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Abstract Differential evolution (DE) has been used to

solve real-parameter optimization problems with nonlinear

and multimodal functions for more than a decade of years.

However, it is pointed out that this classical DE harbors

restricted efficiency and limited local search ability.

Inspired by that gradient-based algorithms have powerful

local search ability, we propose a new algorithm, which is

diversity-maintained DE based on gradient local search

(namely, DMGBDE), by incorporating approximate gra-

dient-based algorithms into the DE search while main-

taining the diversity of the population. The primary

novelties of the proposed DMGBDE are the following: (1)

the gradient-based algorithm is embedded into DE in a

different manner and (2) a diversity-maintained mutation is

introduced to slow down the learning procedure from the

searched best individual. We conduct numerical experi-

ments with a number of benchmark problems to measure

the performance of the proposed DMGBDE. Simulation

results show that the proposed DMGBDE outperforms

classical DE and variant without gradient local search or

diversity-based mutation. Moreover, comparison with

some other recently reported approaches indicates that our

proposed DMGBDE is rather competitive.

Keywords Differential evolution � Gradient local search �
Diversity-maintained mutation � Ability to continue

searching

1 Introduction

For the last few decades, different kinds of stochastic

algorithms were proposed to solve real engineering prob-

lems in a wide variety of fields. Different from classical

gradient-based optimization algorithms, a stochastic algo-

rithm (namely, as meta-heuristic algorithm) adopts one

greedy strategy or learns from the behavior patterns of

creatures to proceed to global optimum from multiple

positions of the searching region. These meta-heuristic

algorithms, without utilizing the gradient information of

the objective function, are often the real alterative for a

variety of non-differentiable and non-convex problems

which are difficult for gradient-based algorithms.

On one hand, although more likely to jump out of local

optimum, these stochastic algorithms are reported to be

more time-consuming than classical gradient-based algo-

rithms when confronting problems with a large number of

optimization variables. On the other hand, a wide variety of

problems arise in practical applications where part of gra-

dient information with respect to (w.r.t.) optimization

variables is easily obtained without difference approxima-

tion. Such as in Koh (2007), the derivatives w.r.t. the

variables in the second level are often obtained easily when

fixing the values of the variables in the first level. Thus,

w.r.t. some optimization problems it seems beneficial to

add the gradient-based algorithms into the searching

because these algorithms harbor powerful local search

ability. Lots of work referring to this idea sprang up. The

quasi-Newton (QN) method was incorporated into the

multi-swarm particle swarm optimizer to improve the local

searching ability (Zhao et al. 2008). The information

implied in the approximate gradient was utilized to search

a local optimal solution in the climb process of the monkey

algorithm (Zhao and Tang 2008). Hybrid of particle swarm
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optimization (PSO) and gradient-based sequential qua-

dratic programming (SQP) was proposed for optimum

structural design (Plevris and Papadrakakis 2011), where

the first phase solution found by PSO was set as the initial

point for the SQP searching in the second phase. The bias

of derivatives approximation of the approximated function

was encoded into the cost function of an adaptive PSO

algorithm to train network (Han et al. 2010). Newton’s

method was embedded in the velocity update equation to

improve the effect of cognition influence (Zahara et al.

2009). PSO and quasi-Newton method were combined to

solve an engineering optimization problem (Ghaffari-Miab

et al. 2007).

Among the stochastic algorithms, DE which is proposed

by Storn and Price (1995); Storn and Price (1997) has

attracted lot of attention as its simple structure, easy to

implement, and also relatively good performance on mul-

timodal problems (Rönkkönen et al. 2005). However, DE

behaves poorly on some (e.g. some large scale) practical

applications. Similar to other stochastic algorithms, other

gradient-based algorithms were also incorporated into the

DE considering its limited local search ability, although it

was showed by Dasgupta et al. (2009) that each individual

in DE performed approximately as a gradient-based search

agent. A gradient-based mutation was introduced into DE

to find feasible point using the gradient of constraints at an

infeasible point when considering constraint optimization

problems (Takahama and Sakai 2006). An approximate

solution obtained with the DE algorithm was used to ini-

tialize the gradient algorithms with adjustable control

weight by Lopez Cruz et al. (2003). Economic dispatch

problem was solved by hybrid of interior point algorithm

(IPA) and DE, where the algorithm was divided into two

stages: the first stage was to employ IPA to minimize the

cost function without considering the valve point effect,

based on the obtained solution; the second stage was exe-

cuted by minimizing the whole cost function with DE

(Duvvuru and Swarup 2011). Ten percent of individuals

were randomly chosen for line minimization search with

classical optimization algorithms as the DE algorithm

proceeded (Masters and Land 1997). It was suggested that

each offspring generated by DE was first fine-tuned by

conjugate gradient algorithm before competing with their

parents (Bandurski and Kwedlo 2010). A local search

procedure was performed after 200 generations on ran-

domly chosen 5 % individuals of best 50 % individuals

(Qin and Suganthan 2005). In Zamuda et al. (2009), the

sequential quadratic programming (SQP) method was

incorporated into a self-adaptive DE for solving con-

strained multi-objective optimization.

Gradient algorithms can boost the local search effi-

ciency, it may render the hybrid algorithms stagnating

to a local optimum when inappropriate strategy is

employed. In this work, we use the local search on the

current best individual only if the best individual in

current generation has been renewed, which means that it

is better than that in the last generation. Meanwhile,

some competitive individuals are also local searched

when the searched best individual has not been improved

for certain generations, in this way, the possibility that

the population stagnates to a local optimum can be fur-

ther reduced. Another aspect that may cause algorithm

stagnation is that the trial individual learns from only one

mutation individual. In Cai et al. (2011), the k-means

clustering which acts as a multi-parent crossover was

incorporated into the DE to enhance the performance.

Parent-centric crossover which utilizes the information in

multi-parents was employed to speed up the convergence

of DE by Pant et al. (2008).

