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Abstract: Facial expression has many applications in human-computer interaction. Although feature
extraction and selection have been well studied, the specificity of each expression variation is not fully
explored in state-of-the-art works. In this work, the problem of multiclass expression recognition
is converted into triplet-wise expression recognition. For each expression triplet, a new feature
optimization model based on action unit (AU) weighting and patch weight optimization is proposed
to represent the specificity of the expression triplet. The sparse representation-based approach
is then proposed to detect the active AUs of the testing sample for better generalization. The
algorithm achieved competitive accuracies of 89.67% and 94.09% for the Jaffe and Cohn–Kanade
(CK+) databases, respectively. Better cross-database performance has also been observed.

Keywords: expression recognition; expression triplet; feature optimization; AU weighting; active
AU detection

1. Introduction

With the help of facial expression recognition, human-computer interaction can automatically
obtain the information of the human face and infer the psychological status of the user, which can
be applied to driver monitoring, face paralysis expression recognition, intelligent access control, and
so on.

Recognition of six basic expressions, like happy (Ha), angry (An), surprise (Su), fear (Fe),
disgust (Di), sad (Sa) and neutral (Ne) expression, can be categorized into 3D-based and 2D-based
approaches. The 3D-based expression recognition is a current research hot topic [1], which often
employs the geometry features, like differential curvature [2,3], based on an aligned face mesh [4].
The 2D-based approaches are currently prevailing due to the easy accessibility of the training samples.
The facial action coding system (FACS) [5] is one of the important 2D approaches, i.e., the expressions
are described and tracked according to some basic action units (AUs). The FACS was defined by
Ekman [6] to reflect the deformation status of the corresponding facial part, which was developed based
on a set of discrete emotions and initially applied to measure some specific facial muscle movements
named AUs. While AUs were often used as an intermediate step for recognizing the basic expressions,
image-based feature representation is often considered for recognizing the expression directly. Dynamic
recognition based on expression images is important in face animation and multimedia analysis [7–10].
As less information about the considered expression is available, static image-based recognition is
more challenging.

Deep learning with a convolutional neural network (CNN), such as multiscale feature-based
CNN [11], hierarchical committee-based CNN [12] and architecture-improved CNN [13], has also
been applied for static expression recognition. Pramerdorfer and Kampel [14] gave a detailed survey
about these algorithms. Although it is experimentally verified in [15] that visually similar features to
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the facial AUs are obtained by the CNN-based algorithms, the weighting and optimization of these
AU alike features in these algorithms are not fully studied. Meanwhile, CNN-based algorithms require
a large number of training parameters and high computational complexity [16,17]. Thus, our work
focuses on exploring the feature optimization and active AU detection, which can be further integrated
into the CNN to further improve the encoded features.

For static image encoding, many features have been proposed and evaluated. Examples are the
Gabor surface feature [18], Haar-like features [19], histograms of oriented gradients (HOG), local binary
patterns (LBP) [20,21], the radial encoding feature [22] and the key point movement feature [23]. The
combination of texture and geometric features was introduced [24] to solve the problem of minor
expression deformation when the wrinkle feature is unavailable [25]. In this work, the Gabor surface
feature (GSF) proposed in [18] is employed for the feature representation. The Gabor magnitude
surface can reflect the differential geometry information even when the considered face is slightly
deformed. Thus, it can discriminate different wrinkle textures on the expression face.

Based on the devised features, feature selection was often conducted for not only boosting
the efficiency [26], but also improving the recognition accuracy and the generalization ability [27,28].
Feature selection can be conducted on the whole image, such as independent component analysis
(ICA) [29], linear discriminant analysis (LDA) [30], rotational invariant dimensionality reduction [31],
maximum margin projection [32] and supervised locally linear embedding [33]. For patch and
landmark point-based feature representation, salient expression regions were manually located [34].
Automatic feature selection was usually realized with AdaBoost [19,20,26,35]. For better generalization
ability, some feature selection algorithms attempted to obtain a relatively sparse number of features
with the incorporation of optimization algorithms. Jia et al. [36] weighted the LBP feature with
sparse representation, Zafeiriou and Pitas [37] proposed the sparse feature graph for the recognition.
Feature selection has also been achieved by feature reduction or transformation, such as margin
maximization [38], normalized cut [28], multitask joint sparse presentation [39] and locality preserving
projection (LPP) [40]. A unified classification system [41] integrating feature selection and reduction
was proposed based on the boosted deep belief network (BDBN).

These algorithms devised and selected the same features for all of the categories of expressions
(such as six basic expressions), which may leave out the feature specialty and multi-scale property.
Thus, pairwise expression features were proposed to improve the recognition performance.
Kyperountas et al. [42] employed a pairwise expression recognition with a class separability measure
by pairwise inter-class difference maximization and intra-class difference minimization. Happy and
Routray [43] extracted pairwise appearance features with LDA for the recognition. Based on different
pairwise expression features, the feature selections were also different. Liu et al. [44] proposed the
feature disentangling machine (FDM) to learn different pairwise features. Besides the common features
for all of the expressions, the specific features for each expression pair were also selected with multi-task
learning in [45]. When most of these algorithms extract expression features from patches, they may not
fully consider the causal relation between the patches since facial expressions are often demonstrated
in the scale of facial parts involving multiple patches.

