30] introduced sparse decomposition to largely decrease the

number of network parameters without a significant decrease in

the performance. However, a network with weight sparseness can

be considered to be an additional optimization problem, whose op-

timization variables W can have high dimension. An optimization

problem with such a large number of variables is likely to result in

the gradient vanishing problem [31] for a network with very deep

layers, and it can be trapped in a local optimum. 

The sparseness of deep features is a promising direction to

decrease the possibility of overfitting and to boost the network

generalization ability, at the cost of optimization with a relatively

smaller number of variables [32] . Ji et al. [33] studied the sparse-

ness of the hidden response in deep belief network to achieve

more powerful discriminative ability. Zou et al. [34] and Zeng et al.

[35] imposed a sparseness constraint on the hidden unit output

for autoencoder. Alam et al. [36] used dropout learning on all the

hidden units of deep simultaneous recurrent networks for FER per-

formance improvement and model size reduction. Li et al. [37] im-

posed mixed l 1 / l 2 sparseness on the activation output of each

hidden layer in deep stacking network for image classification. 

However, the hidden unit sparseness imposes a constraint

on each hidden layer [33–35,37] . As a result, a large number of

hidden units sparseness need to be optimized in the loss function,

which may largely increase the computational burden and the

possibility of stagnating to a local optimum. However, the net-

work output layers contain moderate number of variables, whose

dimensions are also independent of the network depth. Thus,

sparseness on the network output layers can be easily integrated

into deep convolutional neural network (CNN), without significant
Fig. 1. The ‘disgust’ expression of different persons in different databases. (a)–(d) the ‘d

CK + [46] , FER2013 [47] , Oulu-CASIA [48] databases, respectively. Red solid, green dashed, 

sensitive regions. (For interpretation of the references to color in this figure legend, the re
ncrease of model complexity. Meanwhile, compared with network

idden layers, the output layers determine the performance of the

iscrimination or classification models [38] . The inputs or outputs

f the last two fully connected layers are often directly used as

eature representations or are mathematically transformed for

iscrimination ability improvement. Jung et al. [39] introduced a

ne-tuning network for FER by integrating the geometry features

nto a texture feature network and fine-tuned the last two lay-

rs of the network. Liu et al. [40] used the last three FC layers

o construct the (N + M)-tuple clusters loss for FER. The studies

5,41] employed the regression loss on the FC layers to use the

nformation of face recognition network or hand-crafted features.

offe and Szegedy [42] conducted batch normalization on the FC

ayers to accelerate the network training and improve the feature

iscrimination ability by reducing the internal covariance shift.

he L 2 norm of the FC vectors was fixed in [12,13] to improve the

etwork discrimination ability. Szegedy et al. [43] suggested that

he sparseness of the FC layers can decrease the risk of overfitting

nd save on computational resources. 

Furthermore, considering that the general feature sparseness

r active patch selection of common features is beneficial to im-

rove the FER and boost the generalization ability [44] , the fea-

ure sparseness is adopted in this work by directly appending the

parseness of the FC input into the network loss function. Unlike

ropout [15] and similar algorithms, the feature sparseness is op-

imized by minimizing the proposed loss function. 

.1. Motivation 

As shown in Fig. 1 , the expression features among different per-

ons differ a large amount in the same database. The difference is

ven more significant for different databases, as shown in the 2nd

ow. The expression sensitive regions concentrate on the eyes, the

asolabial area and the mouth. An algorithm with good generaliza-

ion ability should not only identify the expression non-sensitive

egions but also emphasize a few discriminative regions for each

xpression. For example, it is more reasonable to extract the sparse

eature on the nose root and the nasolabial region for ‘disgust’

ecognition. 

The network weight sparseness is formulated as follows 

 

 

 

 

 

 

 

 

 

min L S + λ
∑ 

j 

|| W j || 2 2 , 

L S = − 1 
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N ∑ 

i =1 

log 
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T 
y i 

x i + b y i ∑ 

j 

e W 

T 
j 

x i + b j 
, 

(1)
isgust’ expression in MMI database [45] , (e)–(h) the same expression in MMI [45] , 

blue dash-dot rectangles, i.e. nose root, nasolabial and mouth denote the expression 

ader is referred to the web version of this article.) 
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Fig. 2. The data preprocessing. (a) the five landmark points. (b) the transformed 

key points for image alignment, cropping and scaling. (c) the image regions with 

different colors are cropped. 
here N is the number of samples; W, b are the weight matrix and

he bias terms between the FC layers; x i is the FC input of the i th

ample, and y i is its class label; λ is the regularization parameter;

 S is Softmax loss function. For the weight sparseness in Eq. (1) ,

he parameter space has a very high dimension. For example, when

he numbers of the neurons in the last two layers are 4096 and

096, respectively, the number of variables for the optimization of

he weight sparseness term in Eq. (1) will be larger than 1.6 × 10 7 .

owever, the optimization for adjusting a large number of param-

ters suffers from instability [32] , and there is a large possibility

f converging to a local optimum. At the same time, for a network

ith very deep layers, the gradients with respect to the network

eights for back-propagation are small [31] in the latter evolution

hen the bipolarizing probabilities are input for a softmax loss. 

Thus, a model that imposes feature sparseness directly on the

C layer input is proposed in this work to select active and com-

on components among different expression databases, which is

resented as follows 

in L S + λ
1 

N 

N ∑ 

i =1 

|| x i || 2 2 , (2)

here x i and N are the same as that in Eq. (1) . With this feature

parseness, the proposed algorithm can extract the common ex-

ression features, decrease the parameter space for optimization,

nd boost the generalization ability of the trained deep features. 

As a closely related approach to the feature sparseness, the

tudy in [12,13] revealed that the L2 norm of deep features, i.e.,

he value of the variable α in Eq. (3) , should be a large value for

erformance improvement for face recognition tasks. 

in L S , s.t. || x i || 2 = α, for i = 1 , · · · , N, (3)

here α is a hyper-parameter that determines the radius of the

arameter perturbation region, i.e. the L 2 -norm of the feature vec-

or x i . Eq. (2) is similar to the Lagrange representation of the opti-

ization (3) , i.e. L S + 

1 
N 

∑ N 
i =1 λi (|| x i || 2 2 − α2 ) , while the constraints

n the regularization terms are different. The regularization co-

fficient λ in Eq. (2) should be positive, while the introduced

egularization coefficients { λi } of the Lagrange transformation of

q. (3) should satisfy the KKT condition [49] , whose signs are

ot constrained. Compared to Eq. (2) , an additional term, i.e.
α2 

N 

∑ N 
i =1 λi , is introduced in the Lagrange representation of the

ptimization (3) . The L2-norm regularization can decrease the in-

uence of noise and the image resolution variation, which is bene-

cial for face recognition tasks. However, justified by the following

oy example and experiments, useful expression features could be

uppressed during the normalization since they can also change

he feature norm, which is not desirable for the FER problem. 