In this study, the QN method is embedded into the DE

algorithm to boost the ability of local search, in other

words, several most competitive individuals are locally

searched for some generations by the QN method. The

strategy of not only one individual for the local search is

introduced to decrease the risk of stagnating to a local

optimum. These proposals are inspired by the strategies of

local search in Qin and Suganthan (2005), Zhao et al.

(2008), Zamuda et al. (2009); however, they differentiate

the strategies in the reference mainly on the following

aspects: the individuals considered for local search are

completely searched by QN method in Qin and Suganthan

(2005), Zhao et al. (2008), which is more likely to render

the algorithm converging to a local optimum; 10 % ran-

domly chosen individuals are performed the SQP local

search in Zamuda et al. (2009), which probably results in

that a large amount of function evaluations are wasted on

those poor-performance individuals. To further reduce the

risk of prematurity, we propose a diversity-maintained

mutation operator (DMM) to slow down the learning pro-

cedure of the population from the searched best individual,

or to maintain the diversity of the population as the algo-

rithm proceeds.

This paper is structured as follows: Sect. 2 gives a

description about the canonical DE algorithm and its

improved variants; Sect. 3 introduces the basic notations

and strategies for our proposed algorithm and a detailed

depiction of the algorithm. The numerical results of

DMGBDE on benchmark problems are presented in Sect.

4. Finally, discussions and some conclusions are addressed

in Sects. 5 and 6, respectively.

2 The classical DE

Without loss of generality, the following minimization

problem is considered:
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min
x

f ðxÞ;

where x ¼ ðx1; . . .; xnÞ; and xj 2 ½lj; uj�; j ¼ 1; . . .; n: For

meta-heuristic algorithms which are population based,

assume population X, fX1; . . .; XNg; where N is the

number of individuals. Let Xg
, fXg

1; . . .;Xg
Ng be the

population at generation g.

Unlike other meta-heuristic algorithms, the DE algo-

rithm employs the diversity information implied in the

population to generate the mutation individual, and

the population is gradually guided into the vicinity of the

optimum through learning from the searched best indi-

vidual. The most frequently used version of DE algo-

rithm is DE=rand=1=bin; where rand denotes choosing

random vectors for mutation, 1 denotes employing one

difference term for the mutation procedure, and bin

denotes generating a trial individual by accepting the

parameter values from the mutation individual one at a

time. This version is detailed described in Algorithm 1

and our proposed algorithm is devised based on this

version.

There are other mutation and crossover strategies which

compose other versions of DE (Price et al. 2005). In

addition to rand=1 mutation strategy, best=1 and rand=2

are also frequently used, which are listed as follows:

1. best=1:

Vi ¼ Xg
� þ F � Xg

r
ðiÞ
2

� Xg

r
ðiÞ
3

� �
ð4Þ

2. rand=2:

Vi ¼ Xg

r
ðiÞ
1

þ F � Xg

r
ðiÞ
2

� Xg

r
ðiÞ
3

� �
þ F � Xg

r
ðiÞ
4

� Xg

r
ðiÞ
5

� �

ð5Þ

where Xg
� denotes the best individual in the generation g.

Many recently proposed algorithms (Wang et al. 2011; Qin

and Suganthan 2005; Mallipeddi et al. 2011) are based on

these mutation strategies, which either adjust these

strategies in self-adaptive manner or organizes these

strategies in a more efficient form. For the crossover

operator, there is another strategy which is frequently used

in the literature, namely as exp crossover, which adopts

some consecutive components from the mutation

individual with a predetermined probability.

In Algorithm 1, the influences of parameters F and CR

on the performance of the algorithm are often concerned.

The impact of several mutation and crossover strategies on

the expected mean, variance and trial individual generation

was theoretically studied in Zaharie (2008, 2009). It was

implied that the canonical DE is sensitive to the control

parameter values such as scaling factor F and crossover

probability CR or sometimes to the strategies generating

trial individuals (Gämperle et al. 2002). Thinking of this

aspect, many adopted self-adaptive parameters or strategies

to improve the performance of DE. The competitive

parameters F and CR were retained for the next generation

accompanying with the better individual (Jia et al. 2011).

In Das and Konar (2009), the crossover probability CR

decreased linearly from CRmin to CRmax with the number of

generation. A self-adaptive DE was proposed (Qin et al.

2009) by adjusting the trial vector generation strategies and

the associated control parameters values adaptively from

the information of previous experiences.

From another aspect, it is reported that local search

ability in canonical DE can be improved to enhance the

performance (Yang et al. 2008; Neri and Tirronen 2009).

Considering this aspect, many also resorted to promoting

the searching ability by modifying the classical searching

strategies or adopting different mutation and crossover

operators, such as, hill climbing heuristic crossover by

Noman and Iba (2008), opposition-based DE by Rahnamayan

et al. (2008), Wang et al. (2011), 2-opt-based DE by

Chiang et al. (2010), fuzzy DE by Liu and Lampinen

(2005), neighborhood-based DE by Das et al. (2009) and

some other new operators by Dorronsoro and Bouvry

(2011), Fan and Lampinen (2003). The local region of the

best individual was refined searched for several times until

a better solution was obtained (Jia et al. 2011). Some local

search strategies were also adopted by Das and Konar
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(2009), Mandal et al. (2011) to speed up the convergence.

A survey referring to embedding local search into DE was

given by Das and Suganthan (2011).

As illustrated in Sect. 1, gradient-based algorithms are

frequently incorporated into DE algorithm to enhance the

local search ability; however, how to unite these algorithms

in a more efficient manner and how to maintain the

diversity of the population as the local searching proceeds

need to be further studied.

