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a b s t r a c t 

For facial expression recognition, the sparseness constraints of the features or weights can improve the 

generalization ability of a deep network. However, the optimization of the hyper-parameters in fusing dif- 

ferent sparseness strategies demands much computation, when the traditional gradient-based algorithms 

are used. In this work, an iterative framework with surrogate network is proposed for the optimization 

of hyper-parameters in fusing different sparseness strategies. In each iteration, a network with signifi- 

cantly smaller model complexity is fitted to the original large network based on four Euclidean losses, 

where the hyper-parameters are optimized with heuristic optimizers. Since the surrogate network uses 

the same deep metrics and embeds the same hyper-parameters as the original network, the optimized 

hyper-parameters are then used for the training of the original deep network in the next iteration. While 

the performance of the proposed algorithm is justified with a tiny model, i.e. LeNet on the FER2013 

database, our approach achieved competitive performances on six publicly available expression datasets, 

i.e., FER2013, CK+, Oulu-CASIA, MMI, AFEW and AffectNet. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Since facial expressions play an important role in reflecting 

uman feelings, automatic facial expression recognition (FER) has 

een a popular topic in the fields of computer vision and multime- 

ia, etc. The facial action coding system [1] provides an objective 

ay to describe expressions in terms of both appearance and ge- 

metrical facial changes, which is further extended for automatic 

ER with convolutional neural networks [2] . 

However, when the expression database used for network train- 

ng is not diverse enough, the training may result in over-fitting 

nd poor generalization performance on other databases due to 

he large variations across different persons. Currently, different 

parseness regularization approaches have been proposed to ad- 

ress the overfitting to improve the network’s generalization abil- 

ty. Sparse representation, namely, compressed sensing, can not 

nly decrease the redundancy and extract common features among 

ifferent person identities [3] , but also help to decrease the com- 
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utational complexity of the training. Sparseness of weights, hid- 

en units, features and dropout were often considered. 

However, different sparseness strategies may be applicable to 

nly specific databases. Although the fusion of the metric strate- 

ies can balance the performance for different databases [4] , the 

egularization coefficient of each sparseness term should be pro- 

ided before the network training for each database. Meanwhile, 

ach sparseness strategy can introduce multiple hyper-parameters. 

or example, the dropout ratio for dropout [5] , the sparseness ra- 

io for weight pruning [6] and the set of the hidden unit layers 

elected for hidden unit sparseness, are all hyper-parameters to be 

djusted since they can yield largely different performances for dif- 

erent databases. Hyper-parameter optimization provides a solution 

f the challenge for different databases. While grid search provides 

 greedy search into the hyper-parameter space, it requires large 

ime complexity since each network training may demand much 

omputation resource. Population evolution [7] and derivative-free 

ptimization framework [8] were proposed to reduce the runtime 

ost of the grid search. Since the original network training often 

emands much runtime cost, the idea of surrogate network was in- 

roduced to approximate the computation of the original network 

nd simplify the hyper-parameter optimization. 

https://doi.org/10.1016/j.patcog.2020.107701
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2020.107701&domain=pdf
mailto:llshen@szu.edu.cn
https://doi.org/10.1016/j.patcog.2020.107701
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Regarding to the optimizers for hyper-parameter optimization 

n the surrogate network, the gradient-based solvers use the gra- 

ients of the objective function with respect to (w.r.t.) the hyper- 

arameters for the iteration. However, these gradients can not be 

nalytically solved. The discrete approximation of the gradients de- 

ands a number of network training, which requires much com- 

utation resources for even a shallow network. While a meta- 

euristic algorithm adopts greedy strategy inspired from behav- 

or patterns of creatures to approach global optimum from mul- 

iple positions of the searching region, it is a practical alterative 

or a variety of non-differentiable and non-convex problems, such 

s the optimization of the hyper-parameters in the surrogate net- 

ork. Among the meta-heuristic algorithms, differential evolution 

DE) and particle swarm optimization (PSO) optimizers [9] have at- 

racted lots of attention, since they are simple in structure, easy to 

mplement, and perform relatively well on non-differentiable and 

on-convex problems. In this work, DE and PSO are used for hyper- 

arameter optimization. 

.1. Related works 

For FER with network sparseness, the sparse weight or hid- 

en unit is achieved by imposing the sparseness constraint on the 

eight matrix W [6] or the feature maps [10] of a deep network. 

he feature sparseness constraint on the fully connected (FC) layers 

s a specific case of the hidden unit sparseness, which can largely 

ecrease the complexity of the sparseness term. For feature sparse- 

ess, the inputs or outputs of the last two FC layers or their math- 

matical transformations are often embedded in the sparseness 

osses for generalization ability improvement [11] . Dropout [5] and 

ts variants, such as weight dropout is an alternative strategy for 

he network sparseness. Alam et al. [12] used dropout learning 

n deep simultaneous recurrent networks for generalization ability 

mprovement and model size reduction in FER. 

The optimization of network hyper-parameters is usually re- 

uired to adapt various sparseness strategies to different databases. 

lievski et al. [13] used radical basis function (RBF) as the surro- 

ate of hyper-parameter optimization to reduce the complexity of 

he original network. As multiple network re-training are required 

or RBF-based surrogate fitting, Talathi [14] employed sequential 

odel-based optimization to tune the hyper-parameters of seven 

onvolution layers of a deep network. 

For these traditional surrogates without using the network 

odels, the structure of the losses in the original network is not 

reserved. As only hyper-parameters are used for the modeling of 

he validation performance, the approximation performance to the 

riginal model is limited. Network-based surrogates, such as neural 

etwork surrogate for Bayesian optimization [15] , can be used as 

he surrogate of network hyper-parameter optimization. Compared 

ith traditional surrogate, network-based surrogates can use more 

nformation like network weights and features for the mapping 

onstruction, and preserve the network structure related with the 

yper-parameters. Thus, network-based surrogates can more accu- 

ately approximate the original model computation. Eq. (1) com- 

ares the difference between the constructing formulas of the tra- 

itional and network-based surrogates. 

Traditional Surrogate: acc v = f (λ) , 

Network-based Surrogate: acc v = f (W λ, x λ) . 
(1) 

here acc v , λ and f ( · ) are the validation accuracy, network hyper- 

arameters and mapping function, and W λ and x λ are network pa- 

ameters and features relied on the hyper-parameters of λ. In this 

ork, shallow networks are deployed to surrogate the optimization 

f sparseness hyper-parameters for the original deep network. 
2 
.2. Contribution 

As the hyper-parameters tuned for training dataset may not 

ork well on different test datasets, this work proposes a new al- 

orithm to enable current deep learning approaches to dynamically 

dapt their hyper-parameters to new datasets. Meanwhile, it is re- 

ealed in the state-of-the-art studies [12,16] that FER performance 

an largely benefit from sparseness strategies, which motivates us 

o explore the optimization of the hyper-parameters in the deep 

parseness strategies for FER problem. More precisely, an iterative 

lgorithm based on a surrogate network for the optimization of 

yper-parameters in deep sparseness strategies is proposed, where 

he surrogate network shares the same loss structure as the orig- 

nal network and is used to surrogate the original network com- 

utation. The fitting of the surrogate network is embedded into 

he training of the original network based on four Euclidean losses 

ith unilateral back propagation. The hyper-parameters optimized 

ith gradient-free optimizers, i.e. DE and PSO, based on the sur- 

ogate network, are then used to compete with the previous best 

nd applied to the original network training in the next stage. The 

ain contributions of this work are summarized as follows: 

• A new iterative framework for the hyper-parameter optimiza- 

tion in deep sparseness strategies is proposed to adapt hyper- 

parameters to different databases in FER; 
• A simplified network is deployed to surrogate the original net- 

work for hyper-parameter optimization, where Euclidean losses 

with unilateral back propagation are introduced to approximate 

the original network; 
• The hyper-parameter optimization algorithm achieved com- 

petitive performances on six public benchmark expression 

databases. 