.2. Contributions 

In this work, a new framework for deep feature regularization

ased on FC input sparseness is proposed, in which the input vec-

ors of the last two FC layers are made sparse to generalize the

iscrimination ability of Wx . The feature sparseness is then solved

y deep metric learning. 

The main contribution of this work is summarized as follows: 

• A new framework of facial expression recognition (FER) is pro-

posed, where different feature sparseness strategies are embed-

ded and investigated; 
• Feature sparseness of the FC input is embedded into a deep

network to boost the feature generalization ability; 
• The deep metric learning achieved competitive recognition

rates on four benchmark expression databases. 

This paper is structured into the following sections. The pro-

osed approach is demonstrated in Section 2 , where the feature
parseness is introduced in Section 2.2 . The experimental results

nd the corresponding illustrations are demonstrated in Section 3 .

inally, the conclusions and a discussion are presented in Section 4 .

. The proposed algorithm 

In the following section, the proposed algorithm is introduced.

irst, the employed preprocessing for face alignment and augmen-

ation is introduced. Then, the proposed feature sparseness and the

orresponding optimization algorithm are demonstrated. Finally,

he employed network configurations and the fine-tuning strategy

etween different databases are introduced. 

.1. Preprocessing 

For the face alignment, the five key points are first located on

he eyes, nose and mouth tips. Then, the faces are aligned, cropped

nd scaled with the three key points presented in Fig. 2 (b). The

atabase is augmented by cropping different regions, as shown in

ig. 2 (c). 

To guarantee the similar alignment among different databases,

he face size of the CK + database is used to scale the faces in the

ther databases. In other words, the average lengths of the lines in

he blue solid triangle and the distances from the four boundaries

o the solid triangle are first recorded for the CK + database, and

hey are used to scale the corresponding lengths of the other

atabases. Then, the same margin beyond the solid triangle region

n Fig. 2 (b) is extracted as a reference to generate multiple regions

 Fig. 2 (c)). Finally, each expression image I is normalized in its

ray level and is mirrored and scaled to the size 227 × 227 for the

raining. 

.2. The feature sparseness 

To improve the generalization ability of the learned features,

he sparseness of the FC input is integrated into the framework

f deep metric learning for network training. The structure of the

roposed feature sparseness is presented in Fig. 3 together with

he hidden unit sparseness [35] and the weight sparseness struc-

ures. The key symbols employed in the proposed algorithm are

llustrated in Table 1 . 

The proposed sparseness losses of the FC features are formu-

ated as follows: 
 

 

 

 

 

 

 

L F C1 = 

1 
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p 
p (z i ) , 

L F C2 = 

1 

p 

∑ 

i 

N 

p 
p (x i ) , 

(4) 
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Table 1 

Illustration of the employed symbols. 

Name Remark Name Remark 

FC 1 The last but one FC layer FC 2 The last FC layer 

MI The layers before FC 1 CI Use fused loss in Eq. (9) 

MII Use MI output as input CII Use SoftMax loss 

L FC1 The feature loss of FC 1 L FC2 The feature loss of FC 2 

W The weights linking FC2 and the network output ( MII weight) V The weights linking FC1 and FC2 ( n FC 1 × n FC 2 -dim) 

z i The input of the i th sample of FC1 ( MI output) x i The input of the i th sample of FC2 ( x i = V T z i ) 

ϖ The weight of MI y i The expression label of z i 

Fig. 3. The hidden unit, weight and the proposed feature sparseness. V and W are 

the weight matrices linking the FC layer input with the corresponding output. z and 

x are the inputs of FC1 and FC2, respectively. 
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where N 

p 
p (z i ) denotes the p th power of the L p -norm N p (z i ) of z i ,

which is 
√ ∑ 

j z 
2 
i, j 

when p = 2 and �j | z i,j | when p = 1 . 

Fig. 3 shows that the proposed feature sparseness is largely dif-

ferent with the weight sparseness, which imposes sparseness on

the weight matrix between layers, and it is additionally different

from the hidden unit sparseness [35–37] , which imposes sparse-

ness on the hidden unit outputs of multiple layers. 

Compared with the regularization term of the weight sparse-

ness, the parameter dimension of the sparseness term in the pro-

posed algorithm is not larger than the number of neurons of FC1

(4096) and FC2 (4096), i.e., 4096 + 4096 ≈ 8 . 2 × 10 3 for the VGG

model. For the network learned using the weight V sparseness,

the parameter dimension of the sparseness term is not less than

the product of the number of neurons, i.e., 4096 × 4096 ≈ 1.6 × 10 7 ,

which is significantly larger than that of the proposed approach

and the number of training samples ( ≤ 10 5 ). 

Compared with hidden unit sparseness, the proposed loss im-

poses sparseness on the inputs of the last two FC layers, while hid-

den unit sparseness imposes constraints on the activation output

of each hidden layer [37] or the hidden layer of each sub-network

[35,36] . Thus, the proposed sparseness largely simplifies the model

complexity for sparseness optimization. 

While the feature sparseness is proposed to constrain the fea-

tures, the softmax loss is then employed to optimize the recogni-

tion accuracy. Thus, the loss function is formulated as follows: 

L = L S + λF C1 L F C1 + λF C2 L F C2 , (5)

where λFC 1 , λFC 2 are the regularization parameters, and the soft-

max loss L S is presented as follows: 

L S = −
∑ 

i 

log 
e 

W 

T 
y i 

x i 

∑ 

j e 
W 

T 
j 

x i 
= −

∑ 

i 

log 
e 

W 

T 
y i 

V T z i 

∑ 

j e 
W 

T 
j 

V T z i 
, (6)

where the network bias parameters { b j } are set to 0 in the formula

for simplification. The fusion of center loss [7] for performance im-

provement will be introduced in Section 2.3 . 
For better presentation of the algorithms implementation, the

ntire network is divided into two sub-networks, i.e., the sub-

etwork before the last but one FC layer, MI , and the sub-network

ith the last two FC layers, MII . Their loss criteria are denoted as

I and CII , respectively. 

For the network optimization by back propagation, the gradi-

nts of the loss in Eq. (5) w.r.t. the features are presented as fol-

ows: 

 

 

 

 

 

 

 

 

 

 

 

∂L 

∂z i 
= 

∂L S 

∂z i 
+ λF C1 

∂L F C1 

∂z i 
+ λF C2 V 

∂L F C2 

∂x i 
, 

∂L 

∂x i 
= 

∂L S 

∂x i 
+ λF C2 

∂L F C2 

∂x i 
, 

∂L F C1 

∂z i 
= 

{
z i p = 2 

(SIGN(z i, 1 ) , · · · , SIGN(z i,n FC1 
)) p = 1 

(7)

here SIGN ( · ) is the sign function. The derivative 
∂L F C2 
∂x i 

can be

imilarly induced. Since the Cross-Entropy function is employed for

he softmax loss L S , the partial derivatives 
∂L S 
∂x i 

, 
∂L S 
∂z i 

, 
∂L S 
∂W 

, ∂L 
∂W 

and

∂L 
∂� 

are automatically obtained by the network backward of MII

r MI . The backward computation is often embedded in the deep

earning framework, such as Caffe, which can be directly used for

he network optimization. 