3 The proposed DMGBDE

3.1 Some preliminary elements for the proposed

algorithm

3.1.1 Approximate gradient

The approximate gradient gx ¼ ðg1; . . .; gnÞ can be calcu-

lated referring to Conn et al. (2000) in Section 8.4.3 as:

gj ¼
f ðxþ Dxj � ejÞ � f ðxÞ

Dxj

; j ¼ 1; . . .; n ð6Þ

where ej is a vector satisfying eji ¼ 1 for i ¼ j and eji ¼ 0

for i 6¼ j;Dxj is a step size which is chosen as follows:

Dxj ¼ signðxjÞ �
ffiffi
�
p
�maxfjxjj; sjg; j ¼ 1; . . .; n ð7Þ

where signðxjÞ returns the sign of xj; � is the machine

precision, sj is a scaling number reflects the magnitude of

the problem’s variables. The forward difference is adopted

instead of centered difference to cut down the number of

function evaluations. This difference procedure has been

embedded into the function finitedifferences in the known

MATLAB software.

3.1.2 Gradient-based algorithms

A variety of gradient-based algorithms (Nocedal and

Wright 1999) are proposed in the last few decades, which

are used to find a local optimum around the given initial

solution. For local search of the proposed algorithm, the

QN method is employed which is presented in Algorithm 2.

The QN method is suggested because it utilizes only first-

order derivative for optimization, which saves the number

of function evaluations in our proposed algorithm, while at

the same time, it is proven that it can converge to a local

optimum fast.

The QN algorithm is also embedded into the MATLAB

where the approximate gradient of objective function is

obtained through the function finitedifferences, which

greatly facilitates the implementations of the proposed

algorithm. The MATLAB subfunction for QN local search

is presented in Algorithm 3. Different from other literature

such as Qin and Suganthan (2005) where gradient-based

algorithms are also employed, in this work the gradient-

based algorithms are employed to decrease the objective

function for only several generations, which reduces the

possibility of obtaining a local optimum.

3.1.3 A new mutation operator

Diversity-maintained mutation (DMM) is introduced in the

proposed algorithm to slow down the learning speed from

the searched best individual. In other words, we modify the

form of generating trial individual Ui; where Ui learns from

not only one mutation individual. For every index

j, mutually different random variables r1; r2; r3 (denoted as

r
ðjÞ
1 ; r

ðjÞ
2 ; r

ðjÞ
3 ) are renewed, then the jth component of the

mutation individual is generated as in Eq. (8).

V
ðjÞ
i;j ¼ Xg

r
ðjÞ
1
;j
þ F � Xg

r
ðjÞ
2
;j
� Xg

r
ðjÞ
3
;j

� �
ð8Þ

The generated mutation individual Vi ¼ ðVð1Þi;1 ;V
ð2Þ
i;2 ; . . .;

Vi,n
(n)) can be viewed to be produced by utilizing the

information from n mutation individuals V
ð1Þ
i ; . . .;V

ðnÞ
i . The

DMM operator is a little similar to the coevolutionary

strategy (Wiegand 2004), which also adopts components

from multi-individuals to generate a trial individual. This
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DMM operator and the classical DE mutation for

generating a trial individual are depicted in Fig. 1. The

MATLAB pseudo-code of generating a trial individual

where DMM operator is employed with a probability and

the procedure of renewing the population are presented in

Algorithm 4.

To illustrate the difference between the mutation oper-

ators described in (1) and (8), we present a brief compar-

ison of these two operators in the following. Denote the

searched best individual at generation g is Xg
�,Xrg which

is assumed to be unique. Because r
ðiÞ
1 is random number

from f1; . . .;Ng; then

p r
ðiÞ
1 ¼ rg

n o
¼ 1

N
: ð9Þ

A mutation individual Ui is said to be in the local region

of the searched best individual Xrg if r
ðiÞ
1 ¼ rg: For the

mutation operator in (1), Eq. (9) implies that on average,

one of the N mutation individuals falls into the local region

of the searched best individual if F � ðXg

r
ðiÞ
2

� Xg

r
ðiÞ
3

Þ is a

small vector, then the corresponding trial individual

accepts approximate CR � n components from this

mutation individual. For the DMM operator described

in (8), every trial individual accepts approximate CR�n
N

components from the mutation individuals which fall in the

local region of the searched best individual. Moreover, the

accepted components for the DMM operator come from

different mutation individuals. Thus, the DMM operator

learns slowly from the searched best individual, which

may facilitate reducing the risk of stagnating to a local

optimum.

3.1.4 Adaptive strategy for parameters F and CR

In the proposed algorithm, an adaptive strategy similar to

that in Jia et al. (2011), Brest et al. (2006) is employed to

accelerate the convergence of algorithm as follows: F and

CR of each individual are randomly initialized in intervals

[0.1, 0.9] and [0, 1], respectively. Then new uniformly

random values of F in [0.1, 0.9] and CR in [0, 1] are

generated with probability 0.3 and the parameter values

correspond to the better individual are retained to the next

generation.

3.1.5 Handling of bounds violation

In our proposed DMGBDE, the following constraint han-

dling is adopted

Xg
i;j ¼

minf2 � lj � Xg
i;j; ujg if Xg

i;j\lj;
maxf2 � uj � Xg

i;j; ljg if Xg
i;j [ uj;

Xg
i;j otherwise:

8<
: ð10Þ

3.2 The proposed DMGBDE based on QN algorithm

The overall algorithm which embeds with QN local search

algorithm in Algorithm 3 is presented in Algorithm 5. In

Algorithm 5, FES is the number of function evaluations

which is set to be a global variable, when the considered

function is revisited, FES is automatically incremented to

FES ? 1. rand is a MATLAB function which means get-

ting random numbers in (0,1) with uniform distribution.

bAc means rounding number A to the nearest integer less

than or equal to A. For setting the optimization parameters

for function fminunc in step 4, LargeScale off indicates

adopting the forward difference to approximate the gradi-

ent; HessUpdate bfgs means applying the bfgs iterative

scheme to update the inverse Hessian matrix; TolFun, TolX

are the convergence tolerances which are the same as those

in step 2 of Algorithm 2. A threshold n is added into the

step 8 to guarantee that a number of local search are per-

formed from the beginning of running when FES is small.

