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For facial expression recognition, the sparseness constraints of the features or weights can improve the
generalization ability of a deep network. However, the optimization of the hyper-parameters in fusing dif-
ferent sparseness strategies demands much computation, when the traditional gradient-based algorithms
are used. In this work, an iterative framework with surrogate network is proposed for the optimization
of hyper-parameters in fusing different sparseness strategies. In each iteration, a network with signifi-
cantly smaller model complexity is fitted to the original large network based on four Euclidean losses,
where the hyper-parameters are optimized with heuristic optimizers. Since the surrogate network uses
the same deep metrics and embeds the same hyper-parameters as the original network, the optimized
hyper-parameters are then used for the training of the original deep network in the next iteration. While
the performance of the proposed algorithm is justified with a tiny model, i.e. LeNet on the FER2013
database, our approach achieved competitive performances on six publicly available expression datasets,
i.e., FER2013, CK+, Oulu-CASIA, MMI, AFEW and AffectNet.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Since facial expressions play an important role in reflecting
human feelings, automatic facial expression recognition (FER) has
been a popular topic in the fields of computer vision and multime-
dia, etc. The facial action coding system [1] provides an objective
way to describe expressions in terms of both appearance and ge-
ometrical facial changes, which is further extended for automatic
FER with convolutional neural networks [2].

However, when the expression database used for network train-
ing is not diverse enough, the training may result in over-fitting
and poor generalization performance on other databases due to
the large variations across different persons. Currently, different
sparseness regularization approaches have been proposed to ad-
dress the overfitting to improve the network’s generalization abil-
ity. Sparse representation, namely, compressed sensing, can not
only decrease the redundancy and extract common features among
different person identities [3], but also help to decrease the com-
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putational complexity of the training. Sparseness of weights, hid-
den units, features and dropout were often considered.

However, different sparseness strategies may be applicable to
only specific databases. Although the fusion of the metric strate-
gies can balance the performance for different databases [4], the
regularization coefficient of each sparseness term should be pro-
vided before the network training for each database. Meanwhile,
each sparseness strategy can introduce multiple hyper-parameters.
For example, the dropout ratio for dropout [5], the sparseness ra-
tio for weight pruning [6] and the set of the hidden unit layers
selected for hidden unit sparseness, are all hyper-parameters to be
adjusted since they can yield largely different performances for dif-
ferent databases. Hyper-parameter optimization provides a solution
of the challenge for different databases. While grid search provides
a greedy search into the hyper-parameter space, it requires large
time complexity since each network training may demand much
computation resource. Population evolution [7] and derivative-free
optimization framework [8] were proposed to reduce the runtime
cost of the grid search. Since the original network training often
demands much runtime cost, the idea of surrogate network was in-
troduced to approximate the computation of the original network
and simplify the hyper-parameter optimization.
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Regarding to the optimizers for hyper-parameter optimization
in the surrogate network, the gradient-based solvers use the gra-
dients of the objective function with respect to (w.r.t.) the hyper-
parameters for the iteration. However, these gradients can not be
analytically solved. The discrete approximation of the gradients de-
mands a number of network training, which requires much com-
putation resources for even a shallow network. While a meta-
heuristic algorithm adopts greedy strategy inspired from behav-
ior patterns of creatures to approach global optimum from mul-
tiple positions of the searching region, it is a practical alterative
for a variety of non-differentiable and non-convex problems, such
as the optimization of the hyper-parameters in the surrogate net-
work. Among the meta-heuristic algorithms, differential evolution
(DE) and particle swarm optimization (PSO) optimizers [9] have at-
tracted lots of attention, since they are simple in structure, easy to
implement, and perform relatively well on non-differentiable and
non-convex problems. In this work, DE and PSO are used for hyper-
parameter optimization.

1.1. Related works

For FER with network sparseness, the sparse weight or hid-
den unit is achieved by imposing the sparseness constraint on the
weight matrix W [6] or the feature maps [10] of a deep network.
The feature sparseness constraint on the fully connected (FC) layers
is a specific case of the hidden unit sparseness, which can largely
decrease the complexity of the sparseness term. For feature sparse-
ness, the inputs or outputs of the last two FC layers or their math-
ematical transformations are often embedded in the sparseness
losses for generalization ability improvement [11]. Dropout [5] and
its variants, such as weight dropout is an alternative strategy for
the network sparseness. Alam et al. [12] used dropout learning
in deep simultaneous recurrent networks for generalization ability
improvement and model size reduction in FER.

The optimization of network hyper-parameters is usually re-
quired to adapt various sparseness strategies to different databases.
Ilievski et al. [13] used radical basis function (RBF) as the surro-
gate of hyper-parameter optimization to reduce the complexity of
the original network. As multiple network re-training are required
for RBF-based surrogate fitting, Talathi [14] employed sequential
model-based optimization to tune the hyper-parameters of seven
convolution layers of a deep network.

For these traditional surrogates without using the network
models, the structure of the losses in the original network is not
preserved. As only hyper-parameters are used for the modeling of
the validation performance, the approximation performance to the
original model is limited. Network-based surrogates, such as neural
network surrogate for Bayesian optimization [15], can be used as
the surrogate of network hyper-parameter optimization. Compared
with traditional surrogate, network-based surrogates can use more
information like network weights and features for the mapping
construction, and preserve the network structure related with the
hyper-parameters. Thus, network-based surrogates can more accu-
rately approximate the original model computation. Eq. (1) com-
pares the difference between the constructing formulas of the tra-
ditional and network-based surrogates.

{Traditional Surrogate: acc, = f(A), 1)

Network-based Surrogate: acc, = f(W,, x;.).

where accy, A and f{ - ) are the validation accuracy, network hyper-
parameters and mapping function, and W, and x, are network pa-
rameters and features relied on the hyper-parameters of A. In this
work, shallow networks are deployed to surrogate the optimization
of sparseness hyper-parameters for the original deep network.
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1.2. Contribution

As the hyper-parameters tuned for training dataset may not
work well on different test datasets, this work proposes a new al-
gorithm to enable current deep learning approaches to dynamically
adapt their hyper-parameters to new datasets. Meanwhile, it is re-
vealed in the state-of-the-art studies [12,16] that FER performance
can largely benefit from sparseness strategies, which motivates us
to explore the optimization of the hyper-parameters in the deep
sparseness strategies for FER problem. More precisely, an iterative
algorithm based on a surrogate network for the optimization of
hyper-parameters in deep sparseness strategies is proposed, where
the surrogate network shares the same loss structure as the orig-
inal network and is used to surrogate the original network com-
putation. The fitting of the surrogate network is embedded into
the training of the original network based on four Euclidean losses
with unilateral back propagation. The hyper-parameters optimized
with gradient-free optimizers, i.e. DE and PSO, based on the sur-
rogate network, are then used to compete with the previous best
and applied to the original network training in the next stage. The
main contributions of this work are summarized as follows:

e A new iterative framework for the hyper-parameter optimiza-
tion in deep sparseness strategies is proposed to adapt hyper-
parameters to different databases in FER;

o A simplified network is deployed to surrogate the original net-
work for hyper-parameter optimization, where Euclidean losses
with unilateral back propagation are introduced to approximate
the original network;

o The hyper-parameter optimization algorithm achieved com-
petitive performances on six public benchmark expression
databases.