The AU-based features integrate the causal relation of patch features naturally since they reflect
the deformation status of the facial parts. Tian et al. [5] used the classified AUs for the facial
expression recognition, where the AUs were encoded by the geometric size and deformation. Tong
et al. [46] constructed the Bayesian network of the causal relation of facial AU features with the
corresponding conditional probability table. The expression appearance variance is represented
with the assembly of AUs by the deep network [47]. Zhao et al. [48] proposed the component
feature based on face block and weight assignment for expression recognition from near-infrared
videos. The AU deformation intensities were estimated with regressors and used to train different
classifiers for expression recognition [34]. Li et al. [49] introduced a unified probabilistic framework to
simultaneously represent the facial AU evolvement, interactions and observations with different levels
of feature representations and the classification system.
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However, current AU-based algorithms modeled the AU relations without considering
the weights of patches contained in each AU. The AU feature is suitable for encoding the
macro-scale information of each expression, since it integrates the large-scale information of face
parts. However, they are not good for encoding the micro-scale feature, since the combination space
of AUs is limited when they are not carefully organized. Moreover, most of these algorithms learned
the features from the training expression samples. However, the active feature implied in each testing
expression sample is not fully exploited. The model learned from training samples might produce the
wrong classification when the testing sample is significantly different. However, only a few works
detect and use the active features of the testing sample for recognition.

Although many research works have been conducted in face expression recognition, the following
problems are still to be addressed. First, current algorithms recognize the seven expressions entirely
with a uniform feature weight, which may leave out the feature specialty and multi-scale property. In
this work, the seven expressions’ recognition is divided into multiple sub-problems with appropriate
subsets, i.e., the expression triplet. Moreover, the weight vector w.r.t. each expression triplet is fine
tuned individually to fully consider its specificity. Second, the patch-based and AU-based features
are often encoded separately without considering the influence of their deficiencies. In this work,
the weights of patches contained in each AU are finely optimized to represent the characteristics of
different expressions. In this way, the advantages of large-scale (AU-based) and small-scale (patch-wise)
features are both explored. Third, few of the current works make use of the specificity of each testing
sample before recognition; the wrong classification could occur when the testing sample is significantly
different. Thus, this work exploits the active features of each testing expression.

The main novelties of this work are mainly on three aspects. First, a two-stage expression
recognition using the idea of expression triplet weighting is introduced for the representation of
diversity among different expressions. Second, a new offline weight optimization for the patches
contained in each AU is proposed to increase the discrimination abilities of both the patch and AU
features. Third, online detection of active AUs for each testing sample is proposed to fully exploit its
specificity for feature encoding.

This paper is structured as follows. Section 2 gives a description of the proposed algorithm step
by step. The experimental results of the proposed algorithm on public databases are presented in
Section 3. Finally, discussions and some conclusions are addressed in Section 4.

2. The Proposed Algorithm

2.1. Framework of the Algorithm

The sketch of expression recognition is illustrated in Figure 1. In offline training, faces were
divided into a number of non-overlapped patches, regions and facial parts, like eyes, nose and
mouth, where Gabor surface features were extracted. AUs for each face part are defined, as well.
For each expression triplet combination, the weights of AUs and patches were optimized. In testing,
the standard seven class-based expression recognition was conducted at the first stage, and the top
three expression candidates were proposed. Based on the suggested expression triplet, the active
AUs of the testing sample were detected and weighted using the learned weight vector. Weighted
SVM was finally applied to give the expression label. The entire algorithm is then elaborated in the
following sections.
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Figure 1. The framework of the proposed algorithm.

2.2. Region Definition and Feature Extraction

2.2.1. Definition of Patch, Region, Part and AU

The face image was first aligned with reference to the feature points located using the approach
presented in [50,51] and then resized to 84× 68. Only the central region with the size of 80× 64 is
cropped out for the following processing. Illumination was normalized by the method proposed
in [52].

To extract features representing local face variations caused by expression, the face image was
divided into 10× 8 patches. Based on the 80 patches, 12 regions with relatively fixed shapes (RFSs)
were defined to represent the expression-sensitive face parts (PT). Figure 2c shows the 12 regions,
and Table 1 lists the involved landmarks for each region. When patches are used to represent local
texture, regions encode the important variations correlated with expression changes. Figure 3 presents
the involved regions used to define each of the seven face parts, i.e., eyes, brows, mouth, forehead,
nose root, nasolabial regions and chin (PT1 − PT7).
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Figure 2. The patches and relatively fixed shape (RFS) regions. (a) The landmarks used for alignment;
(b) the patches; (c) the RFS regions for defining face parts; (d) the sizes d1 − d9 of the RFS regions. The
darker region on the mouth part denotes the patches having a nonempty intersection with R6, R8, R9 in
(c), which presents an example of the relation between patch, region and part.
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Figure 3. The AUs of seven facial parts with the corresponding RFSs and expression labels. The first
part (eye, PT1) consists of two regions R4, R5, which can be classified as AU1 − AU3 according to the
eye status. The listed e1 − e7 are the expressions related with each defined AU, i.e., neutral, angry,
disgust, fear, happy, sad and surprise.

Table 1. Feature point sequences for constructing the RFS regions in Figure 2c and the region sizes in
Figure 2d. Take R1 as an example; points {P3, P8} define the length and width d1 of R1.

R1 R2 R3 R4

{P3, P8},
d1 = 1

2 ||P3 − P8||2

{P1 − P5},
d2 = 2||P1 − P2||2

{P6 − P10},
The same as d2

{P20 − P25},
d3 = 2||P20 − P21||2

R5 R6 R7 R8

{P26 − P31},
The same as d3.

{P32 − P43},
d8 = 4||P32 − P33||2

{P12, P23, P5, P6, P26}
{P32, P33, P43},

d6 = 2||P32 − P43||2,

d7 = ||P33 − P43||2

R9 R10 R11 R12

{P37, P38, P39},
The same as d6, d7

{P32, P13, P20, P15},
d4 = |Px

20 − Px
13|,

d5 = |Py
13 − Py

15|

{P38, P13, P29, P15},
The same as d4, d5

{P39, P43},
d9 = ||P43 − P39||2
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For encoding the face part variations related with expression [53], AUs have been widely used
in the literature. We defined 20 AUs to encode the seven expressions named as e1 − e7, i.e., neutral,
angry, disgust, fear, happy, sad and surprise. Different from the AU labeling in [53], the part regions
of each AU are manually labeled for training samples in this work. See Figure 3 for the definition of
the 20 AUs and their relationship with the 12 regions and the seven parts. For example, AU3 encodes
wide open eyes, which is usually correlated with e7, i.e., surprise. As both AU1 and AU2 encode the
status of the two eyes, they mainly consist of regions around eyes, i.e., R4 and R5. Figure 2d labels the
involved patches of an example mouth part (AU8 − AU12) with dark grey, i.e., each AU of a part may
involve multiple patches.