In order to balance the convergence speed and the

diversity of the population, the classical mutation is added

Fig. 1 Left generates a trial individual with the DE mutation. Right is

the generation procedure with the DMM, where Vi
(1) ,Vi

(3) ,Vi
(5) are

generated mutation individuals for producing 1, 3 and 5 components

of the trial individual
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into the proposed algorithm, and pDEc determines the

probability of adopting classical DE mutation. In addition

to the searched best individual, several competitive indi-

viduals are also chosen for local search when the searched

best individual is not renewed for several generations.

Please note that the renewed individual is used to gen-

erate the next trial individual whenever it is generated in

the proposed algorithm, in other words, only one matrix is

used to store all the individuals as the algorithm proceeds.

4 Numerical experiments on benchmark problems

4.1 Test problems and criteria for comparison

In this section, we conduct experiments on 28 benchmark

functions which are presented in Table 1 in detail, where xi
*

is the ith component of the best solution, fmin is the fitness

of the best solution. These functions are frequently used

among the research community, the first 14 functions are

chosen from CEC2005 contest problems in Suganthan et al.

(2005), the other 14 functions are selected from literature

Jia et al. (2011), Noman and Iba (2008), Yao et al. (1999).

Two comparisons are presented to compare the perfor-

mance of the proposed algorithm DMGBDE with that of

other variants without local search or DMM operator and

some recently reported algorithms. We perform all the

algorithms on a PC with a core processor, operating at

2.8 GHz and with 4 GB of RAM. The overall computa-

tions about all the considered algorithms are implemented

in the popular scientific program MATLAB, version

2009b.

For the comparisons, the following aspects are mainly

considered to assess the performance of the algorithms on

the test problems: the average best result (AveFit), the

standard deviation (SD) of these results, the success rate

(SR) of the trials, the mean overall runtime (RunTime), and

also the diversity rate (DivRate) which is the ratio of the

population diversity before and after the executing the

considered algorithm. The diversity of the population X is

simply expressed quantitatively as 1
n�N
Pn

j¼1

PN
i¼1ð

Xi;j��Xj

uj�lj
Þ2;

where �Xj ¼ 1
N

PN
i¼1 Xi;j: The defined diversity depicts the

algorithm’s ability to continue searching. For quantifying

DivRate, a trial is said to be successful if fitness 10-4 and

10-2 are obtained for f1–f5 and f6–f14, respectively, or fit-

ness 10-2 is obtained for noisy function f27, and 10-8 for

functions f15–f28 except f27 (Zhang and Sanderson 2009).
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4.2 The compared algorithms and parameter settings

To study the influences of all operators or strategies on our

proposed DMGBDE, we conduct a comparison on the

benchmark functions among seven different algorithms,

which are DE/rand/1/bin (DE), mere QN local search of

independent N individuals (GB), DMGBDE without QN

local search and DMM operator (SPDE, namely as self-

adaptive parameter DE), DMGBDE without QN local

search (DMDE), DMGBDE without classical mutation

(DMGBDE1), DMGBDE without DMM operator (GBDE),

and DMGBDE. The comparison is presented in Table 3.

Variants SPDE and DMDE differ in only the aspect of

DMM operator, so is the variants of GBDE and

DMGBDE1. Variants SPDE and GBDE are different in

only the aspect of QN local search, so is the variants of

DMDE and DMGBDE1. For all comparisons, the number

of maximal FES MaxFES is set to be 104n, where n is the

dimension of test function.

To further assess the performance of the DMGBDE, five

recently reported algorithms jDE, SaDE, DECLS, EPSDE

and CoDE in the literature Brest et al. (2006), Qin et al.

(2009), Jia et al. (2011), Mallipeddi et al. (2011) and Wang

et al. (2011), respectively. For this comparison, we conduct

two suites of experiments with dimension size n be 30 and

50, which are presented in Tables 6 and 7, respectively.

Table 1 Descriptions of benchmark functions

Functions and the corresponding descriptions

f1: Shifted sphere function. Unimodal functions. fmin = 0

f2: Shifted Schwefel’s problem 1.2. Unimodal functions. fmin = 0

f3: Shifted rotated high conditioned elliptic function. Unimodal functions. fmin = 0

f4: Shifted Schwefel’s problem 1.2 with noise in fitness. Unimodal functions. fmin = 0

f5: Schwefel’s problem 2.6 with global optimum on bounds. Unimodal functions. fmin = 0

f6: Shifted Rosenbrock’s function. Basic multimodal functions. fmin = 0

f7: Shifted rotated Griewank’s function. Basic multimodal functions. fmin = 0

f8: Shifted rotated Ackley’s function with global optimum on bounds. Basic multimodal functions. fmin = 0

f9: Shifted Rastrigin’s function. Basic multimodal functions. fmin = 0

f10: Shifted rotated Rastrigin’s function. Basic multimodal functions. fmin = 0

f11: Shifted rotated Weierstrass function. Basic multimodal functions. fmin = 0

f12: Shifted rotated expanded Scaffer’s F6. Basic multimodal functions. fmin = 0

f13: Expanded extended Griewank’s plus Rosenbrock’s function (F8F2). Expanded multimodal functions. fmin = 0

f14: Shifted Schwefel’s problem 1.2. Expanded multimodal functions. fmin = 0

f15(x) =
P

i=1
n xi

2, xi [ [-100, 100], xi
* = 0, fmin = 0

f16(x) =
P

i=1
n-1(100(xi?1 - xi

2)2 ? (1 - xi)
2), xi [ [-100, 100], xi

* = 1, fmin = 0

f17ðxÞ ¼ 20� 20expð�0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 x2

i

q
Þ � expð1

n

Pn
i¼1 cosð2pxiÞÞ þ expð1Þ; xi 2 ½�32; 32�; x�i ¼ 0; fmin ¼ 0:

f18ðxÞ ¼
Pn

i¼1

x2
i

4;000
�
Qn

i¼1 cosð xiffi
i
p Þ þ 1; xi 2 ½�600; 600�; x�i ¼ 0; fmin ¼ 0:

f19(x) =
P

i=1
n (
P

j=1
i )2, xi [ [-100, 100], xi

* = 0, fmin = 0.