This paper is structured into the following sections. The pro- 

osed approach is demonstrated in Section 2 . The experimental 

esults and the corresponding illustrations are demonstrated in 

ection 3 . Finally, the conclusions and a discussion are presented 

n Section 4 . 

. The proposed algorithm 

The framework of the proposed algorithm is presented in Fig. 1 , 

here each round of iteration consists of two stages. In the first 

tage, the fusion network of ‘original + surrogate’ is trained indi- 

idually based on the previous or current best hyper-parameter 

ettings, and a surrogate network is fitted to the original net- 

ork simultaneously based on four Euclidean losses. Then the bet- 

er trained model is retained according to the validation perfor- 

ance. In the second stage, the surrogate network parameters in 

he retained model are then transferred onto the ‘surrogate’ net- 

ork for hyper-parameter optimization, where gradient-free op- 

imizers of DE and PSO are employed. Finally, the updated best 

yper-parameters of the surrogate network are used for the op- 

imization of ‘original+surrogate’ network in the next iteration. 

In the following sections, the proposed algorithm is introduced. 

irst, different sparseness strategies and their hyper-parameters are 

ntroduced. Second, the original and surrogate networks, together 

ith four Euclidean losses for the surrogate network fitting are 

resented. Then, two gradient-free optimizers are demonstrated. 

inally, the time complexities of the original and surrogate net- 

orks are presented. 

.1. Sparseness strategies and hyper-parameters 

In this work, four different sparseness strategies, i.e. feature 

parseness, weight sparseness, feature dropout and weight dropout 
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Fig. 1. The iterative framework of the proposed hyper-parameter optimization. The original network is trained based on the sparseness and softmax loss, where four 

Euclidean losses are employed for surrogate network fitting. The hyper-parameters are optimized with the gradient-free optimizers in the second stage and the candidate 

hyper-parameter setting X (t+1) 
i b 

is acquired for the training of fusion network in the next iteration. 

Fig. 2. Four sparseness strategies and their hyper-parameters. 
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re employed, whose hyper-parameters, together with the related 

etwork layers are presented in Fig. 2 . 

As shown in Fig. 2 , the sparseness is mainly imposed on the 

eatures and weight matrices related with the FC layers. Four reg- 

larization coefficients of the feature and weight sparseness and 

our dropout ratios are the variables to be optimized. For clar- 

ty, the key symbols employed in the proposed algorithm are pre- 

ented in Table 1 . 

The proposed sparseness losses of the FC features are formu- 

ated as follows 

 

L z = 

∑ 

i || z (i ) || 1 , 
L x = 

∑ 

i || x (i ) || 1 . (2) 
t

3 
here z ( i ) and x ( i ) are the inputs of FC1 and FC2 of the i th training

ample. || z ( i ) || 1 is the L 1 -norm of the vector z ( i ) , which is formu-

ated as 
∑ 

j | z (i ) 
j 

| . The weight sparseness is formulated as follows 

 

L W 

= 

∑ 

i 

∑ 

j || W 

(i ) 
j 

|| 1 , 
L V = 

∑ 

i 

∑ 

j || V 

(i ) 
j 

|| 1 . (3) 

here W 

(i ) 
j 

and V (i ) 
j 

are the j th column of the weight matrices of 

 and V w.r.t. the i th sample. 

While the sparseness losses are used for generalization ability 

mprovement, the softmax loss is employed to boost the recogni- 

ion accuracy. Thus, the loss function embedded with the sparse- 
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Table 1 

Illustration of the employed symbols. 

Name Remark Name Remark 

FC 1 The FC layer 1 FC 2 The FC layer 2 

W The weights linking FC2 and the network output V The weights linking FC1 and FC2 ( n FC 1 × n FC 2 -dim) 

z ( i ) The input of the i th sample of FC1 x ( i ) The input of the i th sample of FC2 ( x (i ) = V T z (i ) ) 

L Loss function y i The expression label of z ( i ) 

p x Dropout ratio of feature x λz The regularization coefficient of L z 
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ess constraints is formulated as follows 

in L = L S + λz L z + λx L x + λW 

L W 

+ λV L V . (4) 

here λz , λx , λW 

, λV are the regularization parameters, and the 

oftmax loss L S is formulated as follows 

 S = −∑ 

i log e 
W 

(i ) T 
y i 

x (i ) 

∑ 

j e 
W 

(i ) T 
j 

x (i ) 
= −∑ 

i log e 
W 

(i ) T 
y i 

V (i ) T z (i ) 

∑ 

j e 
W 

(i ) T 
j 

V (i ) T z (i ) 
, (5) 

here y i is the class label of the i th sample, the network bias pa-

ameters { b (i ) 
j 

} are set to 0 in the formula for simplification. 

For the network optimization by back propagation, the gradi- 

nts of the loss L z in Eq. (2) w.r.t. the features are presented as

ollows 

∂L z 

∂z (i ) 
= (SIGN(z (i ) 

1 
) , . . . , SIGN(z (i ) 

n FC1 
)) . (6) 

here SIGN ( · ) is the sign function. The derivatives 
∂L x 
∂x (i ) , 

∂L W 

∂W 

(i ) , 
∂L V 
∂V (i ) can be similarly induced. 

For the dropout strategies (abbreviated as D), the dropout oper- 

tors on the network features x and weights W are formulated as 

ollows 

 : 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

Feature dropout: D x 

{
r j ∼ Bernoul l i (p x ) , 

x ← x � r, 

Weight dropout: D W 

{
mask i, j ∼ Bernoul l i (p W 

) , 

W ← W � mask, 

(7) 

here � denotes element-wise product, p x and p W 

are the dropout 

atios w.r.t. feature x and weight matrix W , respectively. In the 

etwork testing stage, the FC features or connection weights are 

eighted with the probability of 1 − p x or 1 − p W 

, respectively. 

he dropout operator based on p z or p V can be similarly induced. 

Consequently, the hyper-parameters for network optimization 

re summarized as follows 

ypP araSet = (λz , λV , λx , λW 

, p z , p V , p x , p W 

) . (8)

owever, the parameter optimization based on a deep network 

emands much computation resources since the original network 

eeds to be trained multiple times. For example, finite-difference 

pproximation of the gradients w.r.t. the hyper-parameters in 

q. (8) for gradient-based optimizer or heuristic algorithms [9] re- 

uires to re-train the original network at least eight times, i.e. the 

umber of the hyper-parameters. Thus, a surrogate network is pro- 

osed to surrogate the computation of the original network. 

.2. The surrogate network and euclidean losses 

The residual network (ResNet) [17] is chosen as the deep net- 

ork in this paper, which is widely believed to well address the 

radient vanish problem of deep network. The configuration of the 

odified ResNet (M-ResNet) is presented in Fig. 3 . 

For surrogate network, the work [18] suggested that the convo- 

ution layer just before the FC layer contains the most represen- 

ative information transferred from face recognition to expression 

ecognition. Thus, the feature map size of the last convolution of 
4 
he original network is preserved in the surrogate network. Con- 

equently, the simplified network contains the same higher layers 

nd loss metrics as the original network, which can be used to sur- 

ogate the hyper-parameter optimization of the original network. 

he surrogate network is also presented in Fig. 3 . 

