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Triplet loss with multistage outlier suppression and
class-pair margins for facial expression recognitior

Weicheng Xie, Haogian Wu, Yi Tian, Mengchao Bai, Linlin Shen*

Abstract—Deep metric based triplet loss has been widely used the hardest sample pair, i.e. the sample pairs with maximum
to enhance inter-class separability and intra-class compactness of intra-class distance or minimum inter-class distance, in the
network features. However, the margin parameters in the triplet qining samples. It was stated that the mining of hard triplets

loss for current approaches are usually fixed and not adaptive . . o, . .
to the variations among different expression pairs. Meanwhile, [5] and outliers [6] is beneficial for improving the performance

outlier samples like faces with confusing expressions, occlusionOf original triplet loss. The hardest sample pair is selected
and large head poses may be introduced during the selection based on the identity information [7], while the distance from
of the hard triplets, which may deteriorate the generalization the anchor sample is used as the metric to select the hardest
performance of the learned features for normal testing samples. triplet. Wu et al. [8] further used the distance distribution

In this work, a new triplet loss based on class-pair margins and . - . .
multistage outlier suppression is proposed for facial expression to select the hard ”'P'Et- The triplet with the most uniform
recognition (FER) In this approach’ each expression pair is Sample-pall’ distance is deemed as the hardest one. Yu et al.
assigned with an order-insensitive or two order-aware adaptive [9] converted the selection of hard samples into a problem
margin parameters. While expression samples with large head of sample weighting with a hard-aware loss to assign bigger
poses or occlusion are firstly detected and excluded, abnormal weights to harder samples. Zhou et al. [10] proposed an

hard triplets are discarded if their feature distances do not . d triolet | ith i | ¢ f hard
fit the model of normal feature distance distribution. Extensive 'MProvea triplet 1oss with auxihiary class centers or har

experiments on seven public benchmark expression databasesSamples to consistently minimize the intra-class distance in
show that the network using the proposed loss achieves muchthe training process. To learn more discriminative features

better accuracy than that using the original triplet loss and the from visually similar classes, Ge et al. [11] introduced a new
network without using the proposed strategies, and the most o |5te margin based on the hierarchical tree to automatically
balanced performances among state-of-the-art algorithms in the . . .
literature. select meaningful hard samp_le_s Wlth the guide of global
context. Instead of using explicit distance as the metric, the
implicit feature embedding is learned adaptively to obtain the
distribution shift for triplet selection [12], [13]. While the
negative samples are further divided into three groups, i.e.
| INTRODUCTION easy, semi-hard an_d hard samples [14], Sohn [15] suggested
o ) ~ to select the negative examples that interact with each other
HE softmax loss is widely employed in convolutionat, jmprove the convergence by a multi-classpair loss.
neural networks (CNNs) to measure the difference be-j, order to dynamically adapt the triplet loss according
tween the network output and supervision signal [1], whilgy e running condition, the setting of the loss parameter,
the triplet loss [2] and a number of variants have be€n the margin parameter, is often considered. The margin
proposed to further enforce intra-class compactness and in{elo meter was introduced by Hadsell et al. [16] to filter
class separability of the learned features. The quadruplet I3% rejatively hard samples for training with the contrastive
[3] motivated from the triplet loss, is proposed to furthefyss \whose self-adaptive model has drawn lots of attentions.
e_nlarge mter-class. distance. To boost the performance of Wﬁng et al. [17] introduced an adaptive margin parameter
triplet loss, the triplet selection and the margin parametgy jistwise loss to assign larger margins to harder negative
adjustment get a lot of attention. , _samples. To dynamically update the margin parameter, Li et al.
In order to minimize the intra-class distance and maximiz¢g) ysed the correlation between the inter-class distances of
the inter-class distance during the network optimization, thge nrojected image features and the semantic representations,
hardest sample triplet is considered. Actu_a_lly, these trlplg\;.ang et al. [19] and Chen et al. [3] used the inter-class
losses help the network learn more sufficiently from thg,q jntra-class distances. Chen and Deng [20] introduced an
difficult samples in the hardest triplets. Song et al. [4] selectediantive large margin constraint to convert a fixed margin into
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Kim et al. [22] designed the contrastive representation in the  angy

feature space of an encoder network based on contrastive

metric learning and a supervised reconstruction for FER task. Disgust

Triplet loss [23] and theN + M)-tuplet loss [24] N negative

and M positive examples in a mini-batch) were proposed to Fear

take into account the expression variations of different classes.