With the obtained gradients in Eq. (7) , the network parameters

re iteratively updated with the optimization according to Stochas-

ic Gradient Descent (SGD), as follows: 

 

 

 

 

 

 

 

 

 

z t+1 = z t − μt 
2 

∂L 

∂z t 
, x t+1 = x t − μt 

2 

∂L 

∂x t 
, 

V 

t+1 = V 

t − μt 
2 

∂L 

∂V 

t 
, W 

t+1 = W 

t − μt 
2 

∂L 

∂W 

t 
, 

� 

t+1 = � 

t − μt 
1 

∂L 

∂� 

t 
, 

(8)

here μt 
1 
, μt 

2 
are the learning rates w.r.t. MI, MII , respectively. 

The optimization framework of the proposed feature sparseness

s illustrated in Algorithm 1 , where the implementation of the

etwork training is demonstrated. For the network optimization in

lgorithm 1 , the forward and backward operations of each model

 MI or MII ) and criterion ( CI or CII ) are used. The model forward

peration gives the output for each layer; then, the criterion for

he forward operation computes the final loss function based on

he network output; the criterion for the backward operation

btains the derivatives of the loss function w.r.t. the network

utput; finally, the model backward operation computes the

erivatives of the loss function w.r.t. the network input and the

eight parameters. 

In the following sections, the loss with the L 2 -norm ( p = 2 ) or

 1 -norm ( p = 1 ) sparsity on the input of the last FC layer is de-

oted as L2 or L1. When imposing the constraint on only the in-

ut of the FC2 layer, the regularization coefficient λFC 1 is set to 0.

hen L1 or L2 sparsity is applied to both the layers, i.e., λFC 1 � = 0,

FC 2 � = 0, the loss function is denoted as L1L1 and L2L2, respec-

ively. 
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Algorithm 1 Feature sparseness-based network training. 

1: Set the parameters λF C1 , λF C2 , MaxIter = 3 e 3 . 

2: Initialize the network parameters � of MI , the weight vector 

V and W of MII . 

3: for s = 0 , · · · , MaxIter do 

4: Perform MI forward to obtain the output z i . 

5: Perform MII forward to obtain x i and W 

T 
j 

x i . 

6: Perform CII forward to obtain the loss value L S in Eq. (6). 

7: Perform CII backward to obtain the gradient of the output, 

i.e. 
∂L S 

∂(W 

T 
j 

x i ) 
. 

8: Perform MII backward to compute the gradients, i.e., 
∂L S 
∂x i 

, 

∂L S 
∂z i 

, 
∂L S 
∂W 

and 

∂L S 
∂V 

. 

9: Perform SGD in Eq. (8) to update V, W . 

10: Perform CI forward to obtain the entire loss function L in 

Eq. (5). 

11: Perform CI backward to obtain 

∂L 
∂z i 

in Eq. (7). 

12: Perform MI backward to compute the gradients ∂L 
∂� 

of model 

MI . 

13: Perform SGD in Eq. (8) to update � . 

14: end for 

15: Output the trained network for testing. 
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Fig. 4. The structures of two networks. CoRe, CoPr denote the convolutions fol- 

lowed by the ReLU, PReLU activation functions, respectively. Pool is the Max- 

Pooling function. ResBl is a residual block with output ResOut put = PoolOut put + 

C oPr(C oPr(PoolOut put )) . FcRe denotes the module of FC layer, followd by ReLU layer. 

# Replications denotes the number of times the same block is replicated. # F ilts de- 

notes the number of feature maps. The ‘Convolution Unit Layers’ are used in Fig. 3 . 

Fig. 5. The fine tuning of models for different databases, i.e. FER2013, CK + , Oulu- 

CASIA and MMI. face_model.caffemodel and VGG_FACE.caffemodel are two CAFFE 

model trained for face recognition corresponding to networks ResNet and VGG, re- 

spectively. 
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.3. Fusion with center loss 

With the proposed feature sparseness, the center loss [7] can be

used into the proposed loss in Eq. (5) to further improve the dis-

riminant ability of the feature x i . The minimization optimization

f the fused loss is formulated as follows: 

 f use = L + λC L C , (9)

here λC is the regularization parameter of the center loss, and

he loss L C is presented as follows: 

 C = 

1 

2 

∑ 

i 

|| x i − c y i || 2 2 . (10)

here c y i denotes the y i th center vector. 

For the network optimization in Eq. (9) , the gradients of the

enter loss w.r.t. x i and z i are added into the corresponding formu-

as in Eq. (7) , which are presented as follows: 
 

 

 

 

 

∂L C 

∂x i 
= x i − c y i , 

∂L C 

∂z i 
= V 

∂ L C 
∂x i 

. 

(11) 

o implement Algorithm 1 for the optimization in Eq. (9) , the pa-

ameter λC and weight vector c j should be initialized first. At the

nd of each iteration, the centers c j should be updated using the

radient 
∂L f use 

∂c j 
[7] . 

.4. The networks and fine tuning 

Two networks, i.e., the VGG [50] and ResNet [31] with slight

odification, are used for the training and evaluation in this work.

or VGG, an additional FC layer is appended to the original net-

ork. The new VGG network employed a small convolution kernel

ize and more network layers to increase its non-linear capabil-

ty. The dropout strategy in the FC layers is removed. The modified

GG configuration is presented in Fig. 4 . 

The residual network (ResNet) appends the residual mapping F
o the identity mapping x to estimate the output H = F + x, rather

han fitting the output H directly. ResNet was reported to be able
o decrease the possibility of weight gradient vanishing when the

etwork is very deep [51] . The kernel size of the 1st convolution is

odified to 9, and the number of neurons for the last but one FC

ayer is modified for FER. The configuration of the modified ResNet

etwork is presented in Fig. 4 . 

To fully make use of the already trained models, a fine tun-

ng strategy between the databases is presented in Fig. 5 . Although

he network trained for face recognition is different from that for

ER, the learned network parameters can be used as the initializa-

ion for transfer learning. The two models are first fine-tuned using

ER2013, and then, they are further tuned for other databases. 

When applying the model trained for seven-class expressions to

 six-class problem, the weight matrix that links the last two FC

ayers was initialized and learned from scratch since the numbers

f the FC neurons are different. 