To fit the surrogate network to the same layers in the original 

etwork, four Euclidean losses are proposed to match the features 

nd weights of the two networks: 
 

 

 

 

 

 

 

 

 

 

 

 

 

L euclid = ηx EU(x s ) + ηz EU(z s ) + ηW 

EU(W 

s ) + ηV EU(V 

s ) 

EU(x s ) = || x o − x s || 2 , 
EU(z s ) = || z o − z s || 2 , 
EU(W 

s ) = || W 

o − W 

s || F , 
EU(V 

s ) = || V 

o − V 

s || F , 

(9) 

here ηx , ηz , ηW 

, ηV are regularization coefficients, || · || F denotes 

he Frobenius norm, x o and x s are the feature vectors of the orig- 

nal and surrogate networks, respectively. The layers related with 

he Euclidean losses are presented in Fig. 3 . 

Since the surrogate network is fitted simultaneously during the 

ptimization of the original network, whose training should not af- 

ect the training of the original network. Thus, the back propaga- 

ion of the Euclidean losses is set to be unilateral, i.e. only x s , z s ,

 

s , V 

s are treated as variables in the losses (9) , while x o , z o , W 

o ,

 

o are constant. The gradients of the Euclidean losses w.r.t. the fea- 

ures and weights, for back propagation of the surrogate network, 

re formulated as follows 
 

 

 

 

 

 

 

 

 

∂EU(x s ) 
∂x s 

= x s − x o , 

∂EU(z s ) 
∂z s 

= z s − z o , 

∂EU(W 

s ) 
∂W 

s = W 

s − W 

o , 

∂EU(V s ) 
∂V s 

= V 

s − V 

o , 

(10) 

Thus, in the 1st stage of the proposed algorithm, not only 

he original network is optimized independently with the fusion 

parseness losses, but also a surrogate network is fitted to the orig- 

nal network based on the four Euclidean losses in Eq. (9) . After 

he fitting of the surrogate network, the hyper-parameters are opti- 

ized with a largely simplified surrogate network in the 2nd stage, 

hich are further used to compete with the previous best and ap- 

lied for the training of the original network in the next iteration. 

However, regarding to the grid search of eight hyper-parameters 

ith step size of 0.1 in the range of [0,1], it will demand about 10 8 

rials of network training to obtain the best parameter configura- 

ion, which is a great burden for even a simplified surrogate net- 

ork. Thus, heuristic algorithms are used for the hyper-parameter 

ptimization in the surrogate network. 

.3. Heuristic hyper-parameter optimization 

For heuristic optimizers, the objective function for hyper- 

arameter performance evaluation is a main concern. For the opti- 

ization of hyper-parameters in deep losses, the objective function 

hould reflect the generalization ability of the trained model. Cur- 

ent cross-domain and cross-database metric functions are the can- 

idate objective functions. In this work, the fusion of the L and L 
1 2 
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Fig. 3. The configuration of ‘original+surrogate’ network. CoPr denotes the convolutions followed by the PReLU activation function. Pool is the MaxPooling function. ResBl is 

a residual block with output ResOut put = PoolOut put + CoPr(CoPr(PoolOut put )) . # Replicat ions denotes the times that the same block is replicated. # F ilts denotes the number 

of feature maps. # class denotes the number of expression classes. 
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eature sparseness [19] , i.e. L 1 based sparseness and L 2 based nor- 

alization, is employed as the objective function and formulated 

s follows 

b j(X 

(t) 
i 

) = acc v (X 

(t) 
i 

) − κ

n samp 

n samp ∑ 

j=1 

|| x ( j) || 1 
|| x ( j) || 2 , (11) 

here X (t) 
i 

denotes the i th hyper-parameter setting at the t th iter- 

tion, acc v (X (t) 
i 

) is its validation recognition rate, n samp is the num- 

er of samples, κ is a weight coefficient. The gradient-free heuris- 

ic optimizers are population-based, where X (t) � { X (t) 
1 

, . . . , X (t) 
N 

} 
enotes the hyper-parameter population at the t th iteration, and 

 is the number of individuals. 

For the DE optimizer, the most frequently used DE, i.e. 

E / rand /1/ bin [9] is employed. For the i th individual, mutually dif-

erent indices r 1 , r 2 , r 3 ∈ { 1 , . . . , N} are randomly chosen first, then

hree operations, i.e. mutation, crossover and selection are per- 

ormed sequently as follows 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V i = X 

(t) 
r 1 

+ F · (X 

(t) 
r 2 

− X 

(t) 
r 3 

) , 

U i, j = 

{ 

V i, j , if (rd ≤ CR ) or ( j = rn i ) , 

X 

(t) 
i, j 

, otherwise; 

X 

(t+1) 
i 

= 

{ 

U i , if ob j(U i ) ≥ ob j(X 

(t) 
i 

) , 

X 

(t) 
i 

, otherwise. 

(12) 

here F, CR ∈ [0, 1] denote the mutation and crossover probabili- 

ies, respectively; rn i is randomly chosen from { 1 , . . . , n para } , n para 

s the number of hyper-parameters, rd is a random number in [0,1]; 

bj ( · ) is defined in Eq. (11) . 
5 
For the PSO optimizer [9] , the hyper-parameter population X 

( t ) 

s updated as follows 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V 

(t+1) 
i, j 

= w · V 

(t) 
i, j 

+ c 1 · rd1 · (X P (t) 
i, j 

− X 

(t) 
i, j 

) 

+ c 2 · rd2 · (X 

(t) 
i b 

− X 

(t) 
i, j 

) , 

X 

(t+1) 
i, j 

= X 

(t) 
i, j 

+ V 

(t+1) 
i, j 

. 

X P (t) 
i 

= 

{
X 

(t) 
i 

if ob j(X 

(t) 
i 

) ≥ ob j(X P (t) 
i 

) 

X P (t+1) 
i 

otherwise. 

X 

(t+1) 
i b 

= 

{ 

X 

(t) 
i 

if ob j(X 

(t) 
i 

) ≥ ob j(X 

(t) 
i b 

) 

X 

(t) 
i b 

otherwise. 

(13) 

here rd 1, rd 2 are random numbers in [0,1], V (t) 
i, j 

denotes the 

elocity corresponding to the j th dimension of the i th hyper- 

arameter setting X (t) 
i 

, w, c 1 and c 2 are the learning weights of 

he velocity ( V 

( t ) ), the local best ( XP ( t ) ) and the global best ( X (t) 
i b 

)

ndividuals, respectively. 

Each epoch of network training can be time consuming when 

he employed dataset is large, the numbers of iteration epochs and 

opulation size are strictly limited for the population-based opti- 

izers. Thus, the parameters of the employed optimizers should 

e carefully chosen such that the optimization can converge in the 

imited number of iteration epochs, whose settings are illustrated 

n the Appendix A . 

The population of the optimizers is initialized with Latin hyper- 

ube sampling (LHS). Before the LHS, the variables of regularization 

oefficients need to be transformed into the same scale as that of 

he dropout ratios with log ( · ). Meanwhile, the log ( · ) function is 

lso employed to normalize all the variables to an uniform scale 

or the optimizers (12) and (13) . 

For clarity, the entire procedure of the proposed hyper- 

arameter optimization is presented in Algorithm 1 . 
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Algorithm 1 The proposed hyper-parameter optimization. 

1: Initialize the hyper-parameter population X (1) with LHS, 

MaxIter, previous ( X (1) 
i b 

) and current ( X (2) 
i b 

) best parameter set- 

tings; curI ter ← NI ; t ← 1 . 