f20ðxÞ ¼
Pn

j¼1

Pn
i¼1ð

y2
i;j

4;000
� cosðyi;jÞ þ 1Þ;whereyi;j ¼ 100ðxj � x2

i Þ
2 þ ð1� xiÞ2; xi 2 ½�100; 100�; x�i ¼ 1; fmin ¼ 0:

f21ðxÞ ¼ �cos 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 x2
i

p� �
þ 0:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 x2

i

p
þ 1; xi 2 ½�100; 100�; x�i ¼ 0; fmin ¼ 0:

f22(x) = 10n ?
P

i=1
n (xi

2 - 10cos(2p xi)), xi [ [-5, 5], xi
* = 0, fmin = 0.

f23ðxÞ ¼ p
n
f10 sin2ðpy1Þ þ

Pn�1
i¼1 ðyi � 1Þ2½1þ 10 sin2ðpyiþ1Þ� þ ðyn � 1Þ2g þ

Pn
i¼1 uðxi; 10; 100; 4Þ,

where yi ¼ 1þ 1
4
ðxi þ 1Þ; and uðxi; a; k;mÞ ¼

kðxi � aÞm; xi [ a;
0; �a� xi� a; xi 2 ½�50; 50�; x�i ¼ �1; fmin ¼ 0

kð�xi � aÞm; xi\� a:

8<
:

f24ðxÞ ¼ 0:1fsin2ð3px1Þ þ
Pn�1

i¼1 ðyi � 1Þ2½1þ sin2ð3pxiþ1Þ� þ ðxn � 1Þ2½1þ sin2ð2pxnÞ�g þ
Pn

i¼1 uðxi; 5; 100; 4Þ,
xi [ [-50, 50], xi

* = 1, fmin = 0.

f25ðxÞ ¼
Pn

i¼1 jxij þ
Qn

i¼1 jxij; xi 2 ½�10; 10�; x�i ¼ 0; fmin ¼ 0:

f26ðxÞ ¼
Pn

i¼1ðbxi þ 0:5cÞ2; xi 2 ½�100; 100�; x�i 2 ½� 1
2
; 1

2
�; fmin ¼ 0:

f27(x) =
P

i=1
n ixi

4 ? rand[0, 1), xi [ [-1.28, 1.28], xi
* = 0, fmin = 0.

f28(x) = max|xi|, xi [ [-100, 100], xi
* = 0, fmin = 0.
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Numerical experiments in Noman and Iba (2008) show

that large population size is not beneficial to the perfor-

mance for DE when the maximal FES is fixed to be 104n,

therefore, the population size N of DE is set to be n for the

comparison. The parameter settings of all algorithms stay

the same as the corresponding literature for 30 dimensional

(30D) functions. When the dimension n of the functions

changes from 30 to 50, the population size N is increased

such that the ratio of the population size and the dimension

of the problem is approximate the same as that for 30D

problems. All parameter settings and some comments

about the algorithms are listed in Table 2.

Notice that the population sizes of the algorithms for

comparison are different (such as N = 100 for jDE,

N = 50 for SaDE in Table 2), which may make the com-

parison unfair because it had been reported that the per-

formance of DE algorithm is sensitive to the selection of

the population size (Gämperle et al. 2002) and that small

population size probably facilitates the exploitation ability

of DE algorithm (Noman and Iba 2008). To check the

fairness of the parameter settings in Table 2 for the com-

parisons, results are first obtained in Table 5 by resetting

the population size N to be 30 for all the considered

algorithms for 30D problems, then a preliminary compar-

ison of these results (in Table 5) and the results (in

Table 6) obtained by the proposed parameter settings of

Table 2 is conducted in Sect. 4.3.

It is worthy to illustrate the selection of all the parameter

values in the proposed algorithm. The settings of some

parameters (0.1, 0.8 and 0.3 in the second step of the Algo-

rithm 4) are similar to the reference (Brest et al. 2006; Jia

et al. 2011) with a slight modification, some parameters

are assigned their values after several tunings (pDEc =

0.2, NNIMPROVE = 30n, MaxITER = 2n in Table 2), and

the values of some parameters are determined without any

tuning (N ¼ n; 0:1 � n in Table 2).

It is worthy to note that a proportional number of

function evaluations are used to obtain the approximate

gradient through finite difference, thus, our proposed

algorithm DMGBDE may occupy less computation time

than other algorithms when given the same number of

function evaluations. A comparison about the average

runtime of the considered algorithms on 28 test problems

are presented in Table 8.

To quantitatively compare the performance of the con-

sidered algorithms on 28 test functions, we employ Wil-

coxon rank sum test method [nonparametric method

(Gibbons and Chakraborti 2003)] with significance level

0.05. The results of the comparison are presented in

Table 9. The results in Table 9 can not reflect the overall

significance of the difference between the control algo-

rithm (DMGBDE) and the other algorithms, thus, further

significance comparison of the algorithms are conducted

and the results are presented in Table 10. Two statistical

tests are employed, the first is Friedman’s test which is to

obtain the rankings of all the algorithms and the signifi-

cance of the global difference; the second is Holm’s test

which is to detect the concrete differences between the

control algorithm and the other algorithms (Garcı́a et al.

2009). For this comparison, the validation of the required

conditions for these statistical methods is skipped over and

the average fitness values obtained by the corresponding

algorithms are used.

The average best fitness w.r.t. the average number of

function evaluations are depicted in Figs. 2 and 3. Please

note that for our algorithm which is with local search

algorithm, the numbers of FES in each generation may

differ greatly for every run (The number of function

evaluations is actually between 104n and 104n ? 2(n ?

MaxITER)n, however, the results only before 104n function

evaluations are used.), then all the best fitness and the FES

are averaged w.r.t. the number of generations. We are

concerned with how the algorithm evolves to the best

solution, thus, it is reasonable that the performance of

the proposed DMGBDE in later generations are only

considered.