Li and Deng [25] surveyed the state-of-the-art works related

with the deep metric losses and the corresponding variants. sad
Integrating the hard samples in the network training can

boost the performance of the triplet loss for testing dataset surprise

by learning more discriminative features. However, in current

algorithms for hard sample selection, the hard samples are Neutal

assumed to be normal, i.e. they are centralized around the Angry Disqust Fear  Happy  Sad Surprise Neutral

center of the same class and do not entangle with samples

from other classes. Wu et al. [26] proposed a novel samplifi§-. i'l <Tih_e<bi?}5{§hg }ndeetgvf:)erg Lﬂs :glﬁt[ijo?hélgog ?&;%?afégﬁzsiogepgg; .

to mine intra-class, i.e. positive samples with local samplgi!cecion 1A and the experiment in Table 1 g

distribution, to improve the deep embedding in the context of

large intra-class variations. In this work, we initialize the value

of the margin parameter based on the distribution of featyg,erimental evaluation of the proposed algorithm is greatly

dlstance_anq adapt it dynamlca_lly for pairwise expressionghhanced.

Meanwhile, inter-class distance is used to update the margin

parameter, which is estimated with the distances between the

class centers. In this way, the runtime cost of the inter-clags Motivation

distance computation is reduced. The robustness of the margin ) _ ) )

parameter update is improved, since the centers are updatelf Study the diversity among the differences of various

according to all the visited training samples using g|ob§|xpression_pairs, Fig. 1_ shows the biases .of the average inter-
information. class and intra-class distances for 42 pairs of the seven ex-

To adapt the triplet loss to different running conditions‘,’_ress_ions <_)f the FER2013 database [30]. The average distance
self-adaptive margin parameter is employed. However, a fixB{fs is defined as follows

Happ

margin is not applicable when inter-class differences appea . _ 1 dE AN £ xXA2 — dfxy £ (xd)y)2
with significantly different scale intensities [27]. For FER taskg" Nii &% 0 (FOe), F0a7) (FOe), TOaD)"
the difference between ‘fear’ and ‘happy’ expressions is more @ 1)

apparent than that between ‘fear’ and ‘sad’. Dynamic marg\ilgh ere xi

parameter for each expression pair during network trainingﬁ'g p) and x’, i.e. the positive and negative samples,
. e L ing the same (theth class) and different (th¢-th cla
rarely studied. Thus, pairwise FER is introduced to reduc ving S ( s8) !  (the ss)

- I I
the influence of inconsistency of expression pair variatior(fzaLSS labels W'.th the anchor Sam"@(xf?) #X'g))' compose a
; L . triplet, andN; j is the number of triplets in terms of the expres-

[28]. Motivated from the pairwise FER [28], adaptive margin i . (0 Q) 0 (i) '
parameter for each expression pair is introduced to take it@n Pair of (i, j); d(f(xn"), f(xa")) = [[f (") — f(xa')|l2 is
account the scale inconsistency of different expression pait§€ Lz-norm distancef (xa’) is the embedded feature vector,

Meanwhile, for tasks like FER, confusing samples afee. output of the fully connected (FC) layer, for the input of
popular and behave very diversely among different perséie anchorXy). Please note that the tripléed, x5 x\) is
identities, which can easily introduce confusing sampleBot random and traverses all the possible sample combination,
While hard samples are widely believed to increase the rws,S j # Sj; reflects the bias of the inter-class and the intra-
bustness of network during the softmax loss based trainirfijgss distances.
it may introduce noises during triplet sample selection andAs shown in Fig. 1, there is large variation among the
thus result in poor generalization performance for normblases between inter-class and intra-class distances, i.e. the
testing expression samples. Tian et al. [29] use primary featlmegest bias (2.49) is three times the smallest bias (0.72).
distance distribution to exclude outliers from the hard triplédince different expressions have different deform intensities
selection. However, the largely posed or occluded faces cand scales, a different margin parameter for each expression
also be recognized as the hard samples. Full learning of thesér is beneficial for the recognition.
samples, i.e. putting more emphasis on these samples, mayo illustrate the motivation of the outlier-suppressed triplet
provide misguidance for frontal and non-occluded expressiosglection, Fig. 2 shows three abnormal ‘happy’ expressions
Meanwhile, the class order is not sufficiently explored fofc), (d) and (e). As shown in Fig. 2, a person may present
the expression-pair difference representation. In this workn expression significantly different from others due to the
multistage outlier suppression is proposed to take into accoigentity diversity (Fig. 2(c)), large face occlusion (Fig. 2(d))
face occlusion, head pose and feature distance distribution,head pose (Fig. 2(e)), while network trained with these
while class order-aware margins are designed to more acsamples in the proposed triplet loss may result in model over-
rately depict the expression-pair differences. Furthermore, thiéing and poor generalization performance on other normal
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samples. Thus, abnormal hard positive and negative samples  ,, ay9 6.7
shall be excluded to reduce the influence of outlier triplets. Margins | 2-Di (x,,x) 1-An(x)| * | 7-Ne (xa x,) 6-Su (x,)
Q1 76