2: while curI ter ≤ MaxI ter do 

3: if curIter == NI then 

4: Select the face recognition network for fine tuning; 

5: else 

6: Use the stored best model in the previous iteration for 

fine tuning; 

7: end if 

8: Train the ‘original+surrogate’ network for NI epochs based 

on X (t−1) 
i b 

and X (t) 
i b 

; 

9: Update X (t) 
i b 

← Better(X (t−1) 
i b 

, X (t) 
i b 

) according to validation 

performance; 

10: for Each parameter setting X (t) 
i 

do 

11: Transfer the weights of the ‘original+surrogate’ network 

trained with X (t) 
i b 

to the ‘surrogate’ network; 

12: Train the surrogate network for NI epochs based on X (t) 
i 

and record the validation accuracy; 

13: Update the best parameter setting X (t+1) 
i b 

according to cur- 

rent validation performance; 

14: end for 

15: Update the hyper-parameter population X (t) with heuristic 

optimizers; 

16: Update the learning rate for the network solver; 

17: curIter ← curI ter + NI , t ← t + 1 . 

18: end while 
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.4. Time complexity analysis 

The surrogate model is a simplification of the original network, 

s only the higher layers of the original network are preserved. In 

he following, the model complexities of M-ResNet and its surro- 

ate network presented in Fig. 3 are evaluated. 

For deep network training, the time complexity of the convo- 

ution blocks is T con v ∼ O ( 
∑ d con v 

l=1 
n 2 

map,l 
· n 2 

ker,l 
· n cha,l−1 · n cha,l ) , where 

 conv is the number of convolution layers, n map,l , n ker,l and n cha,l 

re the feature map size, the kernel size and the channels in the 

 th layer, respectively. While the time complexities for the lay- 

rs of pooling, ReLU and batch normalization are negligible com- 

ared with that of the convolution layers. For the FC layers, the 

ime complexity is T f c ∼ O ( 
∑ d f c 

l=1 
n neu,l−1 · n neu,l ) , where n neu,l is the

umber of neurons of the l th FC layer, d fc is the number of FC lay-

rs. 

According to these computation formulas, the time complexity 

pproximates the number of T conv ≈ 7.8 × 10 8 floating-point op- 

rations (FLOPs) for the convolution blocks of the employed M- 

esNet in Fig. 3 , while T fc ≈ 5 × 10 6 for the last two FC layers.

hus, the time complexity of the FC layers is negligible compared 

ith that of the convolution blocks, i.e. T ori ≈ T conv . When the 

umbers of epochs n epoch and samples n samp are considered, the 

ime complexity of the original network training turns out to be 

 ~ O ( n epoch · n samp · T conv ). 

The time complexity of surrogate network training approxi- 

ates to T sur = 9 . 5 × 10 6 for each sample, which is about 1/82 of

hat of the original network. For each iteration of the heuristic op- 

imizers in Algorithm 1 , objective function evaluation, i.e. surrogate 

etwork training, should be conducted N (population size) times. 

hus, the time complexity of the surrogate network population is 

bout N · T sur , which is still smaller than that of one iteration of 

he original network ( T ) since N ≤ 82. The time complexity anal- 
ori 

6 
sis illustrates the reasonability of the proposed surrogate model 

or time complexity reduction. 

. Experimental results 

.1. Experimental setting 

We test our algorithm using a four-kernel Nvidia TITAN GPU 

ard and Caffe platform, incorporated with python. 

For the SGD optimization of network training, the batch size 

s set to 64, the momentum is 0.9. Basic learning rate is set as 

ase _ lr = 0 . 01 , which is decayed according to base _ lr · 0 . 5 iter/ 40 0 0 .

or Algorithm 1 , NI = 1 e 3 / ( NumT rainSample 
BatchSize 

) , the population size is

xed to 6; The loss regularization coefficient and the dropout ratio 

re initialized around 1e −5 and 0.5, respectively; The parameters 

, c 1 and c 2 of PSO algorithm are 0.6, 0.2 and 0.9; The parame-

ers F and CR of DE algorithm are 0.1 and 0.6, respectively; κ in 

q. (11) is set to 1e −5. The regularization coefficients of ηx , ηz , ηW 

nd ηV are set to 1e −2. 

Three shallow and deep networks, i.e. LeNet [20] , the residual 

etwork with 20 layers [17] , i.e. ResNet20, and M-ResNet shown 

n Fig. 3 , are employed for the testing. While the surrogate net- 

ork of M-ResNet is presented in Fig. 3 , the surrogate networks 

f LeNet and ResNet20 are presented in Table 2 , both include 

nly one convolution layer. Since ResNet20 includes only one FC 

ayer, four hyper-parameters of the sparseness strategies are to 

e optimized. While LeNet is mainly used for algorithm analysis, 

esNet20 is used for the comparison with related surrogate model 

nd M-ResNet is used for the comparison with the state-of-the-art 

ER algorithms. 

The experiments are conducted in the following sequence. First, 

he employed databases are introduced. Second, the surrogate 

ased hyper-parameter optimization is tested and analyzed with 

isentangled sparseness strategies based on LeNet. Third, the pro- 

osed algorithm is compared to other surrogates and optimizers. 

ourth, the proposed algorithm is compared to the state-of-the- 

rt algorithms for FER. Lastly, cross-database experiment is per- 

ormed to test the generalization performance of the proposed 

lgorithm. 

.2. Databases 

The expression databases of FER2013 [21] , CK+ [22] , Oulu-CASIA 

23] , MMI [24] , AFEW [25] and AffectNet [26] are used for the per-

ormance evaluation. 

The FER2013 database [21] is an expression database collected 

rom the internet and used for a challenge. The database consists 

f 35,887 grayscale face images with size 4 8x4 8, while the training 

et consists of 28,709 examples, the validation (the public test) and 

esting (the private test) datasets contain 3589 expression images 

ach. Each face was labeled with one of seven categories, i.e., angry 

An), disgust (Di), fear (Fe), happy (Ha), sad (Sa), surprise (Su) and 

eutral (Ne). 

The CK+ database [22] consists of 593 expression sequences 

rom 123 subjects, which are labeled with one of seven expres- 

ions, i.e., six non-neutral expressions and contempt. ‘contempt’ 

s not considered in this testing. For the testing, 415 expression 

equences from 160 person identities, i.e. the neutral and three 

eak frames sampled from each expression sequence were se- 

ected, which were further augmented to generate 22,410 images. 

The Oulu-CASIA NIR&VIS expression database [23] contains 

ideos of 80 subjects, which are captured with two imaging sys- 

ems, NIR (Near Infrared) and VIS (Visible light), under three dif- 

erent illumination conditions, i.e., normal (strong) indoor illumi- 

ation, weak illumination (only the computer display is on) and 

ark illumination (all lights are off). Each face sequence presents 



W. Xie, W. Chen, L. Shen et al. Pattern Recognition 111 (2021) 107701 

Table 2 

The convolution layer configurations of surrogate networks and the hyper-parameters for three 

networks; num _ out put is the number of feature maps of the convolution layer. 

Network The convolution configuration of the surrogate network Hyper-parameters 

LeNet ( num _ out put , kernel _ size, stride, pad ) = (50,7,7,0) HypParaSet in Eq. (8) 

ResNet20 ( num _ out put , kernel _ size, stride, pad ) = (64,6,4,1) ( p z , p V , λz , λV ) 

M-ResNet Fig. 3 HypParaSet in Eq. (8) 

Fig. 4. Example images of the FER2013, CK+, Oulu-CASIA, MMI, AFEW and AffectNet databases. 
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he six non-neutral typical expressions, where the three peak ex- 

ressions of the database of NIR and Strong are used. Then a simple 

ugmentation with 16 different crops for each face is conducted to 

enerate 23,040 images. 

The MMI database [24] includes more than 20 person identities 

ith 44% female and ages from 19 to 62, which is either a Euro- 

ean, Asian, or South American ethnicity and presents the six non- 

eutral typical expressions. Three peak frames with the largest de- 

ormation intensities in each of 205 expression sequences are em- 

loyed for testing, and the selected faces are further augmented to 

enerate 15,375 images. 