This paper is structured into the following sections. The pro-
posed approach is demonstrated in Section 2. The experimental
results and the corresponding illustrations are demonstrated in
Section 3. Finally, the conclusions and a discussion are presented
in Section 4.

2. The proposed algorithm

The framework of the proposed algorithm is presented in Fig. 1,
where each round of iteration consists of two stages. In the first
stage, the fusion network of ‘original + surrogate’ is trained indi-
vidually based on the previous or current best hyper-parameter
settings, and a surrogate network is fitted to the original net-
work simultaneously based on four Euclidean losses. Then the bet-
ter trained model is retained according to the validation perfor-
mance. In the second stage, the surrogate network parameters in
the retained model are then transferred onto the ‘surrogate’ net-
work for hyper-parameter optimization, where gradient-free op-
timizers of DE and PSO are employed. Finally, the updated best
hyper-parameters of the surrogate network are used for the op-
timization of ‘original+surrogate’ network in the next iteration.

In the following sections, the proposed algorithm is introduced.
First, different sparseness strategies and their hyper-parameters are
introduced. Second, the original and surrogate networks, together
with four Euclidean losses for the surrogate network fitting are
presented. Then, two gradient-free optimizers are demonstrated.
Finally, the time complexities of the original and surrogate net-
works are presented.

2.1. Sparseness strategies and hyper-parameters

In this work, four different sparseness strategies, i.e. feature
sparseness, weight sparseness, feature dropout and weight dropout
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original network is trained based on the sparseness and softmax loss, where four

Euclidean losses are employed for surrogate network fitting. The hyper-parameters are optimized with the gradient-free optimizers in the second stage and the candidate
hyper-parameter setting Xii”” is acquired for the training of fusion network in the next iteration.
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Fig. 2. Four sparseness strateg

are employed, whose hyper-parameters, together with the related
network layers are presented in Fig. 2.

As shown in Fig. 2, the sparseness is mainly imposed on the
features and weight matrices related with the FC layers. Four reg-
ularization coefficients of the feature and weight sparseness and
four dropout ratios are the variables to be optimized. For clar-
ity, the key symbols employed in the proposed algorithm are pre-
sented in Table 1.

The proposed sparseness losses of the FC features are formu-
lated as follows

=2 12010,

L= 3 IO @)

ies and their hyper-parameters.

where z() and x{ are the inputs of FC1 and FC2 of the ith training
sample. ||z ||1 lS the L;-norm of the vector z{, which is formu-
lated as 3; |z | The weight sparseness is formulated as follows

Lw = 5 WP,

: (3
Ly = ZiZj ||Vj(l)||1-

)

where W@ and \/j(i) are the jth column of the weight matrices of
W and V w.r.t. the ith sample.

While the sparseness losses are used for generalization ability
improvement, the softmax loss is employed to boost the recogni-
tion accuracy. Thus, the loss function embedded with the sparse-
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Table 1
Illustration of the employed symbols.
Name Remark Name  Remark
FC1 The FC layer 1 FC2 The FC layer 2
w The weights linking FC2 and the network output V The weights linking FC1 and FC2 (npc; x npep-dim)
Z(0 The input of the ith sample of FC1 P The input of the ith sample of FC2 (x® = VTz®)
L Loss function Vi The expression label of z(
Dx Dropout ratio of feature x Az The regularization coefficient of £,

ness constraints is formulated as follows
min £ = Ls+ ML;+ AxLx + AwLw + AvLy. (4)

where Az, Ax, Ay, Ay are the regularization parameters, and the
softmax loss Lg is formulated as follows

EW}/(;)TX“) ewy(xfﬂv(x)rz(i)

ES = - Zi lOg ZA wOT (i) = - Zi lOg ZA WOy OT,0) * (5)
el e
J J

where y; is the class label of the ith sample, the network bias pa-
rameters {b;")} are set to 0 in the formula for simplification.

For the network optimization by back propagation, the gradi-
ents of the loss £, in Eq. (2) w.r.t. the features are presented as
follows

oL ) )
520 = (SIGN(Z{"), ..., SIGN(z{). ). (6)
where SIGN( - ) is the sign function. The derivatives
3Ly OLw Ly

0 W By can be similarly induced.

For the dropout strategies (abbreviated as D), the dropout oper-
ators on the network features x and weights W are formulated as
follows

rj ~ Bernoulli(px),

X< XxT,

mask; j ~ Bernoulli(pw ),
W <« W xmask,

Feature dropout: Dx{

D: (7)

Weight dropout: Dw{

where x denotes element-wise product, px and py, are the dropout
ratios w.r.t. feature x and weight matrix W, respectively. In the
network testing stage, the FC features or connection weights are
weighted with the probability of 1 — pyx or 1 - py, respectively.
The dropout operator based on p; or py can be similarly induced.

Consequently, the hyper-parameters for network optimization
are summarized as follows

HypParaSet = (Az, Av, Ax, Aw, Pz, Pv, Dx» Pw)- (8)

However, the parameter optimization based on a deep network
demands much computation resources since the original network
needs to be trained multiple times. For example, finite-difference
approximation of the gradients w.r.t. the hyper-parameters in
Eq. (8) for gradient-based optimizer or heuristic algorithms [9] re-
quires to re-train the original network at least eight times, i.e. the
number of the hyper-parameters. Thus, a surrogate network is pro-
posed to surrogate the computation of the original network.

2.2. The surrogate network and euclidean losses

The residual network (ResNet) [17] is chosen as the deep net-
work in this paper, which is widely believed to well address the
gradient vanish problem of deep network. The configuration of the
modified ResNet (M-ResNet) is presented in Fig. 3.

For surrogate network, the work [18] suggested that the convo-
lution layer just before the FC layer contains the most represen-
tative information transferred from face recognition to expression
recognition. Thus, the feature map size of the last convolution of

the original network is preserved in the surrogate network. Con-
sequently, the simplified network contains the same higher layers
and loss metrics as the original network, which can be used to sur-
rogate the hyper-parameter optimization of the original network.
The surrogate network is also presented in Fig. 3.

To fit the surrogate network to the same layers in the original
network, four Euclidean losses are proposed to match the features
and weights of the two networks:

Leuctia = MxEU(X°) + nEU(Z°) + nwEU (W?) 4 nyEU (V?)

EU(X*) = [|x° = %°[[2,

EU(Z) = ||2° - 2|2, 9)
EUW?) = |[W° —W?|
EU(V®) = |[VO = V*[|,

F»

where ny, 1z, nw, Ny are regularization coefficients, || - ||r denotes
the Frobenius norm, x° and x° are the feature vectors of the orig-
inal and surrogate networks, respectively. The layers related with
the Euclidean losses are presented in Fig. 3.

