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Abstract. Human face image contains abundant information including
expression, age and gender, etc. Therefore, extracting discriminative fea-
ture for certain attribute while expelling others is critical for single facial
attribute analysis. In this paper, we propose an adversarial facial expres-
sion recognition system, named expression distilling and dispelling learn-
ing (ED2L), to extract discriminative expression feature from a given
face image. The proposed ED2L framework composed of two branches,
i.e. expression distilling branch ED2L-t and expression dispelling branch
ED2L-p. The ED2L-t branch aims to extract the expression-related fea-
ture, while the ED2L-p branch extracts the non-related feature. The dis-
entangled features jointly serve as a complete representation of the face.
Extensive experiments on several benchmark databases, i.e. the CK+,
MMI, BU-3DFE and Oulu-CASIA, demonstrate the effectiveness of the
proposed ED2L framework.

Keywords: Facial expression recognition · Feature distilling ·
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1 Introduction

Facial expression is one of the most important characteristics for people to
express emotion and interact with others. In the field of computer vision and
machine learning, numerous studies have been conducted on the facial expression
recognition (FER) due to its practical importance in sociable robotics, medical
treatment, driver fatigue surveillance, and many other human-computer inter-
action systems [1]. In [2], Ekman and Friesen firstly defined six basic emotions,
including anger, disgust, fear, happiness, sadness and surprise. Contempt was
subsequently added as one of the basic emotions [3].
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Fig. 1. Overview of our approach. A facial image contains abundant information. Our
approach consists of two branches, which separate expression-related and non-related
features for facial expression recognition by adversarial learning.

Current FER systems in the literature can be classified into two categories
according to their feature extraction methods: hand-crafted features based meth-
ods and deep learning based methods. Majority of hand-crafted features based
methods employed features such as LBP-TOP [4] and Gabor [5] to represent
a given image. The extracted features are then used to classify facial expres-
sions by Support Vector Machine (SVM) [6] or Nearest Neighbor classifier. Zhao
and Pietikainen [4] proposed the LBP-TOP operator for expression recogni-
tion, which extracts co-occurrence features by computing concatenated LBP
histograms from three orthogonal planes. Xie et al. [5] employed the Gabor sur-
face feature (GSF) to represent the facial expression and SVM for classification.
Since the extraction of hand-crafted features is separated from the training of
classifier, these methods may lose useful facial information and achieve limited
performance.

To extract sufficient and representative features, the deep learning based
methods (e.g. IACNN [7] and DTAGN [8]) were adopted to facial expression anal-
ysis. Meng et al. [7] proposed an identity-aware CNN network to capture both
expression-related and identity-related information, which achieved 95.37% accu-
racy on the CK+. Jung et al. [8] proposed the DTAGN composed of two different
deep networks to extract temporal appearance feature from image sequences and
temporal geometry feature from temporal facial landmark points, respectively.
Although the performance of these methods are better than the hand-crafted
features based methods, their capacities are still limited. Because a human face
contains various attributes, e.g. age, skin color and gender, these expression fea-
tures may be confused with other facial attributes related features.

With consideration to the aforementioned issues, some scholars tried to
extract facial expression feature by comparing the differences between query
face image and neutral face image. Yang et al. [9] proposed a De-expression
Residue Learning (DeRL) method to extract expressive component (the dif-
ference between neutral expression and other expressions). The DeRL com-
posed of two stages: First, a generator is trained using cGAN [10] to regen-
erate the neutral face image for a facial expression image. Then, the expression
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information contained in the intimidate layers of the generative model was cap-
tured and concatenated for facial expression recognition. Since the DeRL method
contains two stages, the performance of the generative model in the first stage
has a great impact on that of the FER in the second stage. Liu et al. [11] pro-
posed a distilling and dispelling auto-encoder (D2AE) framework to perform
face editing. Its encoder contains two branches: identity-distilling and identity-
dispelling branches, to extract the identity information and the complementary
facial information, respectively. Features in the two streams represent different
information of a face, which were then used by the decoder to manipulate facial
attributes.