Table 2 Parameter selection and some comments about the algorithms for comparison

Algorithm Parameter selection and comments

DE F = 0.9, CR = 0.9, N = n (Ronkkonen et al. 2005; Noman and Iba 2008)

jDE {n = 30, N = 100}. s1 = s2 = 0.1. F and CR are self-adaptive adjusted (Brest et al. 2006) {n = 50, N = 150}

SaDE {n = 30, N = 50} The number of strategies K is set to be 4. F and CR are self-adaptive. Adjusted based on the previous

information (Qin et al. 2009) {n = 50, N = 100}

EPSDE {n = 30, N = 50} Parameters F and CR choose values from [0.4, 0.9] and [0.1, 0.9], respectively (Jia et al. 2011)

{n = 50, N = 100}

DECLS N = n, L = n/5, m = 1,500. Local search around the searched best individual (Mallipeddi et al. 2011)

CoDE N = n, non-adaptive variant is employed which is reported to be superior to the adaptive variant (Wang et al. 2011b)

DMGBDE pDEc = 0.2, N = n, NNIMPROVE = 30n, MaxITER = 2n. About 0.1 individuals are chosen for local search conditionally

1518 W. Xie et al.
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4.3 Illustration of the results

It can be seen from Table 3 that the algorithm DMGBDE1

achieves significantly larger DivRate than other algorithms

on test functions f2–f7, f16, f19, which means significantly

more powerful capability to continue searching. DMGBDE1

is superior to GBDE (DMGBDE without DM operator) on

multimodal functions such as f6–f8, f12, while GBDE is more

competitive on unimodal functions such as f2–f5. Inspired

from the results, we add the classical mutation operator into

the DMGBDE1 algorithm with some probability, which

composes the algorithm DMGBDE to balance the explora-

tion and exploitation abilities. Revealed by Wilcoxon test,

DMGBDE obtains significantly better performance on 8

problems than DMGBDE1, and it is not worse than

DMGBDE1 in any functions, in other words, DMGBDE

greatly enhances the performance of DMGBDE1.

Statistical analysis indicates that DMGBDE signifi-

cantly outperforms the variant GB (mere QN search) on 24

functions, which illustrates that mere QN local search is far

from the effective solver for the considered problems and

the strategy related to DE algorithm is essential to the

proposed algorithm.

As far as we know, other algorithms using the gradient-

based algorithms as the QN local search are based on other

stochastic algorithms and applications (Qin and Suganthan

2005; Zhao et al. 2008) or employ other local search

strategies (Zhao et al. 2008; Zamuda et al. 2009). Thus, it is

not convicing enough to find out the actual function of the

QN local search on the proposed algorithm. As a feasible

alternative, a comparison of the variants (SPDE and

GBDE, DMDE and DMGBDE1) which are only different

on the existence of the QN local search is conducted to

clarify the effect of the QN local search on the proposed

algorithm. Comparison between the results of SPDE

(DMGBDE without the DMM operator and the QN search)

and GBDE reveals that GBDE is significantly superior to

SPDE on 11 functions and inferior to SPDE on 3 functions,

which illustrates that the proposed scheme of QN local

search is beneficial to the performance of the algorithm.

This statement can be also concluded from the comparison

of results of DMDE (DMGBDE1 without the QN search)

and DMGBDE1.

To see the effect of the DMM operator on the pro-

posed algorithm, comparison of the performances of SPDE

and DMDE (DMDE is DMGBDE without QN search), or

GBDE and DMGBDE1 is only needed. The population

diversity after executing DMDE algorithm is significantly

larger than that after executing SPDE algorithm on all 30D

problems except functions f5, f17, f24, f28 by the Wilcoxon

test, which verifies the analysis in Sect. 3.1.3 that algorithm

with DMM learns slower from the searched best individual

than that with classical mutation.T
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The DMM operator facilitates the proposed algorithm

when embedding with gradient local search, which can be

preliminarily observed from that, DMGBDE1 obtains sig-

nificantly smaller fitness than GBDE on 10 problems and

larger fitness than GBDE on 7 functions, DMGBDE is

superior to GBDE on 8 problems and inferior to GBDE on

Table 8 A comparison of the RunTime (in s) of all algorithms run-

ning on the 28 test problems once

Dim. DE jDE SaDE EPSDE DECLS CoDE DMGBDE

30D 1,051 586 1,309 1,700 1,015 844 807

50D 2,618 1,348 2,529 3,340 2,366 1,867 1,853

Table 9 Wilcoxon rank-sum test of the compared algorithms on 28 test problems with 30 and 50 dimensions

Dimension Algorithm DMGBDE (comparison results on all test functions)

30D jDE ?: f4, f5, f22, f25,

&: f1, f7, f9, f15, f17, f18, f23, f24, f26,

-: f2, f3, f6, f8, f10, f11, f12, f13, f14, f16, f19, f20, f21, f27, f28.

SaDE ?: f4, f11, f22, f25,

&: f1, f7, f9, f15, f17, f20, f23, f26, f27,

-: f2, f3, f5, f6, f8, f10, f12, f13, f14, f16, f18, f19, f21, f24, f28.

EPSDE ?: f19, f22, f25, f27,

&: f1, f5, f7, f9, f15, f18, f20, f23, f24, f26,

-: f2, f3, f4, f6, f8, f10, f11, f12, f13, f14, f16, f17, f21, f28.

DECLS ?: f4, f5, f25,

&: f1, f7, f9, f11, f15, f17, f18, f20, f22, f23, f26,

-: f2, f3, f6, f8, f10, f12, f13, f14, f16, f19, f21, f24, f27, f28.

CoDE ?: f2, f4, f5, f11, f25,

&: f1, f6, f7, f9, f10, f15, f18, f21, f22, f23, f24, f26,

-: f3, f8, f12, f13, f14, f16, f17, f19, f20, f27, f28.