Acted Facial Expressions in the Wild (AFEW-6.0) [25] is a 

ynamic temporal facial expressions data corpus extracted from 

ovies, where 681, 76 and 365 of the 1122 sequences are used 

or training, validation and testing, respectively. The neutral and six 

ypical expressions are employed. The three peak frames from each 

equence are selected for the testing. 

The AffectNet [26] database contains about 420,300 images 

ith manually annotated facial expressions. Images with neutral 

nd six typical expressions were used in our experiments, which 

onsists of 283,901 training samples and 3500 validation sam- 

les. In our testing, the original training dataset is separated into 

wo sub-datasets, while 255,511 is used for training, the remain- 

ng 28,390 is used for validation. Meanwhile, the original valida- 

ion samples are used for the testing. 
t

7 
Example expressions of each database are presented in Fig. 4 . 

or the face alignment of the databases except for FER2013, the 

ve key points on the eyes, nose and mouth tips, are located. 

hen, the faces are aligned, cropped and scaled with the five key 

oints. Each expression image I is normalized, mirrored and scaled 

o the size 227 × 227 for M-ResNet, and 28 × 28 for LeNet and 

esNet20. The popular data partition strategy, i.e., ten-fold person- 

ndependent cross-validation is conducted for CK+, MMI and Oulu- 

ASIA databases. Majority voting of the probabilities of augmented 

ace regions is employed to yield the recognition result of each 

esting sample. 

.3. Algorithm analysis 

In this section, LeNet [20] is used to analyze the proposed op- 

imization on the FER2013 database. 

In order to test the performance of the proposed hyper- 

arameter optimization on each sparseness and dropout strategy, 

he hyper-parameters are divided into two groups, i.e. the regular- 

zation parameters and dropout ratios, which are optimized sepa- 

ately. 

For loss regularization, the optimization is tested on only λx for 

he FER2013 database, without loss of generality. For dropout ra- 

ios, the optimization is tested on p z and p x . The performances for 

he loss regularization and dropout ratios are then compared to 
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Table 3 

The performances (%) of grid search and two optimizers for the LeNet on the FER2013 database. MaxIter = 8 e 4 . 

Parameter & performance Grid search DE PSO 

λx 0 1e −7 1e −6 5e −6 1e −5 5e −5 1e −4 1e −3 1.89e −5 1.93e −5 

Performance (%) 52.97 53.43 54.04 52.69 54.36 54.83 54.54 53.96 56.92 56.87 

p z 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.4621 0.4833 

p x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.5202 0.5026 

Performance (%) 52.97 53.67 54.44 55.26 56.13 56.24 55.08 52.90 58.29 58.79 

Table 4 

The mean testing accuracies for different combinations of sparseness strategies, with and 

without the proposed hyper-parameter optimization, on the FER2013 database for LeNet. 

Each setting is tested three times and the average performance is recorded. MaxIter = 8 e 4 . 

L S is always used. 

Optimizer Sparseness strategy & hyper-parameters Recog. rate (%) 

– L S (Baseline) 52.97 

– λz = λV = λx = λW = 1 e − 5 53.27 

DE ( L z , L V , L x , L W ) 56.34 

PSO ( L z , L V , L x , L W ) 57.37 

– p z = p V = p x = p W = 0 . 5 55.89 

DE ( D z , D V , D x , D W ) 58.46 

PSO ( D z , D V , D x , D W ) 58.74 

– λz = λV = λx = λW = 1 e − 5 , p z = p V = p x = p W = 0 . 5 54.68 

DE ( L z , L V , L x , L W , D z , D V , D x , D W ) 59.68 

PSO ( L z , L V , L x , L W , D z , D V , D x , D W ) 60.24 

Fig. 5. The evolution curves of the hyper-parameters and the testing accuracies against the iteration epochs for PSO optimizer on the FER2013 database. 
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hose based on grid search, where the hyper-parameters are gen- 

rated with the local variation around the default settings. Table 3 

ists the performances of the proposed algorithm and grid search. 

Table 3 shows that the proposed hyper-parameter optimization 

chieves much better performances than the grid search. For reg- 

larization optimization, the proposed algorithm based on the DE 

ptimizer achieves the best performance (56.92%), which outper- 

orms grid search (54.83%). For dropout ratios, the proposed algo- 

ithm based on the PSO optimizer achieves the best performance 
f 58.79%. 

8 
To demonstrate the change of testing accuracies against the 

ariations of the hyper-parameters during the original network 

raining, Fig. 5 demonstrates the evolution curves of the testing ac- 

uracies for λx and ( p z , p x ) based on the PSO optimizer. 

Fig. 5 shows that the testing accuracies can be dynamically im- 

roved by updating the hyper-parameters of the regularization co- 

fficient and dropout ratios with the PSO optimizer, which illus- 

rates the effectiveness of the hyper-parameter optimization for au- 

omatic adjustment and network performance improvement. 
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Fig. 6. The evolution curves of the eight hyper-parameters of LeNet optimized with 

PSO for the FER2013 database. Transformation functions of log 10 (·) / 100 and log 10 (·) 
are employed for the demonstration of the regularization coefficients and dropout 

ratios, respectively. 
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Table 5 

The comparison of the grid search, the RBF-based [13] , 

evolutionary algorithm (EA)-based [27] and the proposed 

surrogates on the FER2013 database for ResNet20. N grid = 

64 denotes the default number of parameter grids. 

MaxT ime = 40 denotes the number of the original net- 

work training for RBF model fitting and update. 

Surrogate Recog. rate (%) Time complexity 

Baseline 58.18 T ori 

Grid search 58.68 N grid · T ori 

RBF-based 60.13 MaxTime · T ori 

EA-based 59.88 2 · T ori + T sur · N

The proposed 62.08 2 · T ori + T sur · N
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1 https://github.com/ilija139/HORD/pySOT/src/heuristic _ algorithms.py . 
To study the performance of the proposed algorithm when 

ll the hyper-parameters are employed, different combinations 

f sparseness strategies, with and without the proposed hyper- 

arameter optimization, are tested and reported in Table 4 . 

Table 4 shows that the proposed algorithm largely improves the 

ecognition performance from the baseline of 52.97% to 60.24% on 

he FER2013 database. While the proposed hyper-parameter opti- 

ization can dynamically balance the weights of different sparsity 

trategies, our approach always achieves better performance than 

hat without the optimization for four or eight hyper-parameters. 

he fused sparseness with all of the hyper-parameters, i.e. eight 

yper-parameters, achieves the best performance of 60.24%, since 

arger possibility of performance improvement is implied in the 

djustment of eight hyper-parameters than that of one or four 

yper-parameters. 

Regarding to the optimizers, PSO outperforms DE for the opti- 

ization of four or eight hyper-parameters in Table 4 . While DE is 

ore suitable for global exploration, it demands larger population 

ize and iteration epochs than PSO to search for a better parameter 

etting when the number of hyper-parameters is large. Thus, one 

an observe from Table 3 that DE outperforms PSO for one hyper- 

arameter optimization. However, DE is less competitive than PSO 

or the optimization of multiple hyper-parameters when the num- 

er of iteration epochs is largely restricted. Consequently, PSO is 

mployed for algorithm evaluation and comparison in the follow- 

ng experiments. 

To study the evolution of different hyper-parameters, Fig. 6 

hows the evolution curves of the eight hyper-parameters in 

q. (8) optimized with PSO for the FER2013 database. 