For the recognition of each testing sample, majority voting of

he probability of augmented face regions in Fig. 2 (c) is employed,

hich is presented as follows: 

abel i = arg max 
1 ≤k ≤# class 

n i ∑ 

j=1 

v i j ,k , (12)

here n i is the number of augmented faces of the i th sample with

ig. 2 (c), and v i j ,k is the k th output probability of the j th aug-

ented face. Label i is the finally assigned label of the i th testing

ample. 

. Experimental results 

A four-kernel Nvidia TITAN GPU Card and Caffe platform are

sed for the algorithm testing. For the SGD optimization of the
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Fig. 6. Example images of FER2013, CK + , Oulu-CASIA and MMI. The columns rep- 

resent expressions of An, Di, Fe, Ha, Sa, Su and Ne, respectively. 

Fig. 7. The comparison of the L2-norm regularization and the L2 sparseness. (a) 

the toy network. (b) the importance of different regions. (c)–(f) example training 

and testing ‘fear’ expressions. 
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proposed algorithm, the batch size is set to 64; the momentum

is 0.9; the coefficient λF C1 = λF C2 is set to 1e −5 for the two-layer

sparseness, and 0 for one-layer sparseness; the coefficients λFC 2 

of L2 and λFC 1 of L1 sparseness terms are 1e −5; λC is fixed to

8e −3; the base learning rate is 1e −2; the weight decay factor of

the learning rate is 5e −4; and the step size is 40 0 0. 

3.1. Databases 

The expression databases of FER2013 [47] , CK + [46] , Oulu-

CASIA [48] and MMI [45] are used for the performance evaluation.

The FER2013 database [47] consists of 35,887 grayscale face im-

ages with size 48 × 48, which are collected from the internet and

used for a challenge. The faces were labeled with one of seven cat-

egories, i.e., angry (An), disgust (Di), fear (Fe), happy (Ha), sad (Sa),

surprise (Su) and neutral (Ne). The training set consists of 28,709

examples. The public test (validation) set used for the algorithm

development consists of 3589 examples. The final test (testing) set,

which was used to determine the winner of the competition, con-

sists of another 3589 examples. 

The CK + database consists of 593 expression sequences from

123 subjects, where 327 sequences are labeled with one of seven

expressions, i.e., angry, disgust, fear, happy, sad, surprise and con-

tempt, and ‘contempt’ is not considered. Each sequence was cap-

tured when the subject changed his expression, with 1033 expres-

sion images, i.e., the neutral and three peak frames sampled from

each expression sequence were used for testing. For the testing,

415 expression sequences from 160 person identities were selected,

which was further augmented as in Fig. 2 to include 22,410 images.

The Oulu-CASIA NIR&VIS expression database [48] contains

videos of 80 subjects, and each acts with the six typical expres-

sions to generate the corresponding expression sequence. The im-

ages are captured with two imaging systems, NIR (Near Infrared)

and VIS (Visible light), under three different illumination con-

ditions, i.e., normal (strong) indoor illumination, weak illumina-

tion (only the computer display is on) and dark illumination (all

lights are off). The three peak expressions in each sequence of the

database of NIR and Strong are used, followed by a simple data

augmentation with 16 different crops for each image, to include

23,040 images. 

The MMI database [45] includes more than 20 subjects of both

genders (44% female), which range in age from 19 to 62, with ei-

ther a European, Asian, or South American ethnicity. Each expres-

sion sequence consists of a neutral expression at the beginning and

end, while the between images present one of the typical expres-

sions with different deformation intensities. Three peak frames in

each of 205 expression sequences are employed for testing, and the

augmented database includes 15,375 images. 

Example expressions of each database are presented in Fig. 6 .

The databases CK + , Oulu-CASIA and MMI are aligned using the

process shown in Fig. 2 (b) and (c). The popular employed data par-

tition strategy, i.e., ten-fold person-independent cross-validation is

conducted for the experiments. When one-fold samples are used

for the testing, the samples of the other nine folds are used for

the training, and the average of the ten-fold recognition rates is

used as the final performance. 

3.2. Performance evaluation with a toy model 

In this section, a simple network with a convolution layer and

two FC layers is designed to show the advantages of the proposed

L2 feature sparseness approach described in Eq. (2) against the L2-

norm regularization in Eq. (3) . 

For the simple network, the number of features, kernel size and

stride are 1, 9 and 2, respectively. To train the network for the

six-expression classification problem, the numbers of neurons for
he two FCs are set as 32 and 6. Fig. 7 (a) shows the 1st FC layer

nd the convolution layer connected to it. After the network was

rained using 13,500 images, a number of 150 face images with

 fear expression was used to elaborate the importance of the

earned features extracted at different facial parts for this partic-

lar expression. For the m th facial part ( PART m 

), such as the nose

oot, eyes and brows, cheek and mouth, a quantitative metric is

esigned to measure their importance for identifying the fear ex-

ression: 

espondRatio e,m 

= 

∑ 

i ∈ SET e 

∑ 

j∈ I e 
50% 

e 
∑ 

k ∈ PART m 
V j,k z i,k + b j 

∑ 

i ∈ SET e 

∑ 

j∈ I e 
50% 

e 
# PART m ∑ 
m # PART m 

V T 
j 

z i + b j 
(13)

here # PART m 

denotes the number of pixels of region PART m 

, V is

he weight matrix that connects the convolution layer and the 1st

C layer, b is the bias, z i is the i th feature map, x i is the FC2 input

f the i th sample in the set of face images with the e th feature

xpression SET e and I e 
50% 

records the top 50% components of x i , in

erms of the response value. 

For a larger quantitative value RespondRatio e,m 

, the ratio be-

ween the sum of the key response values and the sum of all of

he response values is larger. The greater the contribution of the

onsidered part to the feature representation is, the more impor-

ant the part is to the final recognition. 

Fig. 7 (b) shows the calculated metrics for the nose root,

yes and brows, cheek and mouth of the ‘fear’ expression, when

he network was trained using the L2-norm regularization and

2 sparseness. One can observe from the histogram that the
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Table 2 

The response ratios of different expressions w.r.t. different facial parts in the 

MMI database. NM and SP denote the L2-norm and L2-sparseness, respec- 

tively. 

Exp. 