2.2.2. Feature Extraction

For each patch or RFS region, the Gabor filter [54] is employed for feature extraction, which is
formulated as: 

g(x1, x2) =
k2

s
σ2 exp[− k2

s
2σ2 (x′21 + x′22 )]exp(ksx′1i)

x′1 = cos αax1 + sin αax2, x′2 = − sin αax1 + cos αax2,

ks =
π√
2

2+s , s = 1, · · · , ns; αa =
aπ
8 , a = 1, · · · , na.

(1)

where σ = 1.8π, ns = 5, na = 8, (ks, αa) define the amplitude and orientation of the central frequency.
To encode the texture magnitude map, the Gabor surface feature (GSF) [18] is employed, since it

can depict the curvature information of the wrinkles and the direction of the expression texture. To
extract GSF, the ns × na Gabor magnitude images are first extracted, which are then encoded by the
local binary pattern (LBP) to reduce the feature sensitivity to misalignment. More precisely, feature
GSF for the k-th patch pk is formulated as follows:

p fpk = 23B + 22Bx + 21By + 20B2, (2)

where B, Bx, By, B2 are the binarizations of the Gabor magnitude image I, its first-order and
second-order gradient pictures Ix, Iy, Ixx + Iyy corresponding to the patch pk. As an example, for each
pixel (i, j) of pk, its binary value is defined as:

Bi,j =

{
1 if Ii,j ≥ ThresMedi,j
0 otherwise

(3)

where the threshold ThresMedi,j is the median of the pixel values of patch pk. Thus, p fpk is the output
feature map with the value ranging from zero to 15, which is further transformed to the histogram for
feature representation. For each face patch or region, the corresponding feature GSF is then vectorized
as a 16× ns × na dimension vector, where ns, na are defined in Equation (1). Finally, the feature of the
i-th expression sample is represented as:

fi = (p fp1 , · · · , p fpn), (4)

where n is the number of patches or regions. For convenience of the following illustration, the feature
of the i-th expression sample can be also grouped as ( f (1)i , · · · , f (7)i ) according to the seven face parts
presented in Figure 3.

2.3. Feature Optimization

Based on the feature representation, the weights of the AU and patches for each expression triplet
are optimized. First, the original AUs are weighted with the conditional transition probability matrix,
based on which, weight optimization is performed to weigh the patches involved in each AU in
the second step. These two steps are conducted on the training samples and are offline. The third step
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is to select the active AUs for each testing sample. The entire procedure of the feature optimization is
presented in Algorithm 1.

Algorithm 1 AU weighting, patch weight optimization and active AU detection.
1: Offline Training:
2: AU weighting (WAU) using the conditional probability matrix presented in Section 2.3.1;
3: Patch-wise weight optimization of weight vectors ({Wi}) by multi-task sparse learning presented

in Section 2.3.2;
4: Online Testing:
5: Active AU (AUA) detection for testing samples by sparse representation presented in Section 2.3.3.

2.3.1. AU Weighting

Motivated from the causal AU pair extraction with a large transition probability by the Bayesian
network (BN) [46], the representative abilities of all of the AUs for each expression are weighted in
this work to decrease the influence of weakly-related AUs and provide a constraint for the following
patch-wise weight optimization.

With the labeled AUs of all of the training samples, the causal relation network between the AUs
is obtained with the conditional probability matrix. The probability pe

i|j of the i-th AU conditioned on
the j-th AU w.r.t. the e-th expression is defined as the product of the co-occurrence and co-absence
probabilities as follows

pe
i|j = ope

i|j · ape
i|j, (5)

where the co-occurrence probability of the i, j-th AUs conditioned on the j-th AU is defined as
the conditional probability:

ope
i|j = p(i ∈ AUe|j ∈ AUe), (6)

where AUe denotes all of the action units of the e-th expression. Additionally, the co-absence probability
of action units i, j conditioned on j /∈ AUe is defined as the probability:

ape
i|j = p(i /∈ AUe|j /∈ AUe), (7)

Then, the degree of the causal relation of AU pair (i, j) is defined as follows:

pe
i,j = min(pe

i|j, pe
j|i). (8)

The ‘min’ function of two conditional probabilities is adopted to avoid abnormal probability
resulting from the imbalance of expressions related with each AU. For example (see Figure 3),
AU2 is related to a large number of expressions, which may result in significantly larger arrival
transition probability.

For each expression, a relation probability matrix of dimensions of 20 × 20 is obtained with
Equation (8). With the causal relation matrices for all of the expressions, the representative ability of
the AU for each expression can be found by simultaneously maximizing the representative ability
for the considered expression and minimizing the representative abilities for the other expressions.
That is, the representative ability of the AU pair (i, j) for the e-th expression is obtained as follows:

RepAbe
i,j =

{
1 + 1

|{l 6=e}| (pe
i,j −∑l 6=e pl

i,j) if {i, j} ⊂ AUe

0 otherwise.
(9)



Sensors 2017, 17, 275 8 of 23

where |{l 6= e}| represents the number of elements in the set {l 6= e}. Finally, the representative ability
of the i-th AU for the e-th expression is obtained as follows:

RAe
i =

{
1

|{j 6=i}| ∑j 6=i RepAbe
i,j if i ∈ AUe

0 otherwise.
(10)

For applying {RAe
i , 1 ≤ i ≤ 20, 1 ≤ e ≤ 7} for recognition, the maximum AU representative

ability of each expression and face part is collected, which are denoted as RAPe
i and presented

as follows:
RAPe

i = max
j∈IAi

RAe
j (11)

where the set IAi denotes the AU indices corresponding to the i-th part. As the correspondence
between AU and face part (PT), the maximum representative abilities of the parts are used to weigh
the corresponding AUs, which are denoted as WAU = {RAPe

i , 1 ≤ i ≤ 7, 1 ≤ e ≤ 7}.
Due to the number limitation of AUs and the training samples, the representation space of AUs

is limited when they are simply organized. In order to expand the representation space of the AUs,
the contribution of the patches contained in each AU is weighted by the following weight optimization
model in this work.