Fig. 6 shows that the regularization coefficients w.r.t. the fea- 

ures and weight matrix related with the last FC layer, i.e. FC2, 

aintain at the threshold level, while the regularization coeffi- 

ients of feature z and weight V are gradually decreasing. For the 

ropout strategies, the dropout ratios related with x and W are 

lso adjusted to be increasing during the optimization. Thus, the 

erformance for FER is more sensitive to the perturbations of the 

etwork feature and matrices of x, W than that of z, V . 

To study the performances of the original and surrogate net- 

orks on the validation and testing datasets, the evolution curves 

f the validation and testing accuracies with the original and surro- 

ate networks based on PSO optimizer are demonstrated in Fig. 7 . 

Fig. 7 shows that the validation and testing accuracies are grad- 

ally and consistently improved for both LeNet and its surrogate 
9 
etwork on the FER2013 database. Actually, the recognition perfor- 

ance with the surrogate network is significantly lower than that 

f the original network due to the limited number of convolution 

ayers. However, the outputs and weight matrices of the higher lay- 

rs are fitted to the original network by four Euclidean losses dur- 

ng the original network training. Meanwhile, an objective function 

n Eq. (11) is employed to measure the performance of each hyper- 

arameter setting, which incorporates not only the validation per- 

ormance but also the sparseness of feature representation. Thus, 

he hyper-parameters learned with the surrogate network are ben- 

ficial to the performance improvement of the original network 

raining, and similar improvements are observed in Fig. 7 . While 

ll the hyper-parameters tend to be stable at the 30th epoch in 

ig. 6 , the recognition performances in Fig. 7 can still be improved 

radually. 

.4. Comparison with other surrogates and optimizers 

In this section, the proposed network surrogate is compared to 

rid search, evolutionary algorithm (EA)-based [27] and RBF-based 

urrogates [13] for ResNet20 on the FER2013 database. 

To decrease the time complexity of the grid search, the hyper- 

arameters of the same category are assumed to have the same 

alue, i.e. p z = P V vary from 0.2 to 0.8 with a step size of 0.1,

og (λz ) = log (λV ) vary from -8 to -2 with a step size of 1, 

hen N grid = 8 · 8 = 64 . For RBF-based surrogate [13] , the maximum

umber of iterations is fixed to 4e4 for hyper-parameter optimiza- 

ion, while the optimized para-parameters are further used to re- 

rain the original network for 6e4 iterations. When PSO is replaced 

ith EA optimizer, the same crossover and mutation probabilities 

s the heuristic algorithm 

1 are employed, where the tournament 

ize for the selection operation is set to 2. Finally, the recognition 

erformances and the runtime complexities of the grid search, the 

A-based and RBF-based surrogates [13] and the proposed surro- 

ate are presented in Table 5 . 

Table 5 shows that the proposed network surrogate achieves a 

etter performance than grid search, the RBF-based surrogate and 

he EA optimizer for the optimization of four hyper-parameters in 

esNet20. 

Regarding to the time complexity, the original network needs 

o be repeatedly trained N grid times for the grid search, i.e. the 

orresponding time complexity is N grid · T ori . The RBF-based sur- 

ogate has to perform the entire network training about MaxTime 

imes, while the time complexity of the RBF fitting is almost neg- 

igible compared with a deep network training, which results in 

n approximate time complexity of MaxTime · T ori in Table 5 . In 

ach round of the proposed network training, each of the pre- 

ious and current best hyper-parameter settings is used to train 

he original network for only NI epochs, and each of the N sur- 

ogate networks is independently trained for NI epochs. Thus, the 

https://github.com/ilija139/HORD/pySOT/src/heuristic_algorithms.py


W. Xie, W. Chen, L. Shen et al. Pattern Recognition 111 (2021) 107701 

Fig. 7. The evolution curves of the validation and testing accuracies of the original LeNet and its surrogate network on the FER2013 database. 
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riginal network is fully trained twice based on rounds of iter- 

tion, i.e. the time complexity of the proposed algorithm is 2 ·
 ori + T sur · N. According to the computation formulas in Section 2.4 , 

he time complexities of ResNet20 and its surrogate network are 

 ori ≈ n epoch · n samp · 3.1 × 10 7 and T sur ≈ n epoch · n samp · 1.14 × 10 5 , 

espectively. Since the population size N is significantly smaller 

han T ori / T sur , the time complexity of the proposed surrogate is 

maller than that of the grid search and RBF-based surrogate. Al- 

hough the surrogate should have more layers for the fitting of an 

riginal network with deeper layers, the advantage of the proposed 

urrogate is still obvious since the original network needs to be 

rained only twice. 

Regarding to the recognition performance, the grid search 

chieves a better performance than the baseline at the cost of 

ime complexity, while a lower accuracy than the proposed algo- 

ithm. Meanwhile, the proposed surrogate approximates the orig- 

nal network on the higher layers and preserves the correspond- 

ng loss structure. With the introduced Euclidean losses, the pro- 

osed surrogate network contains significantly larger number of 

odel parameters than the RBF-based surrogate. Our approach can 

hus better approximate the computation of the original network. 

able 5 shows that the proposed surrogate achieves better per- 

ormance than grid search and the RBF-based surrogate on the 

ER2013 database. Moreover, benefit from the relatively strong ex- 

loitation ability when a limited number of iteration generations 

r population size is available, the PSO optimizer outperforms the 

A optimizer. 

.5. Comparison with the state of the arts 

In this section, M-ResNet in Fig. 3 is employed for the evalu- 

tion of proposed algorithm and comparison with state-of-the-art 

lgorithms on six public expression databases. 

To study the performance of hyper-parameter optimization for 

ynamic loss adjustment aiming at different databases, the confu- 

ion matrices on the six databases are presented in Fig. 8 . 

For FER, the expression features among different person iden- 

ities may present large variation, which can be more diverse for 

ifferent databases collected under different circumstances. Mean- 

hile, the features of different expressions may present confus- 

ng similarity. For example, the ‘mouths’ in the FER2013 database 

re ‘open’ for the ‘Fe’ expression, which are similar to that of the 
10 
Ha’ and ‘Su’ expressions. A specific metric should be highlighted 

o emphasize the difference among these three expressions. Com- 

ared with the study of de-expression residual learning [2] that 

mploys fixed loss metric for the training of all the databases, the 

roposed algorithm balances the weights of different loss metrics 

or different databases. While the proposed loss metric weighting 

s less competitive than the algorithm with the fixed loss metric 

2] for the Oulu-CASIA database, it largely outperforms the fixed- 

oss-metric algorithm [2] on the CK+ and MMI databases, which is 

lso verified in the overall performance comparison between the 

tudy [2] and the proposed algorithm in Tables 7 –9 . 

Compared with the related work [28] that employs adaptive 

eep metric, Fig. 8 shows that the confusion matrices of the al- 

orithm [28] and the proposed algorithm are similar on the CK+ 

atabase, i.e. the ‘Sa’ and ‘An’ expressions are difficult to be rec- 

gnized and the ‘Sa’ expression is most likely to be misclassi- 

ed as the ‘Fe’ expression. Similar performance is also observed 

or the MMI database. The similarity with the confusion matri- 

es of the algorithm [28] illustrates that the proposed algorithm 

an dynamically adapt the weights of different metrics to different 

atabases. However, the proposed algorithm significantly outper- 

orms the self-adaptive loss weighting [28] for the ‘Fe’ expression 

f the MMI database, which illustrates the effectiveness of the pro- 

osed network-based surrogate and heuristic-optimizer-based deep 

etric weighting. 

To study the overall performances of the proposed algorithm 

nd the state-of-the-art algorithms for FER, Tables 6–10 compare 

he performances and the other testing protocols of our algorithm 

ith the state-of-the-art approaches in the literatures, for all of the 

ix expression databases. 