Nose root Eyes and brows Cheek Mouth 

NM SP NM SP NM SP NM SP 

An. 1.03 1.08 1.11 1.14 0.54 0.49 0.85 0.84 

Di. 1.22 1.31 1.19 1.17 0.77 0.73 0.92 0.97 

Fe. 1.69 1.78 0.97 1.01 0.50 0.36 0.79 0.76 

Ha. 0.91 0.89 1.04 1.07 0.83 0.80 1.11 1.16 

Sa. 1.45 1.51 1.03 1.06 0.71 0.64 1.05 1.09 

Su. 0.96 0.91 1.10 1.18 0.79 0.75 1.07 1.1 

n  

n  

t  

t  

t  

s  

a  

i  

s  

o

3

 

F  

l  

p  

n  

s

 

E  

r  

d  

z  

T  

m  

m  

s  

i  

s  

p

 

h  

p  

t  

i  

n  

e  

t  

1  

t  

o  

t  

m  

i  

s  

i  

f

 

t  

t

t  

l  

l  

t  

p  

c  

l  

i  

a  

t  

s  

a

 

p  

m  

p  

i  

p  

t  

s  

t

 

n  

m  

u  

o  
etwork trained using L2 sparseness puts more emphasis on the

ose root, eyes and brows for ‘fear’ recognition. Because the fea-

ure trained using L2-norm regularization puts more emphasis on

he cheek and mouth with training data (e.g., Fig. 7 (c)–(e)), the fea-

ure can get easily confused when the faces with the fear expres-

ion present large variations in the mouth region (e.g., Fig. 7 (f))

nd the faces with different expressions present small differences

n the cheek region. The quantitative values of all of the six expres-

ions are presented in Table 2 , where similar findings are observed

n the Cheek, Eye and Brow regions. 

.3. Feature sparseness analysis 

In this section, different sparse models are tested using the

ER2013 database, and then, the best model is selected for the fol-

owing evaluation. Afterward, the proposed L2 sparseness is com-

ared to the hidden unit sparseness, the network weight sparse-

ess and L2-norm regularization. Finally, the proposed feature

parseness is compared to the center loss and dropout [15] . 

To see the performance of different sparse strategies in

q. (5) on the ResNet and VGG models, Table 3 demonstrates the

ecognition rates of four different sparse models for the FER2013

atabase. Center loss is not considered in this stage, i.e., λC is

ero, and the softmax loss is employed. One can observe from

able 3 that the proposed feature sparsity improves the perfor-

ance, i.e., the L2 sparseness imposed on the VGG and ResNet

odels achieves improvements of 3.2% and 2.2% over SoftMax, re-

pectively. At the same time, the best recognition rate, i.e., 71.91%,

s achieved by ResNet with the L2 sparsity. Though L1L1 achieved

imilar performance, it requires much more parameters and com-

utational complexity for gradient calculation. 
Table 3 

The recognition rates (%) of different sparsity mode

notes the loss with the L 2 -norm regularization on 

L 2 H,S and L 2 H,D denote the L 2 sparseness imposed

layers, where L 2 H,S employs the ‘same’ regularizatio

ploys the ‘divided’ coefficient, i.e. De faul t/ # l ayer. 

loss is not used. 

Model SoftMax 

Feature sparseness 

L2 L1 L2L2 L

VGG 66.84 70.08 68.18 68.04 7

ResNet 69.71 71.91 71.32 71.38 7

Table 4 

The statistical measures (%) of the Softmax an

database. 

Loss Softmax loss 

Statistical measure Sensitivity Specifici

Value 83.71 81.88 
While Sections 1 and 2.2 have shown the differences between

idden unit sparseness and the proposed feature sparseness, the

erformance of the hidden unit sparseness is further compared to

hat of the proposed feature sparseness on the FER2013 database

n Table 3 . Although hidden unit sparseness largely reduces the

umber of nonzero numbers with L 1 -norm or the number of large

lements with L 2 -norm, it introduces large number of variables in

he sparseness term. For example, the number of hidden units of

2 hidden layers in ResNet, i.e. 582,912, is significantly larger than

hat of the proposed feature sparseness, i.e. 512. Larger number

f variables in the hidden unit sparseness yields higher computa-

ional complexity and larger possibility of trapping in a local opti-

um. Although significantly smaller number of variables are used

n the proposed sparseness, the feature sparseness on the FC input

till achieves better performance than the hidden unit sparseness

n Table 3 , where improvements of 0.7% and 0.22% are observed

or VGG and ResNet, respectively. 

To statistically evaluate the performance of the proposed fea-

ure sparseness, two statistical measures, i.e. sensitivity (i.e. the

rue positive rate) and specificity (i.e. the true negative rate = 1 –

he false positive rate), proposed for two-class classification prob-

ems [52] , are employed for the comparison between the Softmax

oss and the L2-sparseness loss on the FER2013 database. To apply

he two measures for seven-class problem, an independent com-

utation of the two measures are conducted for each expression

lass, while the activation value at the dimension of ground-truth

abel after Softmax function is used as the prediction probabil-

ty of each sample. The average values [52] are used to evaluate

nd compare the performance, as presented in Table 4 . Meanwhile,

he average Receiver Operating Characteristic (ROC) curve for the

even expressions and the corresponding Area under Curve (AUC)

re demonstrated in Fig. 8 . 

Compared with Softmax loss, the larger AUC obtained by the

roposed L2-sparseness further justifies its better overall perfor-

ance over the Softmax loss, while the advantage of the pro-

osed L2-sparseness is more obvious in the case of small false pos-

tive rate. Since sensitivity and specificity measures are the balance

oints of the missed- and false-recognition rates on the ROC curve,

he better sensitivity and specificity achieved by the proposed L2-

parseness in Table 4 shows that the proposed sparseness can bet-

er balance the missed- and false-recognition rates. 

To compare the performance of the proposed L2 feature sparse-

ess with the weight sparseness, the sparseness of the weight

atrixes V, W of the last three FC layers is considered. The reg-

larization coefficient of the weight sparseness is 1e-5, and the

ther parameters are fixed as the same as the proposed L2 feature
ls for the FER2013 database. L2 (or L2L2) de- 

the FC2 input (or both FC1 and FC2 inputs). 

 on the activation output of all the hidden 

n coefficient as the default setting; L 2 H,D em- 

L 1 H,S and L 1 H,D are similarly defined. Center 

Hidden unit sparseness 

1L1 L 2 H,S L 1 H,S L 2 H,D L 1 H,D 

0.08 68.49 69.38 69.16 68.57 

1.88 71.27 71.52 71.69 71.36 

d L2-sparseness losses for the FER2013 

L2-sparseness and Softmax losses 

ty Sensitivity Specificity 

84.77 85.72 
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Fig. 8. The average ROC curves and the corresponding values of AUC. 

Table 5 

The performance (%) of the L2 feature, weight and connection pruning (c.p.) [26] based sparseness on the FER2013 

database. W -L2-c.p. denotes the connection reduction ratio for the weight matrix W with L2 sparseness. Center loss 

is not used. 

Models W -L2 V -L2 V − W -L2 W -L1-c.p. W -L2-c.p. V -L1-c.p. V -L2-c.p. L1 L2 

VGG 66.87 67.07 67.07 66.95 67.29 67.79 68.01 68.18 70.08 

ResNet 68.24 69.41 68.51 69.52 69.77 70.30 70.33 71.32 71.91 
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sparseness. The recognition rates of the two sparse models on

FER2013 are presented in Table 5 . 