2.3.2. Patch Weight Optimization

Based on the weights of AUs for each expression, a weight optimization model is proposed to
weigh the patches of each AU for the considered expression triplet G = {e1, e2, e3}.

The objective is to minimize a loss function with the weight sparseness and regularization
constraints, which is presented as follows: minw E + λ||w||1 = 1

N ∑
j

∑
k∈IDj

log( 1
1+exp(−α·g( f j , fk ,w))

) + λ||w||1,

s.t.||wPTi ||1 = RAPG
i ||w||1, i = 1, · · · , 7; ||w||2 = 1.

(12)

where f j, fk are the features of the j-th and k-th training samples of the triplet G, whose patch feature is
defined in Equation (2) and reduced to two dimensions using PCA and LDA [30]. N = ∑j |IDj|, and
IDj records all of the training sample indices. Vector w records the weights of all of the patches; wPTi

records the weights of the patches related with the i-th part PTi; parameter α is fixed to one. RAPG
i

denotes the normalized representative abilities w.r.t. the considered expression triplet G, which is
formulated as follows:

RAPG
i = max

1≤j≤3
RAP

ej
i , RAPG

i ←
RAPG

i

∑i RAPG
i

. (13)

The loss function g( f j, fk, w) reflects the similarity loss of the feature vectors f j, fk with the weight
vector w, which is constructed to minimize the intra-class variance and maximize the inter-class
variance as follows:

g( f j, fk, w) =


< f j, fk · w > − < f j, f j0 · w > if L( fk) 6= L( f j)

< f j, f j0 · w > − < f j, fk · w > if L( fk) = L( f j)

with j0 = arg max
{t:L( ft)=L( f j)}

< f j, ft · w >
(14)

where L( fk) is the expression label of the training feature vector fk.
For solving the optimization problem (12), the gradient of the first term of the minimization

objective function in Equation (12) is formulated as follows:

∂E
∂w

=
α

N
ΣjΣk∈IDj

ej,k(w)− 1
ej,k(w)

·
∂g( f j, fk, w)

∂w
, (15)
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where ej,k(w) = 1 + exp(−α · g( f j, fk, w)) and
∂g( f j , fk ,w)

∂w is computed based on Equation (14) as follows:

∂g( f j, fk, w)

∂w
=

{
f j · fk − f j · f j0 if L( fk) 6= L( f j)

f j · f j0 − f j · fk if L( fk) = L( f j).
(16)

The sparseness term of Model (12) adopts the L1 norm, which is a special case of the L1/L2

mixed-norm employed in the work [45,55]. Thus, the optimization model (12) is solved with the
modified multi-task sparse learning algorithm employed in [45,55] with several differences presented
as follows. The overall optimization algorithm is elaborated in Algorithm 2.

• The weight of each patch is initialized as a ratio of the corresponding AU representative ability
as follows:

wPj ,0 ←
RAPG

i
|PTi|

, w0 ←
w0

||w0||2
, (17)

where i is the index of the part including the j-th patch, |PTi| denotes the number of patches in
the part PTi and wPj ,0 records the weights of the j-th patch Pj. The initialization procedure is
presented in Step 3 of Algorithm 2;

• The weight vector ws+1 and auxiliary vector vs+1 in the s + 1-th iteration of Algorithm 2 are
normalized to satisfy the constraint defined in Equation (12) as follows:

wPj ,s+1 ←
wPj ,s+1RAPG

i

||wPTi ,s+1||1
, ws+1 ←

ws+1

||ws+1||2
, (18)

where i is the index of the part including the j-th patch and wPTi denotes the weights of the part
PTi. The normalization is employed in Steps 11 and 19;

• Compared with [45], optimization Model (12) is proposed by minimizing the feature similarity
bias of different expression classes in Equation (14), which uses the information of mutual
feature difference and contains more information than that of expression label matching
in [45]. The corresponding objective function and the gradient vector are changed according
to Equations (12) and (15), as revealed in Step 5.

With the weight optimization model (12) and Algorithm 2, the weights of the patches for each
expression triplet are obtained. The number of optimized weight vectors {Wi} equals C3

7 = 35, i.e., the
number of expression triplets.

(a):An (b):Di (c):Fe (d):Sa (e):Su

(f):An (g):Di (h):Fe (i):Sa (j):Su

Figure 4. Expression examples with similar appearance from the Jaffe database.
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Algorithm 2 The modified multi-task sparse optimization.
1: Obtain the feature vectors of the training and testing samples.
2: Initialization: the coefficients λ = η = 1e−2, S = 3e1, ε = 1e−10, MaxNumF = 4.
3: Initialize the weight vector w0 as in Equation (17).
4: for s = 0, · · · , S do
5: Compute the objective value FunV with Equation (12) and the gradient ∂E

∂ws
with Equation (15).

6: if s ≥ 2 AND FunV − pFunV ≥ −ε then
7: NumF ← NumF + 1.
8: else
9: NumF ← 0.

10: end if
11: Perform ws+1 = vs − η ∂E

∂ws
, normalize current weight vector ws+1 with Equation (18).