For the FER2013 database, compared with the related work 

16] , the proposed hyper-parameter optimization enables the train- 

ng network to flexibly tune the specialized sparsity strategies for 

ER2013. Compared with current works that employed salient re- 

ion attention [33] and adaptive networks [34] , the proposed al- 

orithm makes use of different sparsity strategies to mitigate the 

ossible overfitting to improve the network generalization per- 

ormance. Compared with the work [32] that achieved the high- 

st recognition rate of 75.1% with external data sources, i.e. so- 

ial relation dataset for the bridging layer deployment in the 

etwork modeling, the proposed algorithm uses only existing 

ace recognition model for fine-tuning. Compared with the work 
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Fig. 8. The confusion matrices (%) of the proposed algorithm for the FER2013 (a), Oulu-CASIA (b), AFEW (c), CK+ (d), MMI (e) and AffectNet (f) databases. 

Table 6 

Performances of different algorithms on the FER2013 database. Symbol ‘–’ denotes not reported. 

Methods Fine tuning Recog. rate (%) 

Deeper DNN 2016 [29] No fine tuning 66.4 

DNN with SVM 2013 [30] Fine tuning with SVM’s objective 71.2 

Fusing multiple networks with aligned faces 2016 [31] Aligned and frontalized databases 73.73 (71.86 by single DCN) 

Fusing multiple data sources 2015 [32] Using external database 75.1 

Multi-path CNN with salient region attention 2019 [33] No fine tuning 66. 2 

Sparse deep feature 2019 [16] Face recognition model 72.14 

Adaptive networks with bounded gradient 2020 [34] – 71.53 

Ours Face recognition model 72.47 

Table 7 

Performances of different algorithms on the CK+ database. Symbol ‘ ∗ ’ denotes that neural is replaced with contempt expression. ‘10F’ denotes ‘10-fold’. 

Methods Data Fine tuning #Class Sub. Proto. Recog. rate (%) 

Adaptive deep metric 2017 [28] Three Peak frames CMU Multi-pie 7 ∗ 118 10F 97.1 

Fine Tuning 2015 [11] Temporal Frames Geometry and Texture Losses 7 ∗ 106 10F 97.25 

Spatial and Temporal Networks 2017 [35] Temporal Frames - 7 ∗ 118 10F 98.5 (95.54) 

Sparse Autoencoders 2018 [10] Four Peak frames – 8 123 10F 95.79 

Face Net Regularization 2016 [18] Three Peak frames Face Recognition Net 8 123 10F 96.8 

Radial Feature 2012 [36] Five images – 7 94 10F 91.51 

AU Network 2013 [37] Three Peak frames Logistic regression 7 118 10F 92.05 

Dropout and Randomized DMLs 2018 [12] Five Peak frames – 7 118 10F 99.11 (97.68) 

De-expression residual learning 2018 [2] – Three Peak frames 7 118 10F 97.3 

Ours Three Peak frames Face recognition model 7 106 10F 97.83 

Table 8 

Performances of different algorithms on the Oulu-CASIA database. 

Methods Data Fine tuning #Class Sub. Proto. Recog. rate (%) 

AdaLBP 2011 [23] Temporal Frames ( Strong − V IS) – 6 480 10F 73.54 

Fine Tuning 2015 [11] Temporal Frames ( Strong ) Geometry and Texture Losses 6 480 10F 81.46 

Spatial and Temporal Networks 2017 [35] Temporal Frames ( Strong ) – 6 480 10F 86.25 (77.67) 

Face Net Regularization 2016 [18] Three Peak ( Strong − V IS) Face Recognition Net 6 480 10F 87.71 

De-expression residual learning 2018 [2] Three Peak ( Strong − V IS) – 6 480 10F 88.0 

Ours Three Peak ( Strong − V IS) Face recognition model 6 480 10F 85.0 

11 
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Table 9 

Performances of different algorithms on the MMI database. 

Methods Data Fine tuning #Class Sequence Proto. Recog. rate (%) 

AU Network 2013 [37] Three Peak frames Logistic regression 7 205 10F 74.76 

Deeper DNN 2016 [29] – No fine tuning 6 79 5F 77.6 

Multiscale active learning 2015 [38] Three Peak frames – 6 – 10F 77.39 

Adaptive deep metric 2017 [28] Three Peak frames CMU Multi-pie 6 205 10F 78.53 

De-expression residual learning 2018 [2] Three Peak frames – 6 208 10F 73.23 

Ours Three Peak frames Face recognition model 6 205 10F 79.02 

Table 10 

Performances of different algorithms on the AFEW (validation dataset) and AffectNet database. 

AFEW AffectNet 

Methods Recog. rate (%) Methods Recog. rate (%) 

LSTM + Partial Least Squares [39] 44.47 Inconsistent Pseudo Annotations on 80-layer Network [40] 57.31 

VGG-LSTM-Single CNN-RNN [41] 45.43 CNN with global-local attention mechanism [42] 58.78 

Ours 46.03 Ours 58.66 
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31] that achieved a better recognition rate of 73.73% by conduct- 

ng an additional data preprocessing, i.e. face frontalization and 

using multiple networks, the proposed algorithm achieves a com- 

etitive performance of 72.47% by training single network only 

wice. 

For the CK+ database, the performance of the proposed al- 

orithm ranked the 2nd among six algorithms for seven-class 

ER. While the work [12] achieved a higher recognition rate of 

9.11% with multiple recurrent hidden output sparseness and high- 

imension metric functions, the proposed algorithm achieved a 

etter performance of 97.83% than the best accuracy, i.e. 97.68%, 

chieved by Alam et al. [12] when only network sparseness is em- 

loyed. Compared with the approach [12] that employs the fixed 

yper-parameter in the dropout regularization, the proposed algo- 

ithm is proposed to optimize the hyper-parameters of different 

parseness strategies to make them adaptive to different databases, 

.e. multiple feature and weight sparseness strategies are optimized 

or different expression databases. 

For the Oulu-CASIA database, the work [18] achieved a better 

erformance of 87.71% by first screening the layers with the best 

euron entropy scores, then transferring the learned information 

rom the face recognition net to FER. The study with de-expression 

esidual learning [2] devised an effective loss metric for the Oulu- 

ASIA database, and achieved the best performance of 88.0%. How- 

ver, compared with the algorithm [2] with fixed loss metric, 

he proposed algorithm achieves not only a competitive perfor- 

ance of 85.0% on the Oulu-CASIA database, but also much bet- 

er performances on the CK+ and MMI databases in Tables 7 and 

 by dynamically adapting the hyper-parameters in sparseness and 

ropout strategies. 

For the MMI database, the proposed algorithm achieved the 

est performance of 79.02%. The adaptive deep metric learn- 

ng [28] achieved a competitive performance of 78.53% by self- 

daptively updating the parameters of reference distance and mar- 

in in the loss metric. Compared with adaptive deep metric learn- 

ng [28] for the CK+ and MMI databases, the proposed algorithm 

ses the sparseness-structure-preserving network surrogate to op- 

imize hyper-parameter setting for each database, and achieves 

etter performances on both databases. 

AFEW and AffectNet databases consist of faces with diverse 

oses and expressions in the wild, which are more challeng- 

ng. Table 10 presents the performances of different state-of-the- 

rt algorithms based on the same testing dataset. While 90% 

f the original training dataset is used for network learning, 

he proposed algorithm still achieves competitive performances. 

able 10 shows that the proposed algorithm achieves the best per- 

ormance, i.e. 46.03%, on the AFEW database, and ranks the sec- 
12 
nd among three state-of-the-art algorithms, where a competi- 

ive performances, i.e. 58.66%, is achieved by the proposed al- 

orithm. The best performance, i.e. 58.78%, is achieved by fus- 

ng the global and local attention mechanism for the AffectNet 

atabase. 