The weight matrixes V, W in the weight sparseness model con-

tain 512 × 6 × 6 × 512, # classes × 512 elements, respectively, which

are significantly larger than those of the proposed feature sparse-

ness (512). The larger number of optimization parameters in the V

weight sparseness implies a larger possibility of convergence to a

local optimum. While the output probability vector used for Soft-

Max is made sparse, it has little effect on the features. In con-

trast, the proposed L2 sparseness imposes the feature sparsity di-

rectly on the FC neurons with a moderate number of variables.

Table 5 reveals that the proposed L2 sparseness significantly out-

performs the sparseness strategies of the weights W, V and both

W and V . Improvements of 3.67%, 2.5%, 3.4% with ResNet (3.21%,

3.01%, 3.01% with VGG) were observed on the FER2013 database. 

The sparseness model [26] improved the weight sparseness

by mandatory connection pruning (c.p.). For this comparison, the

weight sparseness with a 30% reduction suggested in [26] is em-

ployed for the evaluation, where a binary mask matrix is used

to set the pruned weights to zero. Although better performance

than the V -sparseness was achieved, the c.p. sparseness [26] was

mainly proposed to reduce the model size. Table 5 shows that the

feature sparseness achieved better performance than the c.p. L2

V-sparseness, and improvements of 1.58% with ResNet and 2.07%

with VGG were observed on the FER2013 database. 

As a closely related approach, the L2-norm regularization was

proposed in [12,13] to regularize the learned deep feature for face

recognition. However, as illustrated in Section 1.1 , the FER prob-

lem is different, and the strategy to keep the norm of the learned

feature constant might not be working in this case. In this test-

ing, the L2-norm regularization and L2-sparseness approaches are

compared using ResNet and FER2013. The results on the validation

and testing data are shown in Fig. 9 , where one can observe that
he L2 sparseness significantly outperforms the L2-norm regular-

zation with α being fixed to 2 or 0.5. While the self adaptive al-

orithm 

1 of the feature normalization [12,13] uses adaptive α to

mprove the network performance, the proposed sparse deep fea-

ure still achieved better performance on the testing dataset. 

Considering the difference of the L2-norm regularization and

2 sparseness for face recognition and FER, the expression fea-

ure is the perturbed information of face recognition. The studies

n [12,13] stated that feature normalization can decrease the influ-

nce of the factors that change the feature norm, such as the im-

ge resolution, for face recognition. Since the expression features

an change the feature norm, they are also suppressed during the

eature normalization. While L2 feature normalization can suppress

he expression variation and benefit face recognition, it is not de-

irable for the FER problem. However, the proposed L2 sparseness

an extract the common features among different personal identi-

ies and databases, which is beneficial to FER. 

While L2 sparseness has been shown to achieve better per-

ormance than weight sparseness and L2-norm regularization, the

roposed L2 sparse loss with the dropout strategy [15] and center

oss [7] are now further combined for performance improvement.

able 6 lists the accuracy of the ResNet and VGG networks using

ifferent combinations. Dropout with probability 0.5 was applied

o the input of the last two FC layers. The comparison between

he 4th and 6th rows (or the 5th and 8th rows, or the 1st and

nd rows) of Table 6 shows that the dropout strategy is not bene-

cial to the performance of both networks. The results in the 4th

nd 8th rows (or the 2nd and 7th rows) of Table 6 show that the

2 sparseness outperforms the dropout strategy on FER2013. One

eason is that the proposed approach made the FC input sparse

y L2 sparsity constraint, while the dropout strategy makes the
1 https://github.com/happynear/caffe-windows/blob/ . 

https://github.com/happynear/caffe-windows/blob/
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Fig. 9. The validation and testing accuracies of L2-norm regularization and L2-sparseness for the FER2013 database under different parameter settings, where 1 K = 10 0 0. 

Table 6 

The accuracy (%) for different combinations of the softmax loss 

(SoftMax), dropout, center loss (center) and feature sparseness (L2) 

on the FER2013 database. 

Id SoftMax Dropout Center L2 ResNet VGG 

1 Yes No No No 69.71 66.84 

2 Yes Yes No No 69.57 66.56 

3 Yes Yes No Yes 71.72 69.85 

4 Yes Yes Yes No 71.24 70.15 

5 Yes Yes Yes Yes 71.83 70.1 

6 Yes No Yes No 71.58 70.33 

7 Yes No No Yes 71.91 70.08 

8 Yes No Yes Yes 72.14 70.43 
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C input sparse randomly. Another reason is that the proposed L2

parseness actively selects the common features among the dif-

erent databases. While the L2 sparse loss (71.91%) achieved bet-

er performance than center loss (71.58%) for ResNet (6th and 7th

ows), its accuracy (70.08%) is slightly lower than that of center

oss (70.33%) for VGG. The combination of L2 sparseness and cen-

er loss achieved the best performance for both networks. 

.4. Results on four databases 

While the proposed L2 feature sparsity has been shown to

ive better results than other regularizations such as L2-norm

egularization, ResNet performs better than VGG on the FER2013

atabase; the performance is tested with ResNet trained using the

ombination of center loss and L2 sparseness loss ( Eq. (9) ). 

To evaluate the performance of the proposed L2 sparse loss

gainst the weight sparseness, dropout and center loss methods,

he performances of these methods on the four databases are fur-

her compared in Table 7 . Table 7 shows that ResNet with the pro-
Table 7 

The overall accuracy of ResNet with different settings on the four 

databases, where the softmax loss is used. Center and L2 denote center 

loss and the proposed L2 sparseness.E. 

Method FER2013 CK + Oulu-CASIA MMI 

SoftMax only 69.71 94.7 77.29 72.69 

W -L2 and Center 68.9 97.11 81.04 74.63 

V -L2 and Center 69.55 96.63 81.46 75.61 

Dropout and Center 71.24 95.9 80.83 77.07 

Center 71.58 96.14 78.75 74.15 

L2 71.91 97.35 82.92 77.56 

L2 and Center 72.14 97.59 82.71 78.54 
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osed L2 feature sparse loss achieved much higher accuracy than

he approach with the center loss (without using the proposed

oss), i.e., improvements of 3.96% and 4.4% are achieved for the

atabases of Oulu-CASIA and MMI, respectively. At the same time,

he proposed L2 feature sparse loss also outperforms the other

ethods, i.e., large improvements are achieved on FER2013 and

MI compared with W -L2, V -L2 weight sparseness, and on CK +
nd Oulu-CASIA compared with the dropout method. 

Tables 8–11 compare the performance and the other testing

rotocols of the proposed approach with the state-of-the-art ap-

roaches in the literature, for all of the four databases. 