Since the surrogate network is fitted simultaneously during the
optimization of the original network, whose training should not af-
fect the training of the original network. Thus, the back propaga-
tion of the Euclidean losses is set to be unilateral, i.e. only x5, z°,
WS, V8 are treated as variables in the losses (9), while x°, z°, W°,
V° are constant. The gradients of the Euclidean losses w.r.t. the fea-
tures and weights, for back propagation of the surrogate network,
are formulated as follows

JEU(XS) _ s 0

S =X =X,

3Eg(25) — S _ 70

DEUWS) _ W5 — Wo (10)
ows - )

JEU(VS) _ yss 0

e =V =Ve,

Thus, in the 1st stage of the proposed algorithm, not only
the original network is optimized independently with the fusion
sparseness losses, but also a surrogate network is fitted to the orig-
inal network based on the four Euclidean losses in Eq. (9). After
the fitting of the surrogate network, the hyper-parameters are opti-
mized with a largely simplified surrogate network in the 2nd stage,
which are further used to compete with the previous best and ap-
plied for the training of the original network in the next iteration.

However, regarding to the grid search of eight hyper-parameters
with step size of 0.1 in the range of [0,1], it will demand about 108
trials of network training to obtain the best parameter configura-
tion, which is a great burden for even a simplified surrogate net-
work. Thus, heuristic algorithms are used for the hyper-parameter
optimization in the surrogate network.

2.3. Heuristic hyper-parameter optimization

For heuristic optimizers, the objective function for hyper-
parameter performance evaluation is a main concern. For the opti-
mization of hyper-parameters in deep losses, the objective function
should reflect the generalization ability of the trained model. Cur-
rent cross-domain and cross-database metric functions are the can-
didate objective functions. In this work, the fusion of the L; and L,
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Fig. 3. The configuration of ‘original+surrogate’ network. CoPr denotes the convolutions followed by the PReLU activation function. Pool is the MaxPooling function. ResBI is
a residual block with output ResOut put = PoolOut put + CoPr(CoPr(PoolOut put)). #Replications denotes the times that the same block is replicated. #Filts denotes the number

of feature maps. #class denotes the number of expression classes.

feature sparseness [19], i.e. L; based sparseness and L, based nor-
malization, is employed as the objective function and formulated
as follows

XD

obj(X") = acc,(X") — Z [IxD]]5 (11)

Nsamp

where X,.“) denotes the ith hyper-parameter setting at the tth iter-

ation, acc,,(Xi(t)) is its validation recognition rate, nsqmp is the num-
ber of samples, « is a weight coefficient. The gradient-free heuris-
tic optimizers are population-based, where X® £ {x® ... x{"}
denotes the hyper-parameter population at the tth iteration, and
N is the number of individuals.

For the DE optimizer, the most frequently used DE, i.e.
DE[rand|1/bin [9] is employed. For the ith individual, mutually dif-
ferent indices rq,1,,1r3 € {1, ..., N} are randomly chosen first, then
three operations, i.e. mutation, crossover and selection are per-
formed sequently as follows

Vi=X" +F. (XY —x1),
Vi, if (rd <CR) or (j =rn;),

Uii=1x0
1,j’

otherwise; (12)

U,  if obj(U;) = obj(X"),

XD
®)
i Xi ,

otherwise.

where F, CR € [0, 1] denote the mutation and crossover probabili-
ties, respectively; rn; is randomly chosen from {1, ..., npara}, Npara
is the number of hyper-parameters, rd is a random number in [0,1];
obj( - ) is defined in Eq. (11).

For the PSO optimizer [9], the hyper-parameter population X(!)
is updated as follows

PR D
(t+1) (®) (t+1)
X,.’}f = Xi,j +Vi,j+ .
Xp(t) X(t) if obj(Xi([)) > Obj(xpi(t)) (13)
l XP([H) otherwise.
e _ X i obi () = objx)
Xiff) otherwise.

where rd1, rd2 are random numbers in [0,1], \/,.(;) denotes the
velocity corresponding to the jth dimension of the ith hyper-
parameter setting Xl.(t), w, ¢; and ¢, are the learning weights of

the velocity (W), the local best (XP()) and the global best (Xl.(bt) )

individuals, respectively.

Each epoch of network training can be time consuming when
the employed dataset is large, the numbers of iteration epochs and
population size are strictly limited for the population-based opti-
mizers. Thus, the parameters of the employed optimizers should
be carefully chosen such that the optimization can converge in the
limited number of iteration epochs, whose settings are illustrated
in the Appendix A.

The population of the optimizers is initialized with Latin hyper-
cube sampling (LHS). Before the LHS, the variables of regularization
coefficients need to be transformed into the same scale as that of
the dropout ratios with log( - ). Meanwhile, the log( - ) function is
also employed to normalize all the variables to an uniform scale
for the optimizers (12) and (13).

For clarity, the entire procedure of the proposed hyper-
parameter optimization is presented in Algorithm 1.
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Algorithm 1 The proposed hyper-parameter optimization.

1: Initialize the hyper-parameter population X with LHS,
MaxlIter, previous (Xiil)) and current (X,.f)) best parameter set-
tings; curlter <— NI; t < 1.

2: while curlter < Maxlter do

3 if curlter == NI then

4: Select the face recognition network for fine tuning;

5 else

6 Use the stored best model in the previous iteration for
fine tuning;

7. end if

8:  Train the ‘original+surrogate’ network for NI epochs based
on X"V and x;
i i’

9:  Update Xl.(b” eBetter(XiZt’l),XiZ”) according to validation

performance;
10:  for Each parameter setting XI.([) do
11: Transfer the weights of the ‘original+surrogate’ network
trained with Xig) to the ‘surrogate’ network;
12: Train the surrogate network for NI epochs based on Xi(t)
and record the validation accuracy;
13: Update the best parameter setting Xl.g”) according to cur-

rent validation performance;
14:  end for
15:  Update the hyper-parameter population X with heuristic
optimizers;
16:  Update the learning rate for the network solver;
17 curlter < curlter + NI, t <t + 1.
18: end while

2.4. Time complexity analysis

The surrogate model is a simplification of the original network,
as only the higher layers of the original network are preserved. In
the following, the model complexities of M-ResNet and its surro-
gate network presented in Fig. 3 are evaluated.

For deep network training, the time complexity of the convo-
lution blocks is Teony ~ O(ijl”” nr2nup.l . nienl MNehal-1 - Neha ), Where
deony is the number of convolution layers, Ny, NMgery and Nepg
are the feature map size, the kernel size and the channels in the
Ith layer, respectively. While the time complexities for the lay-
ers of pooling, ReLU and batch normalization are negligible com-
pared with that of the convolution layers. For the FC layers, the

time complexity is Ty ~ O(Z;jf1 Mnew.i—1 - Mney,)» Where nye,; is the
number of neurons of the Ith FC layer, dg is the number of FC lay-
ers.