Renew the i-th element of the weight vector ws+1 as follows.
12: if |wi,s+1| ≥ λη then
13: wi,s+1 = (1− λη

|wi,s+1|
)wi,s+1

14: else
15: wi,s+1 = 0
16: end if
17: as+1 = 2

s+3 , δs+1 = ws+1 − ws, pFunV ← FunV
18: vs+1 = ws+1 +

1−as
as

as+1δs+1
19: Normalize weight vectors ws+1, vs+1 with Equation (18).
20: if ||δs+1||2 ≤ ε OR NumF > MaxNumF then
21: break
22: end if
23: end for

2.3.3. Active AU Detection

Though each expression is related with several AUs, these AUs may not be present at the same
time. For example, while the AUs involving brows and eyes are present for the surprise expression
shown in Figure 4e,j, the AU involving mouth was less active. In this case, error may occur if
the features extracted from the AU involving mouth are included for expression recognition. To
address this issue, we proposed a sparse representation-based approach to identify the parts where
the corresponding AUs are active for each testing sample before expression recognition.

For the k-th part of the i-th testing sample in Figure 3, the sparse representation is represented
as follows:

min
c(k)

1
2
|| f (k)i − D(k)c(k)||22 + λ||c(k)||1. (19)

where f (k)i is the vectorized features of the i-th testing sample and D(k) = [ f (k)tr1
, f (k)tr2

, · · · , f (k)trn
] are the

patch features corresponding to the k-th face part (PTk) of all of the training samples of the candidate
expression triplet and the neutral expression. Weight vector c(k) records the n-dimensional sparse
representation coefficients, and λ is the regularization parameter set as 1e−3 in this work [56,57].

With the part-based sparse representation, the coefficients w.r.t. the AUs related with neutral
and non-neutral expressions are obtained, where the AUs related with neutral expression (AUNE)
are {AU1, AU4, AU8, AU13, AU15, AU17, AU19} and the others are the AUs related with non-neutral
expressions (AUEX) as presented in Figure 3. More precisely, for the k-th part of the weight vector c(k),
the corresponding weight components w.r.t. the AUs related with neutral and non-neutral expressions
are obtained as follows:

(c(k)NE,j, c(k)EX,j) = c(k)j · (r
(k)
NE,j, r(k)EX,j). (20)

where r(k)NE,j, r(k)EX,j are the number ratios of the j-th feature element of the training samples w.r.t. the AUs

of neutral and non-neutral expressions, respectively. That is, the weight vector c(k) is grouped into
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the sub-vectors c(k)NE, c(k)EX with neutral and non-neutral expressions. Finally, the activeness of PTk of
the i-th testing sample is defined as follows:

ActV(k)
i =

1
n

n

∑
j=1

c(k)EX,tj
− c(k)NE,tj

(21)

where tj is the index of the weight with the the j-th largest value in the vector c(k)EX or c(k)NE and n = 10
is the number of patches set to reduce the influence of abnormal weight components by sparse
representation (19).

To judge whether PTk or the corresponding AU is active or not, we treat each training sample fi

with a non-neutral label as the testing sample and obtain its activeness value TrActV(k)
i of PTk with

Equation (21), where the part feature of f (k)i is removed from the dictionary D(k) when obtaining
the sparse coefficients c(k) in Equation (19). Finally, the considered part of the testing image is decided
to be active if ActV(k)

i is larger than the average of training activeness values as follows:

f g(k)i =

{
1 if ActV(k)

i ≥ 1
ntr

∑ntr
j=1 TrActV(k)

j
0 otherwise.

(22)

where ntr is the number of training samples with non-neutral labels. When the number of the selected
active AUs for the i-th testing sample is less than two, which is likely to happen for the neutral
expression sample, then the AUs with the top two largest activeness values ActV(k)

i presented in
Equation (21) are determined to be active.

Figure 5. The sparse coefficients and the activeness values of an example surprise expression.
(a,b) The sparse representation coefficients of ‘Brow’ and ‘NoseRoot’; (c) the example surprise
expression and the activeness values of its seven parts.

Figure 5 presents the sparse representation coefficients and the activeness values for an example
surprise expression, where Figure 5 a,b present the sparse coefficients corresponding to the active
‘Brow’ and the non-active ‘NoseRoot’. The training dictionary of the testing sample consists of 27



Sensors 2017, 17, 275 12 of 23

neutral expressions and 82 non-neutral expressions such as surprise, laugh and fear. Figure 5 a,b show
that the number of non-zero coefficients corresponding to non-neutral expression samples for active
’Brow’ is significantly larger than that for non-active ’NoseRoot’. Figure 5c shows the activeness values
of the seven parts of the same example, which clearly suggests that ‘Brow’ is the most active part and
‘NoseRoot’ is the most non-active part. While ‘Brow’, ‘Eye’ and ‘Forehead’ are decided to be active and
included for feature representation, non-active parts, like ‘Mouth’, ‘NoseRoot’, ‘Nasolabial’ and ‘Chin’
regions, will not be involved in the following expression recognition.

After the active AU detection for each testing sample, the optimized patch weights for
the corresponding candidate expression triplet with Algorithm 2 are used to weigh the selected
active AUs (AUA) and the involved patches for the following recognition.

2.4. Weighted SVM for Classification

After the feature weight optimization and AU activeness detection, support vector machine
(SVM) with a slightly modified kernel function is employed for the classification [58]. Rather than
treat the feature weights as variables in SVM and obtaining them with mutual information [59],
the optimized feature weights learned in Section 2.3.2 are directly integrated with the patches involved
with the detected active AUs in Section 2.3.3 for the recognition. That is, the new inner product 〈 fi, f j〉w
of two features fi, f j with weight vector w is defined as follows:

〈 fi, f j〉w = 〈 fi, w · f j〉. (23)

where 〈x, y〉 = xTy is the inner product of two vectors and x · y = (x1y1, · · · , xnyn) is the dot product
of two vectors. Finally, with the new defined inner product (23) as the kernel function, SVM is used for
the recognition.