For the database FER2013, the work [53] achieved the high-

st recognition rate of 75.1%. However, it requires external data

ources, i.e. social relation dataset for the bridging layer construc-

ion in the network modeling. As shown in Table 8 , the proposed

lgorithm employs only one existing network for the fine-tuning,

an easily be transferred to other databases. Though better ac-

uracy was reported, the work [14] requires a face frontalization

odule and multiple deep networks were fused. However, the pro-

osed algorithm outperforms the work [14] when the same exper-

mental setting, i.e., a single deep network, is employed. 

For the CK + database, the proposed algorithm ranked 2nd

mong the algorithms for seven-class FER. While the work

36] using randomly approximated high-dimension metric func-

ions achieved a higher recognition rate, the proposed algorithm

chieved a competitive performance of 97.59%, which is slightly

ower than the best performer [36] , i.e. 97.68%, which adopted

ecurrent hidden output sparseness and deep metric learning is

ot employed. Meanwhile, as shown in Table 9 , the proposed

lgorithm employs only one network, which has smaller model

omplexity than the work [36] that employed 11 recurrent layers

or performance improvement. The fine tuning network [39] inte-

rated the expression images and their landmarks for joint learn-

ng, which achieved the competitive performance of 97.25%. How-

ver, landmark points might not be visible for faces present in the

ild, due to pose and occlusion. 

For the Oulu-CASIA database, compared with the study [5] that

chieved the highest recognition rate, the proposed algorithm

mployed a slightly different dataset, i.e., Strong − NIR for the

raining. However, the work [5] needs to train an additional

etwork for pre-fine tuning based on a regression loss, which

ses the convolution layer feature of face recognition network to

ne-tune the feature generation of FER. The proposed algorithm

chieves an improvement of 5.42% over the baseline in Table 7 ,

hich is comparable to the improvement, i.e. 4.45% achieved

n the work [5] . The proposed algorithm achieved an accuracy
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Table 8 

Performance of different algorithms on the FER2013 databases. Symbol ‘#Net’ denotes the number of networks. 

Methods Fine tuning #Net Recog. rate (%) 

Deeper DNN 2016 [55] No fine tuning 1 66.4 

DNN with SVM 2013 [56] Fine tuning with SVM’s objective 1 71.2 

Fusing aligned faces 2016 [14] Fusing multiple networks based on aligned and frontalized databases 4 73.73 (71.86 by single DCN) 

Fusing multiple data sources 2015 [53] Using external database 2 75.1 

Ours Public face recognition models 1 72.14 

Table 9 

Performance of different algorithms on the CK + databases. Symbol ‘-’ denotes Not Reported. Symbol ‘ ∗ ’ denotes that neural is replaced with contempt expression; 

‘#C’ denotes the number of expression classes; ‘10F’ denotes 10-fold setting. 

Methods Data Fine tuning #C Sub. Proto. #Net Recog. rate (%) 

Adaptive deep metric 2017 [40] Three peak CMU Multi-pie 7 ∗ 118 10F 1 97.1 

Fine tuning 2015 [39] Temporal Geometry and texture losses 7 ∗ 106 10F 2 97.25 

Sparse autoencoders 2018 [35] Four peak – 8 123 10F 1 95.79 

Margin projection 2013 [57] The peak – 7 100 5F Non 89.2 

Radial feature 2012 [58] Five images – 7 94 10F Non 91.51 

Dropout and randomized DMLs 2018 [36] Five peak – 7 118 10F 11 recurrent layers 99.11 (97.68) 

Ours Three peak FER2013 model 7 106 10F 1 97.59 

Table 10 

Performance of different algorithms on the Oulu-CASIA databases. 

Methods Data Fine tuning #C Sub. Proto. #Net Recog. rate (%) 

AdaLBP 2011 [48] Temporal ( Strong − V IS) – 6 480 10F Non 73.54 

Fine tuning 2015 [39] Temporal ( Strong ) Geometry and texture losses 6 480 10F 2 81.46 

Spatial and temporal networks 2017 [54] Temporal ( Strong ) – 6 480 10F 1 86.25 (77.67) 

Face net regularization 2016 [5] Three peak ( Strong − V IS) Face recognition net 6 480 10F 1 87.71 

Ours Three peak ( Strong − NIR ) FER2013 model 6 480 10F 1 82.71 

Table 11 

Performance of different algorithms on the MMI databases. 

Methods Data Fine tuning #C Sequence Proto. #Net Recog. rate (%) 

Fine tuning 2015 [39] Temporal Geometry and texture losses 6 205 10F 2 70.24 

Spatial and temporal networks 2017 [54] Temporal – 6 205 10F 1 81.18 (77.05) 

AU network 2013 [59] Three peak Logistic regression 7 205 10F 1 74.76 

Deeper DNN 2016 [55] – No fine tuning 6 79 5F 1 77.6 

Multiscale active learning 2015 [44] Three peak – 6 – 10F Non 77.39 

Adaptive deep metric 2017 [40] Three peak CMU Multi-pie 6 205 10F 1 78.53 

Ours Three peak FER2013 model 6 205 10F 1 78.53 
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of 82.71%, which was approximately 5% higher than that of the

algorithm [54] where the same network, i.e. the spatial network

without fusing the temporal expression images, was employed. 

For the MMI database, the proposed algorithm achieved the

best performance among the algorithms without temporal data for

training. The proposed algorithm achieved better performance than

the algorithm in [54] when only the spatial network with static

images is employed. Compared with the study [40] that employed

adaptive deep metric for identity-aware hard negative mining, the

proposed algorithm does not use the adaptive strategies or regu-

larization parameters on the loss function, and still achieves com-

petitive performance. 

Compared with the algorithms that achieved the best perfor-

mances on the four databases in Tables 8–11 , the proposed al-

gorithm balances the performances on the four databases, i.e., it

almost ranked in the 2nd position on all of the databases. At

the same time, the proposed algorithm is tested on four popular

databases, which is different from the best algorithms tested on

one of the databases [36,53] or two of the databases [5] . More-

over, compared with the algorithm [14] fusing aligned and non-

aligned face information, the algorithm in [40] used adaptive deep

metrics on the CK + database, the algorithm in [39] fine-tuned

the network with geometry and texture information on the Oulu-

CASIA database, and the algorithm [54] used a multi-signal convo-

lutional neural network on the MMI database. The proposed algo-
 s  
ithm is easy to implement, and additional face alignments, tem-

oral expression sequences or multiple network configurations are

ot needed. 

Although the preceding comparison is not strictly fair since dif-

erent fine-tuning strategies and network models are employed,

hese results still reveal the competitiveness of the proposed al-

orithm, compared with the state-of-the-art algorithms under the

ame experimental settings. 