According to these computation formulas, the time complexity
approximates the number of Teny =~ 7.8 x 108 floating-point op-
erations (FLOPs) for the convolution blocks of the employed M-
ResNet in Fig. 3, while T ~ 5 x 108 for the last two FC layers.
Thus, the time complexity of the FC layers is negligible compared
with that of the convolution blocks, ie. T,; ~ Tconv. When the
numbers of epochs ngpo, and samples ngmp are considered, the
time complexity of the original network training turns out to be
T~ O(nepoch - Nsamp - Teonv)-

The time complexity of surrogate network training approxi-
mates to Ty = 9.5 x 108 for each sample, which is about 1/82 of
that of the original network. For each iteration of the heuristic op-
timizers in Algorithm 1, objective function evaluation, i.e. surrogate
network training, should be conducted N (population size) times.
Thus, the time complexity of the surrogate network population is
about N - Tgyr, which is still smaller than that of one iteration of
the original network (T,,;) since N < 82. The time complexity anal-
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ysis illustrates the reasonability of the proposed surrogate model
for time complexity reduction.

3. Experimental results
3.1. Experimental setting

We test our algorithm using a four-kernel Nvidia TITAN GPU
Card and Caffe platform, incorporated with python.

For the SGD optimization of network training, the batch size
is set to 64, the momentum is 0.9. Basic learning rate is set as
base_Ir = 0.01, which is decayed according to base_Ir - 0.5i€r/4000,
For Algorithm 1, NI = 1e3/(MmIraisample ) * the population size is
fixed to 6; The loss regularization coefficient and the dropout ratio
are initialized around 1e—5 and 0.5, respectively; The parameters
w, ¢; and ¢, of PSO algorithm are 0.6, 0.2 and 0.9; The parame-
ters F and CR of DE algorithm are 0.1 and 0.6, respectively; x in
Eq. (11) is set to 1e—5. The regularization coefficients of 1y, 1z, nw
and ny are set to le—2.

Three shallow and deep networks, i.e. LeNet [20], the residual
network with 20 layers [17], i.e. ResNet20, and M-ResNet shown
in Fig. 3, are employed for the testing. While the surrogate net-
work of M-ResNet is presented in Fig. 3, the surrogate networks
of LeNet and ResNet20 are presented in Table 2, both include
only one convolution layer. Since ResNet20 includes only one FC
layer, four hyper-parameters of the sparseness strategies are to
be optimized. While LeNet is mainly used for algorithm analysis,
ResNet20 is used for the comparison with related surrogate model
and M-ResNet is used for the comparison with the state-of-the-art
FER algorithms.

The experiments are conducted in the following sequence. First,
the employed databases are introduced. Second, the surrogate
based hyper-parameter optimization is tested and analyzed with
disentangled sparseness strategies based on LeNet. Third, the pro-
posed algorithm is compared to other surrogates and optimizers.
Fourth, the proposed algorithm is compared to the state-of-the-
art algorithms for FER. Lastly, cross-database experiment is per-
formed to test the generalization performance of the proposed
algorithm.

3.2. Databases

The expression databases of FER2013 [21], CK+ [22], Oulu-CASIA
[23], MMI [24], AFEW [25] and AffectNet [26] are used for the per-
formance evaluation.

The FER2013 database [21] is an expression database collected
from the internet and used for a challenge. The database consists
of 35,887 grayscale face images with size 48x48, while the training
set consists of 28,709 examples, the validation (the public test) and
testing (the private test) datasets contain 3589 expression images
each. Each face was labeled with one of seven categories, i.e., angry
(An), disgust (Di), fear (Fe), happy (Ha), sad (Sa), surprise (Su) and
neutral (Ne).

The CK+ database [22] consists of 593 expression sequences
from 123 subjects, which are labeled with one of seven expres-
sions, i.e., six non-neutral expressions and contempt. ‘contempt’
is not considered in this testing. For the testing, 415 expression
sequences from 160 person identities, i.e. the neutral and three
peak frames sampled from each expression sequence were se-
lected, which were further augmented to generate 22,410 images.

The Oulu-CASIA NIR&VIS expression database [23]| contains
videos of 80 subjects, which are captured with two imaging sys-
tems, NIR (Near Infrared) and VIS (Visible light), under three dif-
ferent illumination conditions, i.e., normal (strong) indoor illumi-
nation, weak illumination (only the computer display is on) and
dark illumination (all lights are off). Each face sequence presents
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The convolution layer configurations of surrogate networks and the hyper-parameters for three
networks; num_out put is the number of feature maps of the convolution layer.

Network The convolution configuration of the surrogate network  Hyper-parameters
LeNet (num_out put, kernel_size, stride, pad) = (50,7,7,0) HypParaSet in Eq. (8)
ResNet20 (num_out put, kernel_size, stride, pad) = (64,6,4,1) (P2, Pvs Az, Av)
M-ResNet  Fig. 3 HypParaSet in Eq. (8)

-

b =

disgust

angry

Fig. 4. Example images of the FER2013, CK+,

the six non-neutral typical expressions, where the three peak ex-
pressions of the database of NIR and Strong are used. Then a simple
augmentation with 16 different crops for each face is conducted to
generate 23,040 images.

The MMI database [24] includes more than 20 person identities
with 44% female and ages from 19 to 62, which is either a Euro-
pean, Asian, or South American ethnicity and presents the six non-
neutral typical expressions. Three peak frames with the largest de-
formation intensities in each of 205 expression sequences are em-
ployed for testing, and the selected faces are further augmented to
generate 15,375 images.

Acted Facial Expressions in the Wild (AFEW-6.0) [25] is a
dynamic temporal facial expressions data corpus extracted from
movies, where 681, 76 and 365 of the 1122 sequences are used
for training, validation and testing, respectively. The neutral and six
typical expressions are employed. The three peak frames from each
sequence are selected for the testing.

The AffectNet [26] database contains about 420,300 images
with manually annotated facial expressions. Images with neutral
and six typical expressions were used in our experiments, which
consists of 283,901 training samples and 3500 validation sam-
ples. In our testing, the original training dataset is separated into
two sub-datasets, while 255,511 is used for training, the remain-
ing 28,390 is used for validation. Meanwhile, the original valida-
tion samples are used for the testing.

neutral

happy surprise

Oulu-CASIA, MMI, AFEW and AffectNet databases.

Example expressions of each database are presented in Fig. 4.
For the face alignment of the databases except for FER2013, the
five key points on the eyes, nose and mouth tips, are located.
Then, the faces are aligned, cropped and scaled with the five key
points. Each expression image I is normalized, mirrored and scaled
to the size 227 x 227 for M-ResNet, and 28 x 28 for LeNet and
ResNet20. The popular data partition strategy, i.e., ten-fold person-
independent cross-validation is conducted for CK+, MMI and Oulu-
CASIA databases. Majority voting of the probabilities of augmented
face regions is employed to yield the recognition result of each
testing sample.

3.3. Algorithm analysis

In this section, LeNet [20] is used to analyze the proposed op-
timization on the FER2013 database.