In this paper, inspired by the success of the DeRL [9] and D2AE [11], we
propose an end-to-end adversarial expression distilling and dispelling learning
(ED2L) framework for facial expression recognition, as depicted in Fig. 1. Sim-
ilar to Liu et al. [11], the proposed ED2L have two branches, i.e. the expres-
sion distilling and dispelling branches. Since the facial expression database is
much smaller than those databases for face identification, the facial expression
database is not large enough to train complex face identification network. We
use SpherefaceNet-20 [12] instead of Inception-ResNet [13] as the backbone of
our framework, which makes our network structure much lighter than D2AE.
The model parameter size of D2AE is about 20 times larger than that of our
approach, which saves computational resources and brings about a faster conver-
gence during training our framework. In addition, Additive Margin Softmax [14]
is used in our expression distilling branch as the loss function. Also, as shown
with the purple dotted arrow in Fig. 2, the optimization of lpe in the expression
dispelling branch updates Base net, Bθp and dispeller simultaneously. The pro-
posed ED2L framework aims to separate discriminative expression feature from
other face information. Our main contribution can be summarized as follows:

• A adversarial ED2L framework is proposed to disentangle expression-related
feature from a given face.

• The adversarial learning of the proposed ED2L framework ensures the effec-
tive extraction of the expression-related and non-related features.

• The automatically learned expression-related feature achieves competitive
performance in several benchmark databases.

2 Methods

In this section, we introduce the proposed ED2L framework. As visualized in
Fig. 2, the entire framework consists of three parts, the base net Sθ and two
parallel branches: expression distilling branch ED2L-t and expression dispelling
branch ED2L-p. Given a face image x, a variety of face attribute information
Sθ(x) is extracted by the base net Sθ. Then, Sθ(x) is fed into expression distilling
branch Bθt and expression dispelling branch Bθp to further extract expression-
related and non-related features, respectively. The expression-related feature
ft ∈ RNt and non-related feature fp ∈ RNp jointly serve as a complete rep-
resentation of the face.
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Fig. 2. The expression distilling and dispelling framework. (Color figure online)

2.1 Base Net

Adapted from SpherefaceNet-20 [12], the architecture of our framework is
demonstrated in Table 1. Conv1, Conv2 and Conv3 denote convolutional blocks
that contain multiple convolutional layers and residual units. [3 × 3, 64] × 2
denotes two cascaded convolution layers with 64 filters of size 3 × 3, and S-2
denotes stride 2 in the down sample layer. Each convolutional layer is followed
by a batch normalization layer and a PReLU [15] layer. FC-256 denotes a fully
connected layer with 256 neurons.

2.2 Expression Distilling Branch

We propose the expression distilling branch ED2L-t to extract discriminative
expression-related information ft. As revealed in Fig. 2, ft is extracted using the
subnet Bθt after the base net.

ft = Bθt(Sθ(x)) (1)

Then, ft is mapped by a non-linear function Additive Margin Softmax [14],
defined in Eq. (2),

yt =
es(̇WT

yt
ft−m)

e
s(̇WT

yi
t

ft−m)
+

∑c
j=1,j �=yi

t
esWT

j ft

(2)

where yt ∈ RNt is an Nt-dimensional vector, which represents the probabilities
of belonging to the corresponding class, m and s are two hyper-parameters of the
additive margin softmax which denote the margin among categories and scaling
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Table 1. Architectures of the proposed ED2L framework.

Components Layers Configurations

Base net Conv1 [3 × 3, 32] × 1, S-2 [3 × 3, 32; 3 × 3, 32] × 1

Conv2 [3 × 3, 64] × 1, S-2 [3 × 3, 64; 3 × 3, 64] × 2

Conv3 [3 × 3, 128] × 1, S-2 [3 × 3, 128; 3 × 3, 128] × 4

Expression
distilling branch

Bθt [3 × 3, 256] × 1, S-2 [3 × 3, 256; 3 × 3, 256] × 1 FC-256

Classifier #Expression Category

Expression
dispelling branch

Bθp [3 × 3, 256] × 1, S-2 [3 × 3, 256; 3 × 3, 256] × 1 FC-256

Dispeller #Expression Category

factor, respectively. The classification loss lte is computed by the probability
vector yt ∈ RNt , where i denotes the ground truth index.

lte = − log yi
t (3)

The back-propagation route of lte optimization including the expression distilling
branch Bθt and base net Sθ is indicated with the red dotted arrow in Fig. 2.