3. Experimental Results

We perform the experiments using MATLAB 2014b on a PC with a 4-GHZ core processor and
32 GB RAM. For the experimental testing, the Jaffe [60], Cohn–Kanade (CK+) [61] and SFEW2 [62]
databases are employed for the performance and feature optimization study. Another three databases,
i.e., Taiwanese Facial Expression Image Database (TFEID) [63], Yale-A database (YALE) [64] and
EURECOM [65], are employed for the generalization testing. Among them, the database SFEW2 was
collected in the real life, and the faces were captured with un-controlled head poses and lighting
conditions. Actually, the appearance of the same expression is different from person to person, to
guarantee that the image really represents a specific expression, these collected expressions are labeled
by two independent labellers [62]. The remaining databases were videoed in the controlled lighting
condition, and the faces are all frontal; the corresponding participants were instructed by an experimenter
to perform a series of facial displays for each expression [61].

The Jaffe database consists of 213 expression images of 10 Japanese female models, which can
be categorized into six basic and the neutral expressions, i.e., angry (An), disgust (Di), fear (Fe),
happy (Ha), sad (Sa) and surprise (Su). The CK+ database consists of 593 expression sequences
from 123 subjects, where 327 sequences are labeled with one of seven expressions (angry, disgust,
fear, happy, sad, surprise and contempt). Each sequence contains a set of captured frames when the
subject changes his/her expression; 1033 expression images, i.e., the neutral and three non-neutral
images sampled from each expression sequence are used for testing. The database SFEW2 is derived
from the sub-challenge of static expression recognition in The Third Emotion Recognition in the Wild
Challenge [62], which includes 958, 436 and 372 training, validation and testing samples of seven basic
expressions. As the labels of the testing set are not publicly available, the validation set was used in
this paper for testing. The images were videoed in the un-controlled condition with different lighting,
head poses, profiles, resolutions and face colors. Five landmark points were located with [50,66] for
face alignment.
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The Taiwanese Facial Expression Image Database (TFEID) database consists of 268 expression
images from 40 subjects (20 females, 20 males); each of the subject presents six basic expressions and
the neutral expression. The Yale expression database consists of 60 expression images from 15 subjects;
each of the subject presents three basic expressions (happy, sad and surprise) and the neutral expression.
The EURECOM Kinect Face Dataset (EURECOM) consists of 312 expression images from 52 subjects
(14 females, 38 males); each subject presents two basic expressions (happy and surprise) and the neutral
expression. The expression images are captured in two sessions at an interval of about two weeks.
The six basic and the neutral examples of the six databases are demonstrated in Figure 6. For the following
experiment, the person-independent strategy with ten-fold setting is employed for testing and comparison.
More precisely, the considered database is divided into ten groups with approximately an equal number
of person IDs. While nine of them were used for training, the remaining group was used for testing.
The process was randomly repeated ten times, and the average accuracy is recorded as the final result.

Ne An Di Fe Ha Sa Su

EURECOM

Yale

TFEID

SFEW2

CK+

Jaffe

Figure 6. Examples of six expression databases. Neutral (NE), angry (An), disgust (Di), fear (Fe),
happy (Ha), sad (Sa) and surprise (Su).

3.1. Number of Candidate Expressions Suggested by the First Stage Classifier

Take the Jaffe database as an example, some expressions in the dataset are quite difficult to
discriminate, even for human eyes. For example, the angry and sad expressions shown in Figure 4a,d,f,i
are very similar. It would be more plausible to develop a hierarchy system, which could discriminate
the easy categories at the first stage, and then differentiate the difficult categories at the second stage.

To decide the number of candidate expressions proposed by the first stage classifier, we show
in Figure 7 the variation of the accuracy with the value of k when the top-k strategy is adopted
for expression recognition. A classification is said to be correct if one of the top-k labels returned
by the system matches the true label of the sample. The accuracy generally increases with the
values of rank, k. While the accuracy of 91.5% was achieved for k = 2, the accuracy reached 96%
for k = 3. To reach a trade-off between accuracy and efficiency, we set k = 3 for the first stage
classification, i.e., the top three expression labels were assigned for the testing sample at the first
stage. Based on the three candidates, the final label was given by a different model trained using finer
features at the second stage.
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Figure 7. The variation of recognition rates with the value of ranks for the Jaffe database.

3.2. Recognition Performance Analysis

To evaluate the effects of different models like AU weights, patch weight optimization and active
AU detection, we tested the performance of the recognition system with/without those models on the
Jaffe, CK+ and SFEW2 databases. For traditional one-stage recognition, the features extracted from
each patch were concatenated (see Equation (4)) and input to SVM for classification. The feature was
further optimized using the proposed AU weight, patch weight optimization and active AU detection.
The recognition performance of the system for different models is tabulated in Table 2. One can observe
from the table that the proposed models significantly boost the performance. For example, when all
three models were used, the recognition performance increased from 82.63% to 89.67%, from 89.06% to
94.09% and from 42.2% to 46.1%, for the Jaffe, CK+ and SFEW2 datasets, respectively.

Table 2. The effects of different models on the overall recognition rate (%). CK+, Cohn–Kanade.

Database

Seven Expression Triplet-Wise-Based Two-Stage Classification

Patch
Feature

Patch
Feature

Patch Feature+
AU Weight

Patch Feature+
AU Weight+
Patch Weight

Patch Feature+
AU Weight+ Patch Weight+

Active AU Detection

Jaffe 82.63 83.10 84.04 86.85 89.67
CK+ 89.06 89.55 91.09 93.32 94.09

SFEW2 42.2 42.2 42.66 43.81 46.1

Figure 8 shows the top three most representative AUs of each expression; one can observe
from the figure that the most representative parts of the surprise expression (g) are the brows,
eyes and mouth. The most representative regions of the laugh expression (e) are the brow, mouth and
nasolabial parts.