In order to test the performance of the proposed hyper-
parameter optimization on each sparseness and dropout strategy,
the hyper-parameters are divided into two groups, i.e. the regular-
ization parameters and dropout ratios, which are optimized sepa-
rately.

For loss regularization, the optimization is tested on only A, for
the FER2013 database, without loss of generality. For dropout ra-
tios, the optimization is tested on p, and py. The performances for
the loss regularization and dropout ratios are then compared to
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Table 3

The performances (%) of grid search and two optimizers for the LeNet on the FER2013 database. MaxIter = 8e4.
Parameter & performance  Grid search DE PSO
Ax 0 le-7 le-6  5e—6 le-5 5e-5 le-4  1le-3 1.89e-5 1.93e-5
Performance (%) 5297 5343 5404 5269 5436 54.83 5454 5396 56.92 56.87
o 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.4621 0.4833
Px 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.5202 0.5026
Performance (%) 5297 53.67 5444 5526 56.13 5624 55.08 5290 58.29 58.79

Table 4

The mean testing accuracies for different combinations of sparseness strategies, with and
without the proposed hyper-parameter optimization, on the FER2013 database for LeNet.
Each setting is tested three times and the average performance is recorded. MaxIter = 8e4.

Ls is always used.

Optimizer  Sparseness strategy & hyper-parameters Recog. rate (%)
- Ls (Baseline) 52.97
- dr=Av=Ax=Aw=1e—5 53.27
DE (L2, Lv, Lx, Lw) 56.34
PSO (L2, Ly, Lx, Lw) 57.37
- Pz=Dpv=Dpx=pw =05 55.89
DE (Dz, Dy, Dx, Dw) 58.46
PSO (Dz, Dy, Dx, Dw) 58.74
- A=Ay =Ax=Aw=1e—=5 p,=py =px=pw =05 5468
DE (L2, Lv, Lx, Lw, Dz, Dy, Dx, Dw) 59.68
PSO (L2, Lv, Lx, Lw, Dz, Dy, Dx, Dw) 60.24
-5
x 10
2 0.58
19 0.57
0.56
1.8
0.55
1.7
0.54
16 0.53
}\‘X
1.5% - - 0.52 .
0 20 a 40 60 0 20 40 60
051 (a) 06 (b)

0.5 Kbl

0.55
0.49
0.5
0.48
pX
P, | —6— Testing accuracy
0.45
0 20 (c) 40 60 0 20 (d) 40 60

Fig. 5. The evolution curves of the hyper-parameters and the testing accuracies against the iteration epochs for PSO optimizer on the FER2013 database.

those based on grid search, where the hyper-parameters are gen-
erated with the local variation around the default settings. Table 3
lists the performances of the proposed algorithm and grid search.

Table 3 shows that the proposed hyper-parameter optimization
achieves much better performances than the grid search. For reg-
ularization optimization, the proposed algorithm based on the DE
optimizer achieves the best performance (56.92%), which outper-
forms grid search (54.83%). For dropout ratios, the proposed algo-
rithm based on the PSO optimizer achieves the best performance
of 58.79%.

To demonstrate the change of testing accuracies against the
variations of the hyper-parameters during the original network
training, Fig. 5 demonstrates the evolution curves of the testing ac-
curacies for Ax and (p, px) based on the PSO optimizer.

Fig. 5 shows that the testing accuracies can be dynamically im-
proved by updating the hyper-parameters of the regularization co-
efficient and dropout ratios with the PSO optimizer, which illus-
trates the effectiveness of the hyper-parameter optimization for au-
tomatic adjustment and network performance improvement.
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Fig. 6. The evolution curves of the eight hyper-parameters of LeNet optimized with
PSO for the FER2013 database. Transformation functions of log;y(-)/100 and log;,(-)
are employed for the demonstration of the regularization coefficients and dropout
ratios, respectively.

To study the performance of the proposed algorithm when
all the hyper-parameters are employed, different combinations
of sparseness strategies, with and without the proposed hyper-
parameter optimization, are tested and reported in Table 4.

Table 4 shows that the proposed algorithm largely improves the
recognition performance from the baseline of 52.97% to 60.24% on
the FER2013 database. While the proposed hyper-parameter opti-
mization can dynamically balance the weights of different sparsity
strategies, our approach always achieves better performance than
that without the optimization for four or eight hyper-parameters.
The fused sparseness with all of the hyper-parameters, i.e. eight
hyper-parameters, achieves the best performance of 60.24%, since
larger possibility of performance improvement is implied in the
adjustment of eight hyper-parameters than that of one or four
hyper-parameters.

Regarding to the optimizers, PSO outperforms DE for the opti-
mization of four or eight hyper-parameters in Table 4. While DE is
more suitable for global exploration, it demands larger population
size and iteration epochs than PSO to search for a better parameter
setting when the number of hyper-parameters is large. Thus, one
can observe from Table 3 that DE outperforms PSO for one hyper-
parameter optimization. However, DE is less competitive than PSO
for the optimization of multiple hyper-parameters when the num-
ber of iteration epochs is largely restricted. Consequently, PSO is
employed for algorithm evaluation and comparison in the follow-
ing experiments.

To study the evolution of different hyper-parameters, Fig. 6
shows the evolution curves of the eight hyper-parameters in
Eq. (8) optimized with PSO for the FER2013 database.

Fig. 6 shows that the regularization coefficients w.r.t. the fea-
tures and weight matrix related with the last FC layer, i.e. FC2,
maintain at the threshold level, while the regularization coeffi-
cients of feature z and weight V are gradually decreasing. For the
dropout strategies, the dropout ratios related with x and W are
also adjusted to be increasing during the optimization. Thus, the
performance for FER is more sensitive to the perturbations of the
network feature and matrices of x, W than that of z, V.

To study the performances of the original and surrogate net-
works on the validation and testing datasets, the evolution curves
of the validation and testing accuracies with the original and surro-
gate networks based on PSO optimizer are demonstrated in Fig. 7.

Fig. 7 shows that the validation and testing accuracies are grad-
ually and consistently improved for both LeNet and its surrogate
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Table 5

The comparison of the grid search, the RBF-based [13],
evolutionary algorithm (EA)-based [27] and the proposed
surrogates on the FER2013 database for ResNet20. Ngig =
64 denotes the default number of parameter grids.
MaxTime = 40 denotes the number of the original net-
work training for RBF model fitting and update.

Surrogate Recog. rate (%)  Time complexity
Baseline 58.18 Tori

Grid search 58.68 Ngrig - Tori
RBF-based 60.13 MaxTime - T,
EA-based 59.88 2-Tyi+Tor -N

The proposed  62.08 2 Tyi+ Tour - N

network on the FER2013 database. Actually, the recognition perfor-
mance with the surrogate network is significantly lower than that
of the original network due to the limited number of convolution
layers. However, the outputs and weight matrices of the higher lay-
ers are fitted to the original network by four Euclidean losses dur-
ing the original network training. Meanwhile, an objective function
in Eq. (11) is employed to measure the performance of each hyper-
parameter setting, which incorporates not only the validation per-
formance but also the sparseness of feature representation. Thus,
the hyper-parameters learned with the surrogate network are ben-
eficial to the performance improvement of the original network
training, and similar improvements are observed in Fig. 7. While
all the hyper-parameters tend to be stable at the 30th epoch in
Fig. 6, the recognition performances in Fig. 7 can still be improved
gradually.