2.3 Expression Dispelling Branch

Similar to the ED2L-t, the structure of expression dispelling branch ED2L-p
composed of a subnet Bθp and an expression dispeller. The ED2L-p inhibits
expression-related feature and extracts the non-related feature fp by the subnet
Bθp following the base net.

fp = Bθp(Sθ(x)) (4)

In order to ensure that the ED2L-p can extract expression non-related feature, an
adversarial supervised training method composed of two different loss functions
lae and lpe is employed.

The cross entropy loss lae = − log yi
p is leveraged to supervise the train-

ing of the expression dispeller based on yp, which is computed by yp =
softmax(Wpfp+bp). Note that the gradient of lae is only back-propagated to the
expression dispeller and does not update the previous layers, which is different
from lte.

lpe is proposed to fool the training of expression dispeller yp. In other words,
lpe is required to be constant over all expressions and equal to 1

N . Thus, the
optimization goal is equivalent to minimize the negative entropy of the predicted
expression distributions, where N denotes the number of expression categories.

lpe = − 1
N

N∑

j

log yj
p (5)
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The optimization of lpe updates the expression dispelling branch Bθp and the
base net Sθ.

The sum of lae and lpe constitutes the total loss function of the expression
dispelling branch. Note that yp of the feature dispelling branch is not used to
predict the expression category.

2.4 Objective Function

The ED2L framework is jointly optimized by three loss functions lte, lae and lpe .
The total loss function L is the weighted sum of lte, lae and lpe , as formulated in
Eq. (6).

L = λtl
t
e + λp(lae + lpe) (6)

3 Experiments and Results

In this section, we evaluate the performance of the proposed approach on four
benchmark databases, including CK+ [16], MMI [17], BU-3DFE [18] and Oulu-
CASIA [19], and compare the results with the state-of-the-art methods.

3.1 Implementation Details

Data Preprocessing. For each database, the faces are first detected by the
MTCNN [20] and aligned to the resolution of 128 × 110 according to their cor-
responding landmarks. Then, ten gray patches with the size of 112 × 96 are
generated by cropping from four corners and center of each aligned image and
the horizontal flipping mirror.

Hyperparameters. The proposed ED2L framework is optimized using Adam
optimizer [21] with betas of 0.9 and 0.999, ε of 1e−8 and weight decay of 0.0005.
The optimization is performed about 100 epochs with a batch size of 64 and an
initial learning rate of 1e − 4. For objective function, we set m = 0.35, s = 30,
λt = 1 and λp = 10.

3.2 Databases

The Extended Cohn-Kanade database (CK+) [16] is a representative
laboratory-controlled database for facial expression recognition. It contains 593
video sequences from 123 subjects. Among these videos, only 327 sequences from
118 subjects are labeled with seven expressions (anger, contempt, disgust, fear,
happiness, sadness and surprise). In order to compare with other methods, the
10-fold cross validation protocol in [9] is followed. The last three frames of each
labeled sequence are selected and all subjects are divided into ten groups based
their ID in an ascending order. Every subgroup is further selected as testing set
to evaluate the model performance, and the remaining subgroups are used for
training in the 10-fold cross validation.
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(a) CK+ (b) MMI

(c) BU-3DFE (d) Oulu-CASIA

Fig. 3. Confusion matrix of the ED2L framework with fine-tuning for the CK+, MMI,
BU-3DFE and Oulu-CASIA databases. The labels on the vertical and horizontal axis
represent ground truth and predicted expressions, respectively.

The MMI database [17] consists of 236 sequences from 32 subjects with six
basic expressions. We select 209 sequences captured in front view. Since the
sequences of this database begin with the neutral expression and show a peak
expression near the middle of the sequences. We select three frames in the middle
of each sequence and employ a 10-fold cross validation similar to that of the CK+
database.