C. Contribution Fig. 3. The order-insensitive class-pair margins with resge (w.r.t.)
In this work, a new triplet loss with class-pair margingl:t#zlzelSé;fclzsd%l)/i (the 1strow) and th(e#grder%)awgre ClaSS-P?irmarginS
. . : f I.t. e ord row) expression pairsclass= /). For example,a:
a_nd mU|tIStage_ outlier suppreSS|or_1 is proposed for FER. Z%\'responds to the tripletspthag and gp belong to the 1st classfjwhi%flsh2
different margin parameter is assigned for each expressigbngs to the 2nd class. ‘A, ‘Di’, ‘Fe’, ‘Ha’, ‘Sa’, ‘Su’ and ‘Ne’, are the
pair to address the deform intensity variations among differexoreviations of ‘Angry’, ‘Disgust’, ‘Fear’, "Happy’, ‘Sad’, ‘Surprise’ and
expression classes, and adjusted dynamically accordinggra" respectively.

the distances between class centers. Furthermore, hard out-

lier samples, i.e. largely posed, occluded faces and sam Ie;;and f(xg)) in equation (1), which determine the gradient

behaving significantly different from the same-class sample itection for back propagation;, and x, are randomly gen-

are exc_lud_ed during hard triplet selection to improve th(—?{(ated pair of positive and negative samples for each anchor
generalization performance on the normal samples. This war

. SR examplexy; [-]+ = max:,0) is the hinge function.
makes the fo!lowmg.contr.|but|ons. . . Suppose the face pak, andx, are presenting expressions
« Class-pair margins, either class order-insensitive or Ord‘?randj (1<i,j < #clas3, respectively, an adaptive margin
aware, are introduced to address deform intensity INCOR-, of class order-insensitive or order-aware can be used to
sistency among different classes, which are adaptivelynsider the scale characteristics of each expression pair.

adju_sted according to t_he inter-class distances; « As shown in the first row of Fig. 3, when the order of
« Outlier hard samples, i.e. largely posed, occluded faces . . . . :
i,j is not considered, i.eqj j = aj;, a total number of

and abnormally-offset samples, are detected in the feature ; .
. ) (#clasg#class— 1)/2) margins are available.
distance space, and excluded from the triplet loss based ; g .
o « As shown in the third row of Fig. 3, when the order
network training; L : .
. , . of i,j is considered, i.ea;; # aj;, a total number of
« The proposed algorithm achieves competitive perfor- Ch ’ '
. . (#clasg#class— 1)) margins need to be defined.
mance on seven public expression databases, when com- T i
pared with the various triplet loss variants and the state- 1 N€ class-pair triplet loss is now formulated as follows
of-the-art approaches. 1 2 2
Lo==S[d(f f(Xp))e—d(f f + Qi | 3
This paper is structured as follows. Section Il gives a 2%[ (T0), F0))" = d(T0), T0))"+ il (3)

description about the proposed algorithm step by step. T\%ere 0ij is a margin associated with the expressions of

experimental results of the proposed algorithm on publ . - o
databases are presented in Section Ill. Finally, discussions %ﬁ% triplet (xa, Xp, Xn). Thus, i j reflects the feature variation

conclusions are addressed in Section V. rﬂensny of the samples belongmg_to the group _of triplets, i.e.
{(%a,Xp, X) [Clasgxa) = Clasgxp) = i,Clasgx,) = j}.
Larger margin parametesj j encourages harder triplets,
_ ”.' THE PROPOSEDALGOR'TH'\_A ~le. the loss in equation (3) is an increasing functionogf,
In this section, the proposed self-adaptive class-pair m@fhich makes the gradient descent-based optimization ..
gins, the selection of hard triplets based on occlusion apfreasonable. A heuristic margin updating method is proposed

pose detection and feature distance distribution, as well as qulse the updated centers of the expression classes:
network training and optimization are introduced.