50D jDE ?: f4, f5, f7, f25,

&: f1, f9, f15, f18, f20, f22, f23, f24, f26,

-: f2, f3, f6, f8, f10, f11, f12, f13, f14, f16, f17, f19, f21, f27, f28.

SaDE ?: f4, f7, f11, f20, f25,

&: f1, f9, f15, f18, f22, f23, f24, f26,

-: f2, f3, f5, f6, f8, f10, f12, f13, f14, f16, f17, f19, f21, f27, f28.

EPSDE ?: f4, f5, f7, f25, f27,

&: f1, f9, f15, f18, f19, f20, f22, f23, f24, f26,

-: f2, f3, f6, f8, f10, f11, f12, f13, f14, f16, f17, f21, f28.

DECLS ?: f5, f7, f20, f25,

&: f1, f4, f9, f15, f18, f22, f23, f24, f26, f27,

-: f2, f3, f6, f8, f10, f11, f12, f13, f14, f16, f17, f19, f21, f28.

CoDE ?: f4, f5, f7, f11,

&: f1, f10, f15, f18, f23, f24, f26,

-: f2, f3, f6, f8, f9, f12, f13, f14, f16, f17, f19, f20, f21, f22, f25, f27, f28.

The notations ?(-) mean the algorithm for comparison is significantly superior to (inferior to) DMGBDE with significance level 0.05, & means

the two compared algorithms are not significantly different on the performance

Table 10 The significance test of the considered algorithms on 28 test problems

n Test jDE SaDE EPSDE DECLS CoDE DMGBDE pg value

30 Fridman (ranking) 3.77E?00 4.20E?00 3.79E?00 4.25E?00 2.77E?00 2.23E?00 6.36E-05

Holm (p value) 2.72E-04 3.42E-04 5.67E-03 5.67E-03 2.84E-01 – –

50 Fridman (ranking) 3.84E?00 4.11E?00 3.79E?00 3.66E?00 3.09E?00 2.52E?00 1.70E-02

Holm (p value) 7.40E-03 3.29E-02 3.37E-02 4.45E-02 2.53E-01 – –

Test denotes the statistical method for comparison. The value pg reflects the significance of the global difference
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5 problems at 1.0E?04n generations. By running GBDE

and DMGBDE further on 30D benchmark functions, which

is to enlarge the maximal FES MaxFES to 2.0E?04n,

DMGBDE is superior (inferior) to GBDE on 8 (3) prob-

lems. Moreover, on the problems that DMGBDE per-

forms worse, the population diversity of DMGBDE is
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Fig. 2 The average best fitness (y-axis, which has been scaled by taking the log10 algorithm) w.r.t. the FES (x-axis) for functions f1–f18
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significantly larger that of GBDE, which implies the pos-

sibility that DMGBDE outperforms GBDE on these prob-

lems in a long run. Results of GBDE and DMGBDE on

nine problems for 2.0E?04n generations are presented in

Table 4. Therefore, the DMM operator makes a difference

in the aspect of population diversity which may facilitate

the algorithm to achieve a better solution in further

generations.

To check whether the parameter settings in Table 2 are

reasonable for the subsequent comparisons, a preliminary

comparison is conducted by statistically comparing the

results in Tables 5 and 6. Wilcoxon’s test shows that the

algorithm jDE with N = 100 achieves better (worse) per-

formance on 11 (10) functions than that with N = 30;

moreover, jDE with N = 30 obtains bad solutions on some

relatively simple functions such as f18, f23, f26, f28, thus,

the decrease of the population size for this algorithm lar-

gely increases the possibility of converging to a local

optimum. For the algorithm SaDE, its performance with

N = 50 are significantly better on 14 functions and worse

on 3 functions than the performance with N = 30. For the

algorithm EPSDE, its performance with N = 50 are sig-

nificantly better on 11 functions and worse on 3 functions

than the performance with N = 30. Thus, we can conclude

that the proposed settings of the population size in Table 2

are better than the uniform setting N = 30 for 30D

problems. The following comparisons are based on the

results of the considered algorithms with the proposed

parameter settings in Table 2.

Tables 6 and 7 demonstrate that the proposed

DMGBDE achieves the best AveFit and SR on a large

number of functions, where all the best AveFit and SR are

labeled in boldface. It is also demonstrated that the diver-

sity rate of DMGBDE algorithm is larger than that of the

algorithms achieving the best mean fitness on most func-

tions, which illustrates the possibility that our algorithm

obtains the best mean fitness in further generations still

exists. The large diversity rate maintained also illustrate the

effectiveness of the proposed DMM operator.

Table 8 reveals that the proposed algorithm DMGBDE

requires the least but one runtime for the overall running on

all test problems, which is not surprising because a number

of FES are utilized to obtain the approximate derivatives.

Table 9 which employs Wilcoxon test reveals more

obvious evidence for the comparison of the considered

algorithms on all test problems. For unimodal functions

f1–f5, DMGBDE and CoDE significantly outperform the

other four algorithms, DMGBDE is especially competitive

on f2, f3 w.r.t. 50D problems, and CoDE is competitive on f4,

f5. For these functions, the local search ability is deter-

ministic, CoDE also achieves good performance because it

can swiftly shift to the variant which harbors powerful
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exploitation ability. For shift multimodal functions f6, f9,

DMGBDE performs well on f6, while it may stagnate to a

local optimum several times for f9 in 30D, the DMM

operator should be added with larger probability to decrease

the risk. For the shift rotated functions f7, f8, f10–

f12, DMGBDE achieves the best fitness on functions

f8, f10, f12 w.r.t. 30D problems, and f8, f12 w.r.t. 50D prob-

lems. For these functions, the performance can be further
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Fig. 3 The average best fitness (y-axis, which has been scaled by taking the log10 algorithm) w.r.t. the FES (x-axis) for functions f19–f28
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improved by better balancing the abilities of exploration

(corresponding to the DMM operator) and exploitation

(corresponding to local search). Incorporation of the DMM

operator and the QN local search reveals its effectiveness on

difficult functions-expanded multimodal functions f13, f14

which are shifted, rotated, non-separable and multimodal.