.5. Generalization performance 

The generalization performance of the proposed approach is

ow tested by cross-database training and testing. Table 12 shows

he accuracy when one of the four databases is used for training

nd the remaining ones are used for testing. Because the images

n database FER2013 are all collected in the wild, the accuracies

f the approach trained using other databases are relatively low.

he model trained using CK + achieved only a 39.72% accuracy on

ER2013. The highest accuracy (84.47%) is achieved for the CK +
ataset when the model was trained using the Oulu-CASIA dataset.

Tables 13 and 14 show the confusion matrixes of the approach

or the CK + database when FER2013 and Oulu-CASIA are used for

raining. Table 13 shows that the ‘Di’ expression is wrongly recog-

ized as the ‘An’ expression with a probability of 81.36%, which

uggests that the ‘Di’ expression between the database FER2013
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Table 12 

The generalization performance (%) of the proposed approach. 

Training 

Testing 

FER2013 CK + Oulu-CASIA MMI 

FER2013 – 63.86 39.79 57.07 

CK + 39.72 – 42.08 60.48 

Oulu-CASIA 54.19 84.47 – 61.46 

MMI 60.19 77.02 50.83 –

Table 13 

Confusion matrix (%) of the CK + database for the proposed approach trained on the 

FER2013 database. 

Exp. An Di Fe Ha Sa Su Ne 

An 44.44 0 20 0 13.33 0 22.22 

Di 81.36 11.86 1.69 3.39 0 0 1.69 

Fe 0 0 24 44 4 16 12 

Ha 0 0 0 100 0 0 0 

Sa 0 0 17.86 0 60.71 0 21.43 

Su 6.02 0 7.23 21.69 3.61 53.01 8.43 

Ne 0 0 0.94 2.83 0 0 96.23 

Table 14 

Confusion matrix (%) of the CK + database for the proposed 

approach trained on the Oulu-CASIA database. 

Exp. An Di Fe Ha Sa Su 

An 84.44 4.44 0 0 8.89 2.22 

Di 18.64 79.66 0 1.69 0 0 

Fe 4 0 56 20 20 0 

Ha 0 0 0 100 0 0 

Sa 42.86 3.57 0 0 50 3.57 

Su 0 2.41 1.20 1.20 0 95.18 

Table 15 

The best generalization performance (%) of different sparseness meth- 

ods. 

Testing Training W -L2 V -L2 Dropout Ours 

FER2013 MMI 54.14 54.83 55.07 60.19 

CK + Oulu-CASIA 83.81 82.17 82.52 84.47 

Oulu-CASIA MMI 51.04 49.79 48.96 50.83 

MMI Oulu-CASIA 58.53 57.56 61.46 61.46 
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ollected in the wild and the database CK + captured under con-

rolled conditions differ substantially, as demonstrated in Fig. 1 . At

he same time, for the ‘Fe’ expression, the ‘mouths’ in the FER2013

atabase are ‘open’, which are similar to the ‘Ha’ and ‘Su’ expres-

ions. However, the proposed algorithm achieves reasonable recog-

ition rates (average 77%) for the ‘Ha’, ‘Sa’, ‘Su’ and ‘Ne’ expres-

ions. In contrast to FER2013, Table 14 shows that the features

rained with the Oulu-CASIA database present more powerful gen-

ralization ability on the CK + database, and the recognition rates

f the ‘Di’ and ‘Fe’ expressions are largely improved. These promis-

ng accuracies for all of the six expressions show the good gener-

lization performance of the learned features. 

To evaluate the generalization performance against other

parseness methods, the performance of W -L2 sparseness, V -L2
Table 16 

Comparison of the cross-database performance (%). The database in the brack

Methods FER2013 CK + 

LBP 2009 [60] – –

Radial feature 2012 [58] – 54.05 (JAFFE) 

Deeper DNN 2016 [55] 34.0 (CK + & MMI) 64.2 (MMI) 

Ours 39.72 (CK + ) 60.19 (MMI) 77.02 (MMI) 84.
parseness and dropout based on center loss for each database is

ompared to that of the proposed algorithm in Table 15 . 

Table 15 shows that the proposed feature sparseness achieved

he best performance on three of the four databases and compara-

le performance on the Oulu-CASIA database, which illustrates the

ompetitive generalization ability of the proposed feature sparse-

ess. 

Table 16 compares the generalization performance of the pro-

osed approach with three state-of-the-art methods in the litera-

ure. While no cross-database results were reported in the litera-

ure for Oulu-CASIA, the proposed approach achieved significantly

etter results on the FER2013 and CK + datasets when MMI was

sed for training. The accuracies of the proposed approach are ap-

roximately 26% and 13% higher than those of the DNN proposed

n [55] on FER2013 and CK + , respectively. The accuracy of hand-

rafted LBP features is approximately 9% lower than the proposed

pproach on the MMI dataset when CK + is used for training. 

. Discussion and conclusions 

In this work, feature sparseness is embedded into deep feature

earning to boost the generalization ability of the convolutional

eural network for FER. Different from the weight sparseness and

idden unit sparseness, which introduce a large number of param-

ters in an additional optimization, the proposed algorithm im-

oses the sparseness directly on the FC layers to select common

eatures among the different persons and expression databases.

ompared with the-state-of-the-art algorithms on the public ex-

ression databases, i.e., FER2013, CK + , Oulu-CASIA and MMI, the

roposed algorithm not only improved the person-independent

ecognition performance for the same database, but also boosted

he generalization ability for cross-database recognition. 

Although competitive results are achieved by the proposed al-

orithm, there remains room for further improvement. First, be-

ause the deformation intensities of ‘An’, ‘Di’, ‘Sa’ are significantly
ets denotes the training data. 

Oulu-CASIA MMI 

– 51.1 (CK + ) 

– –

– 55.6 (CK + ) 

47 (Oulu-CASIA) 50.83 (MMI) 60.0 (CK + ) 61.46 (Oulu-CASIA) 
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smaller than those of the ‘Ha’ and ‘Su’ expressions, the generaliza-

tion performance between databases could be further improved by

considering multiscale features and multiple network fusion. Sec-

ond, two-layer sparseness can introduce three regularization pa-

rameters for the three loss terms, and a self-adaptive model should

be devised to set the best parameter values. Third, the database

was collected under controlled conditions, i.e., MMI can be aug-

mented with expression synthesis and used for the fine tuning of

the FER2013 database. Fourth, since different sparseness strategies

and regularization coefficients might be appropriate for different

databases, multiple sparseness losses can be dynamically adjusted

to customize the sparseness strategy and regularization parameter

setting for a specific database. Fifth, more insight should be placed

on the theoretical analysis of the weight sparseness and the feature

sparseness for FER. Finally, the feature sparseness will be expanded

in other applications such as handwritten character recognition. 
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