3.4. Comparison with other surrogates and optimizers

In this section, the proposed network surrogate is compared to
grid search, evolutionary algorithm (EA)-based [27] and RBF-based
surrogates [13] for ResNet20 on the FER2013 database.

To decrease the time complexity of the grid search, the hyper-
parameters of the same category are assumed to have the same
value, i.e. p, =R vary from 0.2 to 0.8 with a step size of 0.1,
log(A;) =log(Ay) vary from -8 to -2 with a step size of 1,
then Ngy = 8 - 8 = 64. For RBF-based surrogate [13], the maximum
number of iterations is fixed to 4e4 for hyper-parameter optimiza-
tion, while the optimized para-parameters are further used to re-
train the original network for 6e4 iterations. When PSO is replaced
with EA optimizer, the same crossover and mutation probabilities
as the heuristic algorithm' are employed, where the tournament
size for the selection operation is set to 2. Finally, the recognition
performances and the runtime complexities of the grid search, the
EA-based and RBF-based surrogates [13]| and the proposed surro-
gate are presented in Table 5.

Table 5 shows that the proposed network surrogate achieves a
better performance than grid search, the RBF-based surrogate and
the EA optimizer for the optimization of four hyper-parameters in
ResNet20.

Regarding to the time complexity, the original network needs
to be repeatedly trained Ngqq times for the grid search, ie. the
corresponding time complexity is Ngjg - To. The RBF-based sur-
rogate has to perform the entire network training about MaxTime
times, while the time complexity of the RBF fitting is almost neg-
ligible compared with a deep network training, which results in
an approximate time complexity of MaxTime - T,; in Table 5. In
each round of the proposed network training, each of the pre-
vious and current best hyper-parameter settings is used to train
the original network for only NI epochs, and each of the N sur-
rogate networks is independently trained for NI epochs. Thus, the

1 https://github.com/ilija139/HORD/pySOT/src/heuristic_algorithms.py.
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Fig. 7. The evolution curves of the validation and testing accuracies of the original LeNet and its surrogate network on the FER2013 database.

original network is fully trained twice based on rounds of iter-
ation, i.e. the time complexity of the proposed algorithm is 2 -
Tori + Tsur - N. According to the computation formulas in Section 2.4,
the time complexities of ResNet20 and its surrogate network are
Tori ~ Nepoch * Nsamp - 3.1 x 107 and Tsur ~ Nepoch * Nsamp - 1.14 x 10°,
respectively. Since the population size N is significantly smaller
than T,,;/Tsyr, the time complexity of the proposed surrogate is
smaller than that of the grid search and RBF-based surrogate. Al-
though the surrogate should have more layers for the fitting of an
original network with deeper layers, the advantage of the proposed
surrogate is still obvious since the original network needs to be
trained only twice.

Regarding to the recognition performance, the grid search
achieves a better performance than the baseline at the cost of
time complexity, while a lower accuracy than the proposed algo-
rithm. Meanwhile, the proposed surrogate approximates the orig-
inal network on the higher layers and preserves the correspond-
ing loss structure. With the introduced Euclidean losses, the pro-
posed surrogate network contains significantly larger number of
model parameters than the RBF-based surrogate. Our approach can
thus better approximate the computation of the original network.
Table 5 shows that the proposed surrogate achieves better per-
formance than grid search and the RBF-based surrogate on the
FER2013 database. Moreover, benefit from the relatively strong ex-
ploitation ability when a limited number of iteration generations
or population size is available, the PSO optimizer outperforms the
EA optimizer.

3.5. Comparison with the state of the arts

In this section, M-ResNet in Fig. 3 is employed for the evalu-
ation of proposed algorithm and comparison with state-of-the-art
algorithms on six public expression databases.

To study the performance of hyper-parameter optimization for
dynamic loss adjustment aiming at different databases, the confu-
sion matrices on the six databases are presented in Fig. 8.

For FER, the expression features among different person iden-
tities may present large variation, which can be more diverse for
different databases collected under different circumstances. Mean-
while, the features of different expressions may present confus-
ing similarity. For example, the ‘mouths’ in the FER2013 database
are ‘open’ for the ‘Fe’ expression, which are similar to that of the

10

‘Ha’ and ‘Su’ expressions. A specific metric should be highlighted
to emphasize the difference among these three expressions. Com-
pared with the study of de-expression residual learning [2] that
employs fixed loss metric for the training of all the databases, the
proposed algorithm balances the weights of different loss metrics
for different databases. While the proposed loss metric weighting
is less competitive than the algorithm with the fixed loss metric
[2] for the Oulu-CASIA database, it largely outperforms the fixed-
loss-metric algorithm [2] on the CK+ and MMI databases, which is
also verified in the overall performance comparison between the
study [2] and the proposed algorithm in Tables 7-9.

Compared with the related work [28] that employs adaptive
deep metric, Fig. 8 shows that the confusion matrices of the al-
gorithm [28] and the proposed algorithm are similar on the CK+
database, i.e. the ‘Sa’ and ‘An’ expressions are difficult to be rec-
ognized and the ‘Sa’ expression is most likely to be misclassi-
fied as the ‘Fe’ expression. Similar performance is also observed
for the MMI database. The similarity with the confusion matri-
ces of the algorithm [28] illustrates that the proposed algorithm
can dynamically adapt the weights of different metrics to different
databases. However, the proposed algorithm significantly outper-
forms the self-adaptive loss weighting [28] for the ‘Fe’ expression
of the MMI database, which illustrates the effectiveness of the pro-
posed network-based surrogate and heuristic-optimizer-based deep
metric weighting.

To study the overall performances of the proposed algorithm
and the state-of-the-art algorithms for FER, Tables 6-10 compare
the performances and the other testing protocols of our algorithm
with the state-of-the-art approaches in the literatures, for all of the
six expression databases.

For the FER2013 database, compared with the related work
[16], the proposed hyper-parameter optimization enables the train-
ing network to flexibly tune the specialized sparsity strategies for
FER2013. Compared with current works that employed salient re-
gion attention [33] and adaptive networks [34], the proposed al-
gorithm makes use of different sparsity strategies to mitigate the
possible overfitting to improve the network generalization per-
formance. Compared with the work [32] that achieved the high-
est recognition rate of 75.1% with external data sources, i.e. so-
cial relation dataset for the bridging layer deployment in the
network modeling, the proposed algorithm uses only existing
face recognition model for fine-tuning. Compared with the work



W. Xie, W. Chen, L. Shen et al.

Pattern Recognition 111 (2021) 107701

Fe Ha Sa Su Ne

12

An Di Fe Ha Sa
(d)

Fig. 8. The confusion matrices (%) of the proposed algorithm for the FER2013 (a), Oulu-CASIA (b), AFEW (c), CK+ (d), MMI (e) and AffectNet (f) databases.
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Performances of different algorithms on the FER2013 database. Symbol ‘-’ denotes not reported.