_ i Bthresd
nr= Kmin ,1),
| ir Marg e "f'i)z d(f(xa). f(xp))?
A. Self-adaptive Class-pair Margins i 11127 N 2XaXp » ARSI (4)

final _ 9 _ nry. gold . onew
In order to boost the network discrimination ability for al(;{d B (niw n) - i yora A0 A
difficult samples, the original triplet loss is presented as \ dij =i
follows whered; j < ai”-”a' is the class-pair margin used in the current

£ = % Y [d(f(xa), F(xp))? = d(f(Xa), f(xn))? + a4, (2) iteration;y e, y°' are thel,-norms of the embedded features
Xa of current and the last iterations before feature normalization.
wherea is the margin parameter determining the hardness B9 restrict sample’s feature representation onto a hypersphere,
the selected samples, and f(x,) are the abbreviations of the embedded featuri(x) is normalized to%, wherey
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is a network optimization variable, which is updated with the Tilt angle
featuref (x), during network back-propagation. The initializa-

tion of y and the optimization details are presented in the

study [31]; Ny is the number of the intra-class sample pairs;

The weightnr is introduced to use the preceding information

for margin update; Since the margin updated in the preceding
Binresd iterations is not stableg/®" contributes toai'j}”a' with ! !
the maximum weight ofir = Bmax. While a?}® becomes stable, .-
the contribution otx™, i.e.nr, is gradually decreased to make
the margin parameter stagnate to fixed vafBigesg and Bmax
are set to 1,000 and 0.5, respectively.
During the adaptive renewal afj j, the class centerfc; }
are also updated based on the center 165432] as follows

ol o

Pan angle

Fafapapfe

1
Lo== d(f(x[k]),cyk)z, (5) Fig. 4. Example faces with different pan and tilt angles in posed face
2 database [33].

whereyy is the expression label of theth samplexy, ¢y, is
the center feature vector of thg-th class, i.e{f(xy)}.
Regarding to the margin update strategy (4), when a sam
is far away from its class center, the variance |of— cj||> —
d(f(xa), f(Xp))? is relatively large. The offsets smaller thar}0

zero are discarded with the operatfdr,, while the values ;
larger than zero increase the lags Consequently, the feature2'© categorized as largely occluded and posed fac_:es and
' e%cluded from training. We denote the landmark points of

movement toward the corresponding center is encouraged wit . .
. L - . e training and testing samples as matkixand vectorz,
equation (4), which is beneficial to decrease the intra-class

) respectively. By minimizing the objective functiofz— Xw |3,
distance. . : : 2
. . the weightsw are obtained with the least square estimation
The self adaptive update process presented in equation

_(xTy)LyT ; i
(4) not only removes the direct computation of the intef> W = (X X) X'z The index of the posed face with the

class distances, but also improves the robustness of intrgrc—)St similar head pose as the test|.ng sample is predlcteq as
argmaxw. The testing sample is deemed as an outlier

class distance approximation, since current centers are updé?g?e face. ie. laraelv posed face. if the followina condition
based on the information of all the visited training samples ﬁ1 1€ largely p ' 9

the preceding iterations. olds

iéientities, the pan and tilt angles vary fromrm/2 to 11/2.
ample faces from the database are presented in Fig. 4.
The 2D Face Alignment Network (FAN) [34] is employed
locate the five landmark points, while the failure cases

maxT ILTi,, PAN,) > k (6)

whereT ILT;,, PAN, denotes the ‘tilt' and ‘pan’ angles of the
. o i io-th samplek is the predefined threshold.