The BU-3DFE database [18] consists of 2500 pairs of 3D face models and
texture images of 100 subjects (56 female and 44 male subjects). Each subject
displayed six basic facial expressions (anger, disgust, fear, happiness, sadness
and surprise) with four intensity levels and a neutral expression. Following the
test protocol in [9], only the texture images with high-intensity expressions (i.e.
the last two levels) were selected. The selected pictures were further divided into
10 subject-independent groups.

The Oulu-CASIA database [19] contains two subsets, i.e. the Oulu-CASIA
NIR database and the Oulu-CASIA VIS database, which were captured under
three different illumination conditions (dark, weak and strong) using a NIR
camera and a VIS camera, respectively. In our experiments, only the Oulu-
CASIA VIS database under strong illumination condition is used. The Oulu-
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Table 2. Overall accuracy on the CK+ database. Remark that w. and w.o. denote the
use of fine-tuning, or not, respectively.

Method Accuracy (%)

LBP-TOP [4] 88.99

3DCNN [23] 85.90

STM-Explet [24] 94.19

IACNN [7] 95.37

DTAGN-Joint [8] 97.25

DeRL [9] 97.30

Baseline(w.o.) 94.19

Baseline(w.) 94.50

Ours(w.o.) 96.33

Ours(w.) 97.86

CASIA VIS database includes 480 image sequences from 80 subjects labeled
with six basic expressions (anger, disgust, fear, happiness, sadness and surprise).
Similar to the CK+ database, the last three frames of each sequence are selected
and a 10-fold cross validation is applied.

3.3 Experiments

Baseline. In order to prove the effectiveness of the proposed ED2L framework,
we employed a baseline network for comparison which has the same structure as
the ED2L framework without ED2L-p branch.

Transfer Learning. Training of the CNN is prone to over-fitting because the
number of images in the CK+, MMI, BU-3DFE and Oulu-CASIA databases
are insufficient. Therefore, firstly, we trained the ED2L framework on the
FER2013 [22] database with the same parameter settings described in Sect. 3.1
and used the pretrained model as the base model. Then, the base model was fur-
ther fine tuned using the CK+, MMI, BU-3DFE and Oulu-CASIA databases.
When training the baseline model, the same procedure was adopted.

3.4 Results

CK+. The overall accuracy of 10-fold cross validation is displayed in Table 2.
The proposed ED2L framework outperforms the baseline with a 3.36% gap, which
suggest the effectiveness of the adversarial learning between two branches. Com-
pared to other methods, our approach achieves the best performance, i.e. 97.86%
and beats all hand-crafted features based methods (LBP-TOP [4]) and CNN-
based methods (3DCNN [23], STM-Explet [24], IACNN [7], DTAGN-Joint [8] and
DeRL [9]). Figure 3(a) shows the confusionmatrix of ED2L framework for theCK+
database.Diagonal of thismatrix, suggests that ourmethodperformed remarkably
well in recognizing the expressions of disgust, happiness and surprise.
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Table 3. Overall accuracy on the MMI database.

Method Accuracy (%)

LBP-TOP [4] 59.51

STM-Explet [24] 75.12

DTAGN-Joint [8] 70.24

IACNN [7] 71.55

DeRL [9] 73.23

Baseline(w.o.) 62.68

Baseline(w.) 76.56

Ours(w.o.) 72.73

Ours(w.) 80.38

Table 4. Overall accuracy on the BU-3DFE database.

Method Accuracy (%)

Wang et al. [25] 61.79

Berretti et al. [26] 77.54

Yang et al. [27] 84.80

Li et al. [28] 86.32

Lopes [29] 72.89

DeRL [9] 84.17

Baseline(w.o.) 86.00

Baseline(w.) 87.17

Ours(w.o.) 87.83

Ours(w.) 88.67

MMI. Table 3 lists the results of the proposed ED2L framework, together with
that of baseline and other approaches in literature. The accuracy of our approach
with fine tuning, 80.38%, is significantly higher than that of baseline (76.56%),
and the best results in literature (75.12%). As shown from the confusion matrix
of MMI database in Fig. 3(b), the ED2L framework has a remarkable recognition
performance for the expression of surprise.