Di Fe Ha Sa Su Ne

(f)

Methods

Fine tuning

Recog. rate (%)

Deeper DNN 2016 [29]
DNN with SVM 2013 [30]

Fusing multiple networks with aligned faces 2016 [31]
Fusing multiple data sources 2015 [32]
Multi-path CNN with salient region attention 2019 [33]

Sparse deep feature 2019 [16]

Adaptive networks with bounded gradient 2020 [34]

Ours

No fine tuning

Fine tuning with SVM'’s objective
Aligned and frontalized databases

Using external database
No fine tuning
Face recognition model

Face recognition model

66.4

71.2

73.73 (71.86 by single DCN)
75.1

66. 2

72.14

71.53

72.47

Table 7

Performances of different algorithms on the CK+ database. Symbol “** denotes that neural is replaced with contempt expression. ‘10F denotes ‘10-fold’.

Methods Data Fine tuning #Class  Sub. Proto. Recog. rate (%)
Adaptive deep metric 2017 [28] Three Peak frames = CMU Multi-pie 7* 118 10F 97.1
Fine Tuning 2015 [11] Temporal Frames Geometry and Texture Losses — 7* 106 10F 97.25
Spatial and Temporal Networks 2017 [35] Temporal Frames - 7* 118 10F 98.5 (95.54)
Sparse Autoencoders 2018 [10] Four Peak frames - 8 123 10F 95.79
Face Net Regularization 2016 [18] Three Peak frames  Face Recognition Net 8 123 10F 96.8
Radial Feature 2012 [36] Five images - 7 94 10F 91.51
AU Network 2013 [37] Three Peak frames  Logistic regression 7 118 10F 92.05
Dropout and Randomized DMLs 2018 [12]  Five Peak frames - 7 118 10F 99.11 (97.68)
De-expression residual learning 2018 [2] - Three Peak frames 7 118 10F 97.3
Ours Three Peak frames Face recognition model 7 106 10F 97.83
Table 8
Performances of different algorithms on the Oulu-CASIA database.
Methods Data Fine tuning #Class  Sub.  Proto.  Recog. rate (%)
AdaLBP 2011 [23] Temporal Frames (Strong — VIS) - 6 480 10F 73.54
Fine Tuning 2015 [11] Temporal Frames (Strong) Geometry and Texture Losses 6 480 10F 81.46
Spatial and Temporal Networks 2017 [35]  Temporal Frames (Strong) - 6 480 10F 86.25 (77.67)
Face Net Regularization 2016 [18] Three Peak (Strong — VIS) Face Recognition Net 6 480 10F 87.71
De-expression residual learning 2018 [2] Three Peak (Strong — VIS) - 6 480 10F 88.0
Ours Three Peak (Strong — VIS) Face recognition model 6 480 10F 85.0

1



W. Xie, W. Chen, L. Shen et al.

Table 9
Performances of different algorithms on the MMI database.
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Methods Data Fine tuning #Class  Sequence  Proto.  Recog. rate (%)
AU Network 2013 [37] Three Peak frames Logistic regression 7 205 10F 74.76
Deeper DNN 2016 [29] - No fine tuning 6 79 5F 77.6
Multiscale active learning 2015 [38] Three Peak frames - 6 - 10F 77.39
Adaptive deep metric 2017 [28] Three Peak frames  CMU Multi-pie 6 205 10F 78.53
De-expression residual learning 2018 [2] Three Peak frames - 6 208 10F 73.23
Ours Three Peak frames  Face recognition model 6 205 10F 79.02
Table 10
Performances of different algorithms on the AFEW (validation dataset) and AffectNet database.
AFEW AffectNet
Methods Recog. rate (%)  Methods Recog. rate (%)
LSTM + Partial Least Squares [39]  44.47 Inconsistent Pseudo Annotations on 80-layer Network [40] 57.31
VGG-LSTM-Single CNN-RNN [41] 4543 CNN with global-local attention mechanism [42] 58.78
Ours 46.03 Ours 58.66

[31] that achieved a better recognition rate of 73.73% by conduct-
ing an additional data preprocessing, i.e. face frontalization and
fusing multiple networks, the proposed algorithm achieves a com-
petitive performance of 72.47% by training single network only
twice.

For the CK+ database, the performance of the proposed al-
gorithm ranked the 2nd among six algorithms for seven-class
FER. While the work [12] achieved a higher recognition rate of
99.11% with multiple recurrent hidden output sparseness and high-
dimension metric functions, the proposed algorithm achieved a
better performance of 97.83% than the best accuracy, i.e. 97.68%,
achieved by Alam et al. [12] when only network sparseness is em-
ployed. Compared with the approach [12] that employs the fixed
hyper-parameter in the dropout regularization, the proposed algo-
rithm is proposed to optimize the hyper-parameters of different
sparseness strategies to make them adaptive to different databases,
i.e. multiple feature and weight sparseness strategies are optimized
for different expression databases.

For the Oulu-CASIA database, the work [18] achieved a better
performance of 87.71% by first screening the layers with the best
neuron entropy scores, then transferring the learned information
from the face recognition net to FER. The study with de-expression
residual learning [2] devised an effective loss metric for the Oulu-
CASIA database, and achieved the best performance of 88.0%. How-
ever, compared with the algorithm [2] with fixed loss metric,
the proposed algorithm achieves not only a competitive perfor-
mance of 85.0% on the Oulu-CASIA database, but also much bet-
ter performances on the CK+ and MMI databases in Tables 7 and
9 by dynamically adapting the hyper-parameters in sparseness and
dropout strategies.

For the MMI database, the proposed algorithm achieved the
best performance of 79.02%. The adaptive deep metric learn-
ing [28] achieved a competitive performance of 78.53% by self-
adaptively updating the parameters of reference distance and mar-
gin in the loss metric. Compared with adaptive deep metric learn-
ing [28] for the CK+ and MMI databases, the proposed algorithm
uses the sparseness-structure-preserving network surrogate to op-
timize hyper-parameter setting for each database, and achieves
better performances on both databases.

AFEW and AffectNet databases consist of faces with diverse
poses and expressions in the wild, which are more challeng-
ing. Table 10 presents the performances of different state-of-the-
art algorithms based on the same testing dataset. While 90%
of the original training dataset is used for network learning,
the proposed algorithm still achieves competitive performances.
Table 10 shows that the proposed algorithm achieves the best per-
formance, i.e. 46.03%, on the AFEW database, and ranks the sec-
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ond among three state-of-the-art algorithms, where a competi-
tive performances, i.e. 58.66%, is achieved by the proposed al-
gorithm. The best performance, i.e. 58.78%, is achieved by fus-
ing the global and local attention mechanism for the AffectNet
database.