During the training of network using all the samples and 14 getect and exclude largely occluded faces, the occlusions
softmax loss, outlier (abnormal) samples may misguide the \arious key facial parts are jointly detected with a multi-

B. Outlier-suppressed Hard Triplet Selection

i ) tr’lf'e summarized as three steps [35], i.e. the pre-training, fine
outlier samples are first detected, and further suppressed, finy and multi-task occlusion identification with multi-layer
reduce the misguidance information for normal samples. perception (MLP). After the training of the multi-task CNN

Definition 1. Outlier Expression Samples are samples whoder occlusion det_ection, four tasks for respective facial parts
face consists of large proportion of non-face regions or whogée followed to judge whether left eye, right eye, nose or

facial deforms are significantly different with common defornfgouth is occluded or not. The testing sample is deemed as
of the labeled expression. an outlier occlusion face, i.e. largely occluded face, if the

) following condition holds
As largely occluded or posed faces usually consist of large

proportion of non-face regions, they are decided as outlier ZLi,l > B (7)
samples. For outlier expressions, distance distribution of deep :
features is used to detect significantly different deforms. wherel; denotes the FC layer output in the task for thif
1) Occlusion and Pose OutlierTo reduce the misguidancefacial part, whileL; is the predicted probability of theth
of the abnormal samples during triplet loss training, largelart occlusion after the Softmax activatighjs the predefined
posed and occluded faces are treated as outliers and exclutiegshold.
from the candidate hard samples based on linear regressiol) Feature-Distance-Distribution OutlierAfter the elimi-
and multi-task CNN, respectively. nation of largely occluded and posed faces, easily-confusing
A face database with various head poses [33] is used to tramples are also treated as outliers, and excluded from hard
the linear regressor. The head pose database is a benchrtriplets based on feature distance distribution.
consisting of 2,790 monocular face images from 15 personBased on the maximal intra-class and minimal inter-class
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Fig. 5. (a) Random distancé with n= 2, where f(x) = (fxq, fx2). (b),(c) The feature distance distribution and the rejection regions (blue solid regions)
for hard positive and negative sample selection with significance levetg 6f0.025 andt, = 0.05, respectively.

feature distances, the hardest positive and negative samplesria of the following rejection conditions is satisfied

the study [7] are selected as follows
y[7] 2 AT (). T (%)) 2 VBy+ S F 11 1p),
Xp = argmax, d(f(xa), f(xp))*, d(f(xa), f(xa)) < vV2y— LF 1
p p Xa b X — T Y
{ x: = argminy, d(f(Xa), f(xn))?. (8) (t(xa), 1)) e ()
wherex, andx, are selected from a training batch. Howevew_he_re':__l(lf Tp) is the inv_ers_e Of_ the_ cumula_tive prob_ability
learning from the hardest triplet may misguide the netwo str|put|on of th_e. norm_al d|str|bgt|on n equahfn (9) with cu-
training due to abnormally-offset samples, such as the exam glatlive probability be'f‘g 1_ Tp, €. PE{d < F~(1- T‘?).} N
expressions in Fig. 2. Kumar B G et al. [36] proposed to P Tp: Tn @€ the significance levels of the positive and
suppress the outlier sample in a triplet based on a mar fpoative samples, respectively. The rejection regions described

hyper-parameter. In this work, we detect abnormal hard tripl %equa_tion (11) are shown in Figs. 5(b) a_nd 5(c). Since the
ﬁzategones of negative samples are more diverse and there are

according to the accurate distribution of feature distance a e : ;
discard them in advance. arger variations among them, I:_;lrger. propornpn _o_f negative
) o . samples are assumed to be outliers, i.e. the significance level
~ When the feature dimension, i.8, is large enough, it is of negative pairs is larger than that of positive pairs. More
induced in the studies [37], [8] (see Lemma 1 of Section Wyecisely, during excluding of outliers from hard triplets, the

that the random variable of distance of two embedding featyg,uirement for negative samples to be normal is stronger than
vectors, i.e.d, approximately obeys the following normalinat of positive samples.

distribution as follows By providing additional upper and lower bounds for the
d NN(\/EV, y ), 9) selection§ of posit@ve_an(_j negative samples ac_cording to the
v2n feature distance distribution, the proposed outlier-suppressed
method in equation (11) can further decrease the influence of
l?%tlier samples, compared with the bias constraint in equation

(11)

wherey is theL,-norm of the embedded featurg?2y and%
are the mean and standard variance. An example 2D feat
distance variable, i.gd, is presented in Fig. 5(a).