Although relatively worse performance on f22 in 30D which

may be improved by increasing the probability of the DMM

operator, for functions f15–f28, DMGBDE achieves the best

fitness on a majority of functions, which are all the func-

tions except f15, f19, f22, f25, f27 w.r.t. 30D problems and all

the functions except f15, f20, f24, f27 w.r.t. 50D problems.

The good performance on these functions should be

attributed to the powerful local search ability of DMGBDE.

Different from the results in Table 9 which statistically

analyzes the performance of algorithms on each problem,

the results in Table 10 reveal the significance comparison

of the overall performance on 28 test problems between

DMGBDE and the other algorithms. The pg (6.36E-05)

value obtained by Friedman’s test for 30D problems

illustrates significant global difference exists among all

mean fitness values when given a significance level

a = 0.05. The proposed algorithm DMGBDE is the best

performing algorithm because it achieves the lowest

ranking value 2.23E?00. The p values obtained by Holm’s

test for 30D problems reveal that the control algorithm

(DMGBDE) outperforms the algorithms jDE, SaDE, EP-

SDE and DECLS with the significance level a = 0.05,

while DMGBDE is not significantly better than CoDE

when given this significance level where the p value

(2.84E-01) is larger than a. Similar conclusions can be

also obtained from the statistical analysis for 50D prob-

lems. In general, the results in Tables 6, 7, 8, 9, 10 illus-

trate that DMGBDE is better or at least competitive

compared with the other five algorithms in overall.

Figures 2 and 3 present the variations of objective fit-

ness of all the considered algorithms w.r.t. the number of

function evaluations. It can be seen that the objective fit-

ness by the algorithm DMGBDE is still greatly descending

on a large number of functions such as f3, f6, f19, f27, which

implies possibility of large improvement on these functions

in further generations.

4.4 Results of other parameter selections

It seems that more control parameters pDEc, MaxIT-

ER, NNIMPROVE are introduced in the proposed

DMGBDE than DE algorithm; however, these parameters

are fixed when running on all the 28 benchmark problems.

We conduct some other experiments on 30D problems to

study the influence of these parameters on the performance

of DMGBDE, some of which are presented in Table 11,

where the values of the parameters are perturbed a little

from the proposed parameter setting. Five independent

experiments are conducted, where the values of parameters

NNIMPROVE, MaxITER, N, pDEc, pDEc are reset from

30n, 2n, n, 0.2,0.2 to 10n, 3n, 2n, 0.1,0.5, respectively.

The other parameter values are fixed when one parameter is

perturbed for the experiment.

Results in Table 11 show that the proposed parameter

setting is not always the best selection, for instance,

DMGBDE with NNIMPROVE = 30n achieves better per-

formance on functions f3, f7, f9 than that with the proposed

parameter setting. However, the results with parameter

perturbation are similar to that with proposed parameter

setting, which is verified by Friedman’s test (Garcı́a et al.

2009) as follows. The ranking values of the algorithms with

perturbed parameters and the proposed parameter setting are

3.37E?00, 3.55E?00, 3.64E?00, 3.66E?00, 3.32E?00,

3.45E?00 (the smallest ranking value corresponds to the

best parameter setting), respectively, and the significance

p value reflects the global difference is 9.77E-01 which is

much larger than a significance level a = 0.05 or a = 0.1.

The above statistical analysis illustrates that our algorithm is

not sensitive to small perturbations of the control parame-

ters. It is worthy to note that DMGBDE with population size

N being n is significantly superior to DMGBDE with

N = 2n on 4 functions and inferior to DMGBDE with

N = 2n on 2 functions, which implies that enlargement of

population size is not beneficial to DMGBDE when given

function evaluations 104n. For the control parameters,

pDEc, MaxITER are suggested to choose values from the

interval [0.1,0.5], [n, 4n], respectively, and they gradually

increase as the algorithm proceeds, NNIMPROVE is pro-

posed to choose values from the interval [10n, 50n], and it

gradually decreases as the algorithm proceeds.

5 Discussion

Although it is illustrated in Sect. 4.4 that the proposed

algorithm is not sensitive to small perturbations of

parameter pDEc which is the probability of employing

classical DE mutation, pDEc is suggested to be self-

adaptively adjusted to better balance between the conver-

gence speed and the diversity of the population to improve

the overall performance of the proposed algorithm. And

other variants of DMGBDE can be set as a pool of strat-

egies, then the ultimate DMGBDE selects one of the

strategies or variants in a self-adaptive manner.

Other strategies can be adopted to further enhance the

performance of the proposed algorithm. From one aspect,

the DE variant DE/rand/1/bin and the corresponding

parameter setting can be substituted for other variants and

some reported more competitive parameter setting to

devise more efficient algorithms. From another aspect, the

Diversity-maintained differential evolution 1533
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QN method can be replaced with other local search

algorithms to boost the effectiveness of the proposed

algorithm, or expand the applicability of the proposed

algorithm.

6 Conclusion and future work

In this work, we propose an algorithm to solve single-

objective minimization problems. In this algorithm, a

gradient-based algorithm-QN method is embedded into a

diversity-maintained DE variant. To minimize the risk of

stagnating to a local optimum, different strategies (such as,

restarting the local search only if the best is renewed,

several competitive individuals in addition to the best

individual are added to the local search if there is no

improvement for several consecutive generations) are

employed and a diversity-maintained mutation operator is

introduced. We conduct our algorithm on a number of

popular benchmark problems and compare that with sev-

eral recently reported algorithms. Numerical results illus-

trate the proposed algorithm is superior to or at least

competitive to the algorithms for comparison on most of

the test problems.

Our algorithm is very general, by replacing the QN

method with other algorithms for constrained problems, it

can be expanded to solve test problems with more com-

plicated constraints, which is our future work. The pro-

posed algorithm needs to be further applied into practical

problems to test and verify its effectiveness.
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