Tables 6-10 show that the proposed algorithm balances the
performances for the six databases, e.g. the proposed algorithm
achieves more balanced performances than the algorithm [2] on
the CK+, Oulu-CASIA and MMI databases, and the approach [18] on
the CK+ and Oulu-CASIA databases. These balanced performances
achieved by the proposed algorithm in Tables 6-10 illustrates
the effectiveness of the hyper-parameter optimization for dynamic
database adaption. More precisely, the dynamic adjustment of dif-
ferent sparseness strategies can adapt the fusion losses to impose
more powerful discrimination ability on specific expression pairs
difficult to discriminate, and consequently improve the network
performance.

In the preceding comparison, the fine-tuning strategies and net-
work models may be not strictly the same, while the comparison
of the proposed algorithm and the related algorithms under the
same experimental settings still verifies the usefulness of the pro-
posed hyper-parameter optimization on sparseness strategy selec-
tion and weighting for different databases. From another aspect,
the proposed algorithm introduced a general optimization model,
which can be embedded into the state-of-the-art approaches to
optimize their hyper-parameters and further improve their perfor-
mances.

3.6. Generalization performance

To study the generalization performance of the proposed algo-
rithm, cross-database experiments are presented in this section.
For testing a dataset with seven categories when a dataset with
six categories is used for training, the ‘neutral’ expressions are re-
moved from the evaluation. For the network training, the target
(testing) database is divided into ten folds, while one fold is used
as the validation dataset to assist the training (original) dataset to
optimize the hyper-parameters, the remaining nine folds are used
for the testing. This process was repeated for each of ten folds,
then the average performance is used for evaluation and compari-
son.

The proposed algorithm uses the information implied in the
one-fold samples of the target dataset to guide the hyper-
parameter optimization during network training, while traditional
algorithms like [16] does not include the information of the tar-
get dataset in the training. To make a fair comparison, the same
one-fold samples of the target dataset are added into the training
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The cross-database performances (%) of the proposed algorithm and the approach [16] (in bracket) on FER2013,
CK+, Oulu-CASIA and MMIL. The 1st and 2nd accuracies in the brackets are the performances [16] with and without
using the target dataset information during the training.

Testing accuracy (%)

Training

FER2013 CK+ Oulu-CASIA MMI
FER2013 - 63.13 (64.10, 63.86)  46.04 (42.29, 39.79)  58.05 (58.05, 57.07)
CK+ 49.14 (43.87,39.72) - 63.12 (59.38, 42.08)  60.98 (61.46, 60.48)
Oulu-CASIA  60.95 (56.67, 54.19)  89.0 (86.08, 84.78) - 62.93 (61.95, 61.46)
MMI 55.33 (58.02, 60.19)  78.32 (76.7, 77.02)  62.92 (57.92, 50.83) -

Table 12

The cross-database performances (%) of the proposed algorithm
and the approach [16] (in bracket) for spontaneous datasets,
where one-fold of target dataset is used during training.

Testing accuracy (%)

Training

FER2013 AFEW AffectNet
FER2013 - 39.75 (41.27)  65.28 (64.67)
AFEW 28.82 (27.16) - 39.0 (28.87)
AffectNet  49.82 (50.39)  43.81 (40.55) -

of the algorithm [16]. The performances of the proposed algorithm
and the approach [16] on FER2013, CK+, Oulu-CASIA and MMI with
and without using target dataset information in the training are
presented in Table 11.

Table 11 shows that in most cases, the proposed algorithm out-
performs the approach [16] when the target data information is
not used during training, which illustrates that the proposed algo-
rithm benefits from the information implied in the target dataset
and the dynamic update of the network hyper-parameters. When
one-fold samples of the target dataset are used in the network
training, Table 11 shows that the proposed algorithm still achieves
better performances than the approach [16] in most cases, where
an improvement of 5.27% is achieved when CK+ and FER2013 are
used for training and testing, respectively. The proposed algorithm
can adapt the hyper-parameters of a network according to the
characteristics of the target dataset, which makes the network
more suitable for the feature learning of the target dataset. Thus,
the proposed algorithm yields more competitive cross-database
performances than the approach [16] based on fixed sparseness
hyper-parameter setting for all the datasets.

To further study the cross-database performance of the pro-
posed algorithm on the spontaneous databases, FER2013, AFEW
and AffectNet are used for the evaluation and results are demon-
strated in Table 12.

Table 12 shows that the proposed algorithm has greater
competitiveness on cross-database performances for spontaneous
datasets over the work [16], where better performances are ob-
tained by the proposed algorithm on four out of six recognition
accuracies. Meanwhile, a large improvement of 10.13% is obtained
when AFEW and AffectNet are used for training and testing, and
an improvement of 3.26% is achieved when AffectNet and AFEW
are used for training and testing, respectively.

4. Discussion and conclusions

In this work, a new iterative framework for optimizing hyper-
parameters in different sparseness strategies of deep network is
proposed, where a surrogate network preserving the higher lay-
ers and deep sparseness strategies as the original network is de-
vised to approximate the original network computation. The hyper-
parameters optimized based on the surrogate model and gradient-
free heuristic optimizers, i.e. DE and PSO, are then used to compete
with the previous best and applied for the next iteration. Experi-
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mental results with three networks and their surrogates show that
the proposed hyper-parameter optimization can not only automat-
ically adjust the hyper-parameter setting with reduced time com-
plexity, but also largely improve the performance of grid search
and RBF-based surrogate. Meanwhile, the comparison among the
proposed algorithm and the state-of-the-art algorithms for the ex-
pression databases, i.e. FER2013, CK+, Oulu-CASIA and MMI, verifies
the effectiveness of the proposed hyper-parameter optimization for
sparseness strategy selection and weighting in FER.

Although competitive performances are achieved by the pro-
posed algorithm, there remains room for further improvement.
First, runtime cost should be further reduced with more time-
saving heuristic algorithms. Second, the sparseness with only the
Ly-norm is considered, more sparseness norms, such as L, and
L1, will be studied in our future work. Third, more diverse sur-
rogate networks can be devised, whose effects on the hyper-
parameter optimization should be further compared and analyzed.
Fourth, the objective function for the optimizers, used for transfer-
ring information learned from the validation dataset to the testing
dataset, can be fine tuned to further improve the algorithm perfor-
mance. Fifth, the proposed algorithm introduces additional hyper-
parameters in the Euclidean losses and the optimizers, whose in-
fluences on the overall performance should be studied. As the op-
timization for the hyper-parameters is general, it can thus be ex-
panded to include more hyper-parameters in various deep losses,
e.g. Softmax variants and Center loss etc, and applied to more ap-
plications, like face recognition. The design of optimization models
and algorithms for more general network hyper-parameters will be
our future work.
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Appendix A

For the parameter tuning of heuristic optimizers, a toy opti-
: ; ; Npara 2
mization model,. Le. Maxy, 1<i<npgq = 2ty (Ui—C.,') is proposed,
where {c;, 1 < i < npaq) are the constants provided in advance,

Npara i the number of optimization variables. Consequently, the
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parameters in the employed optimizers are adjusted manually ac-
cording to the number of network iteration epochs.
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