(a): Ne (b): An (c): Di (d): Fe (e): Ha (f): Sa (g): Su

Figure 8. The top three most representative parts for each expression. The darker regions denote
the larger representative abilities.
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To analyze the performance of the patch weight optimization, Figure 9 depicts the optimized
weight vectors of five expression triplets of the Jaffe database. It can be seen from the figure that
the weights of the patches of each AU are further optimized. With the proposed weight optimization,
the discrimination ability of the weighted patches for expressions with small variation is increased,
and performance improvements on the databases Jaffe and CK+ are observed in the fifth column of
Table 2.

(a): Ne

(g): An

(m): Di

(b): Ne

(h): An

(n): Fe

(c): Ne

(i): An

(o): Ha

(d): Ne

(j): An

(p): Sa

(e): Ne

(k): An

(q): Su

Figure 9. The visualization of optimized patch weights for five expression triplets. The darker the patch
is, the larger is the weight. The patches with the top ten largest weights are labeled with red rectangles.

Due to the limited number of training samples, the weight optimization is not always beneficial
to the recognition rate improvement. Figure 10 demonstrates the variation of the objective function
values in Equation (12) and the testing accuracy of an example expression triplet (angry, fear and sad)
w.r.t. the number of iterations on the Jaffe database, when active AU detection was not applied. It can
be seen that the recognition rate is not always increasing with the descendant of the objective function
values due to the difference between the testing and training samples. Thus, active AUs could be
detected to represent the specific features for each testing expression sample.
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Figure 10. The evolutions of the objective function values and the testing recognition rates of expression
triplet: fear, angry and sad w.r.t. the number of iterations.

To study the effect of the active AU detection for recognition, Figure 11 presents the top two active
AUs of six example testing expressions, where Figure 11c,i show that the brow and eye parts are more
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active than the other parts for the expression sample presented in Figure 4e. When these active parts
are used for the feature encoding, the expression samples will be correctly recognized.

(g): An

(a): An

(h): Sa

(b): Sa

(i): Su

(c): Su

(j): Ha

(d): Ha

(k): Sa

(e): Sa

(l): Ha

(f): Ha

Figure 11. The top two active AUs of six example testing images.

To analyze the algorithm performance overall, the confusion matrix of the final recognition results
on the databases Jaffe and CK+ is presented in Tables 3 and 4, respectively. Both tables show that
the angry, fear and sad expressions are relatively difficult to be correctly recognized. The difficulty
is verified by the expressions presented in Figure 4, where faces present similar features, not only
in the appearance, but also in the face part deformation. Table 4 suggests that the sad expression is
mostly misclassified as the neutral expression (error rate 14.28%).

Table 3. Confusion matrix (%) of the proposed recognition algorithm on the Jaffe database.

Expression Ne An Di Fe Ha Sa Su

Ne 90 3.33 0 0 0 0 6.67
An 0 83.33 6.67 0 0 10 0
Di 0 3.45 93.1 0 3.45 0 0
Fe 3.13 0 0 87.5 6.25 3.12 0
Ha 0 0 0 0 100 0 0
Sa 0 6.45 3.23 6.45 6.45 77.42 0
Su 0 0 0 0 3.33 0 96.67

Table 4. Confusion matrix (%) of the proposed recognition algorithm on the CK+ database.

Expression Ne An Di Fe Ha Sa Su

Ne 94.34 2.84 0 0 0.94 0.94 0.94
An 9.63 85.93 4.44 0 0 0 0
Di 0 0 100 0 0 0 0
Fe 2.67 0 0 86.67 5.33 1.33 4
Ha 0 0 0 0 100 0 0
Sa 14.28 1.2 0 0 0 84.52 0
Su 2.81 0 0 0 0 0 97.19

3.3. Feature Optimization Comparison

This section mainly compares the performance of the proposed weight optimization algorithm
with other related algorithms, such as AdaBoost [19,20,26,35], linear discriminant analysis
(LDA) [30,43], the chi square statistic (CSS) [48], multi-task salient patch selection (MTSPS) [45]
and the uniform weights (UWs) setting. For the AdaBoost feature selection [35], the strong classifier
of the final recognition is linearly composed of a number of patch-based weak classifiers. In the
expression recognition [48], only the chi square statistic for weight assignment is employed. In the
feature selection [43], the patch saliency score is related with the classification accuracy of the training
expression samples, where PCA and LDA are employed to reduce the feature dimension. The salient
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feature selection in [45] trains a set of active common and specific expression patches. The same
strategy of the triplet mode and the GSF feature is employed for a fair comparison. The recognition
rates obtained by these algorithms on the databases Jaffe and CK+ are presented in Table 5.

Table 5. The recognition rates (%) of different feature selection algorithms on two databases. UWs,
uniform weights; CSS, chi square statistic; MTSPS, multi-task salient patch selection.

Database UWs
(Uniform Weights) AdaBoost [35] LDA [43] CSS [48] MTSPS [45] Ours

Jaffe 83.10 81.22 82.63 83.57 85.45 89.67
CK+ 89.55 88.58 90.71 90.22 92.45 94.09

Table 5 shows that the recognition rates of AdaBoost and LDA are lower than that of UWs. CSS
achieves slightly better performance than UWs on the Jaffe database. In these models, the specificity
of each expression and the causal relation information among AUs are not sufficiently exploited.
To reduce the effects of personal ID information, the salient feature selection in [45] integrated the
common and specific expression features, and higher recognition rates are achieved.

Different from the other feature selection algorithms, the AU-based feature optimization in the
proposed algorithm weighs the AUs and the corresponding patches with the conditional transient
probability matrix. The discrimination information contained in both large-scale AUs and small-scale
patches is considered. Moreover, active AUs of each testing expression sample are also detected
for the feature encoding. The best recognition rates achieved in Table 5 justified the advantages of
the proposed feature optimization.

3.4. Comparison with the State-Of-The-Art

In this section, a comparison of the overall recognition rates with a number of the state-of-the-art
algorithms is conducted. To make the comparison fair, the competing algorithms were all tuned for
the best performance. The comparison results on the databases Jaffe, CK+ and SFEW2 are demonstrated
in Tables 6 to 8, respectively, where the algorithm description, the category, the number of subjects,
testing protocol and the final recognition rates are considered.