BU-3DFE. As it can be seen in Table 4, the accuracy of our approach, 87.83%
show a better performance than that of the baseline (86.00%) and the best result
in literature (86.32%). As illustrated in Fig. 3(c), our approach performed well
in recognizing the expression of happiness.
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Table 5. Overall accuracy on the Oulu-CASIA database.

Method Accuracy (%)

LBP-TOP [4] 68.13

STM-Explet [24] 74.59

Atlases [30] 75.52

DTAGN-Joint [8] 81.46

PPDN [31] 84.59

DeRL [9] 88.0

Baseline(w.o.) 83.96

Baseline(w.) 84.58

Ours(w.o.) 85.21

Ours(w.) 87.71

Ang
Dis
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Hap
Sad
Sur

(a) ED2L

Ang
Dis
Fea
Hap
Sad
Sur

(b) baseline

Fig. 4. Visualization of the features extracted by the adversarial ED2L framework and
baseline network, using t-SNE [32]. (Color figure online)

Oulu-CASIA. The overall accuracy of 10-fold cross validation is illustrated
in Table 5. Fine-tuning has also been shown to improve the accuracy of our
framework from 85.21% to 87.71%, which is again higher than that of baseline,
84.58%. When the performance of our framework is better than most of the
approaches in literature, our accuracy is a little bit lower than that of DeRL,
88.0%. However, the number of training images (60,600) used for pretrained
model in DeRL is much bigger than that of our approach (28,709). The amount
of augmented training images in the second stage of DeRL is also about 10 times
larger than that of our approach.

3.5 Visualization

In order to further illustrate the effectiveness of the proposed ED2L framework,
we extract the image features of the CK+ database from the FC-256 layer of the
ED2L-t branch and baseline, respectively. We use the first validation set of the 10-
fold cross validation protocol to extract these features. Note that as subject inde-
pendent division is used, the subjects in the first fold only present six expressions,
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(a) Female subject (b) Male subject

Fig. 5. Visualization of the feature heat-maps extracted from the down sample layers of
ED2L-t and ED2L-p. The left column is the input image, the middle and right columns
are the feature heat-maps extracted from ED2L-t and ED2L-p, respectively.

i.e. anger, disgust, fear, happiness, sadness and surprise. As depicted in Fig. 4, the
features extracted by the ED2L framework are densely clustered for each expres-
sion category and easy to distinguish. There are distinct boundaries between fea-
tures of different expressions. While the features extracted by the baseline net-
work are non-discriminative and have ambiguous boundaries, e.g. the points of fear
expression (blue points) are mixed with others. The results qualitatively suggests
that the proposed approach has an extraordinary ability to extract discriminative
expression-related information, mainly due to the adversarial supervised learning
of the expression distilling and dispelling branches.

In addition, we extract the feature maps of the CK+ database from the
down sample layer of ED2L-t and ED2L-p, respectively. The 10th validation set
of the 10-fold cross validation protocol is used to extract these feature maps
composed of 256 channels. Then the sum of these feature maps is normalized
to [0, 1] to calculate the heat-maps. The feature heat-maps are resized to 112 ×
96 to match the size of input image. In Fig. 5, we extract and visualize the
feature maps for different expressions of two different subjects. For different
expressions of the female subject shown in Fig. 5(a), the heat-maps extracted
from ED2L-t differ significantly with each other, while the ED2L-p heat-maps
are almost the same. The same conclusion can be drawn for the male subject
shown in Fig. 5(b). The examples clearly suggest that ED2L-t tries to look at
regions sensitive to expressions like eyes, nose and mouth, while ED2L-p focus
on expression invariant regions like forehead.

4 Conclusions

In this paper, we present an adversarial expression distilling and dispelling
learning (ED2L) framework for facial expression recognition. The framework
uses expression distilling (ED2L-t) and dispelling (ED2L-p) branches to extract
expression-related and non-related features, respectively. The features learned by
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two branches jointly serve as a complete representation of the face. As evaluated
on several facial expression benchmark databases, the ED2L framework showed
its superiority over both traditional hand-crafted features based methods and
CNN-based methods.
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