Tables 6 –10 show that the proposed algorithm balances the 

erformances for the six databases, e.g. the proposed algorithm 

chieves more balanced performances than the algorithm [2] on 

he CK+, Oulu-CASIA and MMI databases, and the approach [18] on 

he CK+ and Oulu-CASIA databases. These balanced performances 

chieved by the proposed algorithm in Tables 6 –10 illustrates 

he effectiveness of the hyper-parameter optimization for dynamic 

atabase adaption. More precisely, the dynamic adjustment of dif- 

erent sparseness strategies can adapt the fusion losses to impose 

ore powerful discrimination ability on specific expression pairs 

ifficult to discriminate, and consequently improve the network 

erformance. 

In the preceding comparison, the fine-tuning strategies and net- 

ork models may be not strictly the same, while the comparison 

f the proposed algorithm and the related algorithms under the 

ame experimental settings still verifies the usefulness of the pro- 

osed hyper-parameter optimization on sparseness strategy selec- 

ion and weighting for different databases. From another aspect, 

he proposed algorithm introduced a general optimization model, 

hich can be embedded into the state-of-the-art approaches to 

ptimize their hyper-parameters and further improve their perfor- 

ances. 

.6. Generalization performance 

To study the generalization performance of the proposed algo- 

ithm, cross-database experiments are presented in this section. 

or testing a dataset with seven categories when a dataset with 

ix categories is used for training, the ‘neutral’ expressions are re- 

oved from the evaluation. For the network training, the target 

testing) database is divided into ten folds, while one fold is used 

s the validation dataset to assist the training (original) dataset to 

ptimize the hyper-parameters, the remaining nine folds are used 

or the testing. This process was repeated for each of ten folds, 

hen the average performance is used for evaluation and compari- 

on. 

The proposed algorithm uses the information implied in the 

ne-fold samples of the target dataset to guide the hyper- 

arameter optimization during network training, while traditional 

lgorithms like [16] does not include the information of the tar- 

et dataset in the training. To make a fair comparison, the same 

ne-fold samples of the target dataset are added into the training 
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Table 11 

The cross-database performances (%) of the proposed algorithm and the approach [16] (in bracket) on FER2013, 

CK+, Oulu-CASIA and MMI. The 1st and 2nd accuracies in the brackets are the performances [16] with and without 

using the target dataset information during the training. 

Training 

Testing accuracy (%) 

FER2013 CK + Oulu-CASIA MMI 

FER2013 - 63.13 ( 64.10 , 63.86) 46.04 (42.29, 39.79) 58.05 ( 58.05 , 57.07) 

CK + 49.14 (43.87, 39.72) – 63.12 (59.38, 42.08) 60.98 ( 61.46 , 60.48) 

Oulu-CASIA 60.95 (56.67, 54.19) 89.0 (86.08, 84.78) – 62.93 (61.95, 61.46) 

MMI 55.33 (58.02, 60.19 ) 78.32 (76.7, 77.02) 62.92 (57.92, 50.83) –

Table 12 

The cross-database performances (%) of the proposed algorithm 

and the approach [16] (in bracket) for spontaneous datasets, 

where one-fold of target dataset is used during training. 

Training 

Testing accuracy (%) 

FER2013 AFEW AffectNet 

FER2013 – 39.75 ( 41.27 ) 65.28 (64.67) 

AFEW 28.82 (27.16) – 39.0 (28.87) 

AffectNet 49.82 ( 50.39 ) 43.81 (40.55) –
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f the algorithm [16] . The performances of the proposed algorithm 

nd the approach [16] on FER2013, CK+, Oulu-CASIA and MMI with 

nd without using target dataset information in the training are 

resented in Table 11 . 

Table 11 shows that in most cases, the proposed algorithm out- 

erforms the approach [16] when the target data information is 

ot used during training, which illustrates that the proposed algo- 

ithm benefits from the information implied in the target dataset 

nd the dynamic update of the network hyper-parameters. When 

ne-fold samples of the target dataset are used in the network 

raining, Table 11 shows that the proposed algorithm still achieves 

etter performances than the approach [16] in most cases, where 

n improvement of 5.27% is achieved when CK+ and FER2013 are 

sed for training and testing, respectively. The proposed algorithm 

an adapt the hyper-parameters of a network according to the 

haracteristics of the target dataset, which makes the network 

ore suitable for the feature learning of the target dataset. Thus, 

he proposed algorithm yields more competitive cross-database 

erformances than the approach [16] based on fixed sparseness 

yper-parameter setting for all the datasets. 

To further study the cross-database performance of the pro- 

osed algorithm on the spontaneous databases, FER2013, AFEW 

nd AffectNet are used for the evaluation and results are demon- 

trated in Table 12 . 

Table 12 shows that the proposed algorithm has greater 

ompetitiveness on cross-database performances for spontaneous 

atasets over the work [16] , where better performances are ob- 

ained by the proposed algorithm on four out of six recognition 

ccuracies. Meanwhile, a large improvement of 10.13% is obtained 

hen AFEW and AffectNet are used for training and testing, and 

n improvement of 3.26% is achieved when AffectNet and AFEW 

re used for training and testing, respectively. 

. Discussion and conclusions 

In this work, a new iterative framework for optimizing hyper- 

arameters in different sparseness strategies of deep network is 

roposed, where a surrogate network preserving the higher lay- 

rs and deep sparseness strategies as the original network is de- 

ised to approximate the original network computation. The hyper- 

arameters optimized based on the surrogate model and gradient- 

ree heuristic optimizers, i.e. DE and PSO, are then used to compete 

ith the previous best and applied for the next iteration. Experi- 
13 
ental results with three networks and their surrogates show that 

he proposed hyper-parameter optimization can not only automat- 

cally adjust the hyper-parameter setting with reduced time com- 

lexity, but also largely improve the performance of grid search 

nd RBF-based surrogate. Meanwhile, the comparison among the 

roposed algorithm and the state-of-the-art algorithms for the ex- 

ression databases, i.e. FER2013, CK+, Oulu-CASIA and MMI, verifies 

he effectiveness of the proposed hyper-parameter optimization for 

parseness strategy selection and weighting in FER. 

Although competitive performances are achieved by the pro- 

osed algorithm, there remains room for further improvement. 

irst, runtime cost should be further reduced with more time- 

aving heuristic algorithms. Second, the sparseness with only the 

 1 -norm is considered, more sparseness norms, such as L 2 and 

 2,1 , will be studied in our future work. Third, more diverse sur- 

ogate networks can be devised, whose effects on the hyper- 

arameter optimization should be further compared and analyzed. 

ourth, the objective function for the optimizers, used for transfer- 

ing information learned from the validation dataset to the testing 

ataset, can be fine tuned to further improve the algorithm perfor- 

ance. Fifth, the proposed algorithm introduces additional hyper- 

arameters in the Euclidean losses and the optimizers, whose in- 

uences on the overall performance should be studied. As the op- 

imization for the hyper-parameters is general, it can thus be ex- 

anded to include more hyper-parameters in various deep losses, 

.g. Softmax variants and Center loss etc, and applied to more ap- 

lications, like face recognition. The design of optimization models 

nd algorithms for more general network hyper-parameters will be 

ur future work. 
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ppendix A 

For the parameter tuning of heuristic optimizers, a toy opti- 

ization model, i.e. max v i , 1 ≤i ≤n para 
−∑ n para 

i =1 
(v i − c i ) 

2 is proposed, 

here { c i , 1 ≤ i ≤ n para } are the constants provided in advance,

 para is the number of optimization variables. Consequently, the 
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arameters in the employed optimizers are adjusted manually ac- 

ording to the number of network iteration epochs. 
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