Table 6. Comparison of different algorithms on the Jaffe database.

Algorithm Category Subjects Protocol Recognition Rate (%)

Feature and
Classifier Selection [42] Traditional 10 10-fold 85.92

Radial Feature [22] Traditional 10 10-fold 89.67
Supervised LLE [33] Traditional 10 10-fold 86.75

Ours Traditional 10 10-fold 89.67
Deep CNN [11] Deep learning-based 10 10-fold 88.6

Deep Belief Network [41] Deep learning-based 10 10-fold 91.8
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Table 7. Comparison of different algorithms on the CK+ database.

Algorithm Category Subjects Protocol Recognition Rate (%)

Maximum Margin
Projection [32] Traditional 100 5-fold 89.2

Feature Selection
with GMM [67] Traditional 97 10-fold 89.1

SVM (RBF) and
Boosted-LBP [20] Traditional 96 10-fold 91.4

Radial Feature [22] Traditional 94 10-fold 91.51
Ours Traditional 106 10-fold 94.09

AU Deep Network [47] Deep learning-based 118 10-fold 92.05
Deep Neural Network [68] Deep learning-based 106 5-fold 93.2

Table 8. The accuracy (%) of different algorithms on the SFEW2 database.

Pyramid of Histogram of
Gradients+Local Phase

Quantization + Non-linear SVM [62]

Hierarchical Committee
CNN [12] Multiple CNN [69] Transfer Learning

Based CNN [70] Ours

35.93 56.4 56.19 48.5 46.1

For the Jaffe database, our proposed algorithm achieves a competitive recognition rate among
all of the algorithms in Table 6. The algorithm [41] using the deep belief network yields the highest
recognition rate of 91.8%. However, feature selection and classifier training are time consuming,
and the process requires several days for each database. Rather than using a well-designed feature
representation, the proposed algorithm achieves the best accuracy of 89.67% as the radial feature-based
algorithm [22] among the traditional algorithms. For the CK+ database, the proposed algorithm
achieves the highest accuracy of 94.09%. As we are focused on seven-class expression recognition,
those works developed for six expressions, like [21,37,41,43–45,49], are not included for comparison in
this paper.

The feature and classifier adopted in the proposed algorithm are significantly different from
the convolutional neural network (CNN)-based algorithms. In the following, the database (SFEW2)
collected in real life is taken to compare the overall performance between CNN and the proposed
algorithms. As SFEW2 was used in Emotion Recognition in the Wild Challenge for performance
evaluation, we directly take the accuracies of participants for comparison. All of the top three
participants adopted CNN, and their results are listed in Table 8, together with that of our approach.

While our approach achieves the top performance for the CK+ database, CNN-based methods
perform much better for the real life dataset, i.e., SFEW2. As CNN-based algorithms employ
randomly-cropped face regions for dataset augmentation, they are less sensitive to the face
misalignment than the traditional algorithms. However, when a large training dataset is not available
and the images were mostly frontal faces, e.g., Jaffe and CK+, the traditional approaches could perform
better than CNN-based approaches. Furthermore, the network and parameters of CNN need to be
finely tuned, which is much more time consuming than traditional algorithms.

3.5. Cross-Database Performance Study

To study the generalization ability of the proposed model, cross-database experiments are
conducted, and the corresponding recognition rates are presented in Table 9. In this testing, while one
database is set as the training set, the other database is used as the testing set for evaluation.



Sensors 2017, 17, 275 19 of 23

Table 9. Comparison of the cross-database recognition rates (%). TFEID, Taiwanese Facial Expression
Image Database; LPP, locality preserving projection.

Algorithm
CK+ Training Jaffe Training CK+ and Jaffe Training

Jaffe Testing CK+ Testing TFEID YALE EURECOM

SVM and LBP [20] 41.3 - - - -
Radial Feature [22] 55.87 54.05 61.94 60.66 -

LPP [40] 30.52 27.97 - - -
SR [36] 40.5 - - - -
Ours 46.01 47.05 78.73 63.33 43.27

It can be seen from Table 9 that the radial feature encoding [22] with the probability projection
achieves the highest accuracy when the databases Jaffe and CK+ are used for testing and training,
respectively. The proposed algorithm achieves a competitive recognition rate of 46.01%, which is
better than the recognition rate of 32.86% achieved by [22] when the employed probability projection is
replaced with the Borda count strategy. When Jaffe is used as the training and CK+ is used for testing,
the proposed algorithm also achieves competitive accuracy.

To further study the generalization ability of the proposed model, the databases of CK+ and Jaffe
are used as the training, while one of the other three databases is chosen for the testing. The accuracy
is presented in the last three columns of Table 9, which shows that the proposed algorithm achieves
a much better recognition rate than the algorithm [22] on the database TFEID and a competitive
recognition rate on the database YALE.

4. Discussion and Conclusions

In this work, a two-stage expression recognition model based on triplet-wise feature optimization
is proposed; the novelty of the this work is concentrated on three aspects. First, overall facial
expression recognition is transformed into the triplet-wise mode to sufficiently exploit the specificity
of each expression. Second, AU weighting and patch weight optimization are proposed for each
expression triplet. Lastly, the online detection of active AUs is proposed for each testing expression
sample to reduce the influence of the non-active features in recognition. Experimental results and a
comparison with the related state-of-the-art algorithms verify the effectiveness and competitiveness of
the proposed algorithm.

Although competitive results are obtained with the proposed model, this still leaves room
for further improvement. First, feature optimization of more than two stages can be explored for
the performance improvement. Second, more efficient features should be devised and integrated into
the feature optimization model. Third, the cross-database recognition rates are still not high enough
for the real application, which will be explored in our future work. Lastly, the ideas of AU weighting,
feature sparseness optimization and active AU detection can be combined with CNN-based algorithms
to improve the feature encoding based on face frontalization [71].
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