For the detection of outlier samples, the nulig and o
alternative H;) hypothesises of normal samples are firde. Network Training
constructed as follows

The employed network structure is presented in Fig. 6,
{ Ho : {Ha(1 o), foxp)) < V2V

where the residual network (ResNet18 [1]) with slight modifi-
Hr: {Haro fo) > V2V (10) cation [38], i.e. the dimension of the last FC layer output is set
to #class, is employed. The same image preprocessing as the
where Ly 1 (x,). f(x,)) denotes the mean of the random variablstudy [38] is employed. The self-adaptive normalization layer
d(f(xa), f(Xp)). A selected positive samplg is deemed to be [31] is added after the last but one FC layer, i.e. ithenorm
normal if the distancel(f(xa), f(xp)) falls in the acceptance of the FC output vectof (x) is normalized to a valug with
region of the null hypothesis under a significance leygl a self-adaptive mode. To fully make use of the already trained
while abnormal if this distance lies in the correspondingiodels, the fine tuning of an available face recognition model
rejection region, i.e. the corresponding alternative hypothegsemployed.
is accepted. Similarly, a selected negative sample is an outlieSince hard samples are excluded from the proposed triplet
if the corresponding null hypothesislo : {Hq(f(x),f(x))) = loss only, they are still involved in the softmax loss-based
V2y} is rejected under a given significance lewgl Thus, training process. While the proposed triplet loss is used
the triplet (xa,Xp,Xn) is discarded wherd(f(xa), f(xp)) or for highlighting the information of normal samples during
d(f(Xa), f(Xa)) lies in the corresponding rejection region, i.etraining, the softmax los€s and the center loss are used to
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Fig. 6. The network structure of ResN&@oPr denotes the convolution layer followed by the PReLU activation functRwal is the MaxPooling layer.
ResBlis a residual block with outpuResOut put= PoolOut put+ CoPr(CoPr(PoolOutpu)). NM1 denotes the 1st normalization layer [31Reblications
denotes the times the same block is replicatefilt# denotes the number of feature maps= 512 and #lassdenote the dimension of embedded feature
and the number of expression classes.

boost the discriminative ability of the learned features, aimirfygorithm 1 Network training with the proposed triplet loss.
at all the samples. The final loss is then formulated as follows: Set the hyper-parameters, B, Bmax Bihresd Ac, At,

Maxlter.
L=Ls+AcLet+hL. A2) 5. Jnitialize the class-pair margins [3], class centers and

where £c and £; are the center and triplet loss presented network parameters.
in equations (5) and (3)Ac and A; are the regularization 3: for s=0,---,Maxlter do

coefficients. 4:  Update the margin parameters according to the updated
To avoid network non-convergence introduced by the in-  centers with equation (4);

stability of the class center, i.&, in equation (5), in the 5  Generate the candidate samples excluding the largely

preliminary iterations, a scale factpris introduced to reduce posed and occluded faces detected in equations (6) and

the influence of such instability for the margin update (equa-  (7); _ _
tion (4)). The scale factor is gradually increased from 0 tof:  Obtain the hard triplets with the strategy (8) from the

its maximum, which is used to scale the loss We|ght)\lofn candidate Samples based on the distance-distribution
equation (3) as follows constraint (11);
A 7 Perform network forward to obtain the triplet loss with
A  p(#iter) - Ay = — (13) equation (3);
1+ 10e™ 3000 8:  Perform network backward to compute the gradients of
where #ter is the number of algorithm iterations. the proposed triplet loss w.r.t. the embedded features
For the network optimization, the gradient 6fw.r.t. each with equation (14);
variable is calculated, where the gradients associated with tfe ~ Perform stochastic gradient descent (SGD) to update
proposed triplet loss (3), i.&;, are presented as follows t(;"? embedded features and network parameters;
10: end for
SAN= (1 (xa),  xp) 2 i, >l (). (x0)) 2 11: Output the trained model for testing.
376 = (f(xa) — f(xp)) - sgn 14
a?‘x; = (f(xp) — f(xa)) -sgn o _
0£t = (f(xa) — T (X)) -sgn The proposed algorithm is tested on the expression databas-
es of the FER2013 [30], AFEW [39], Extended Cohn-Kanade
where %, is the 0—1 sign function. (CK+) [40], AffectNet [41], Oulu-CASIA [42], MMI [30] and
For clarity, the entire optimization framework for the proBU-3DFE [43], whose examples are presented in Fig. 7.
posed triplet loss is illustrated in Algorithm 1. The FER2013 database [30] is an expression database

collected from the internet and used for a challenge. The
database consists of 35,887 grayscale face images, while the
I1l. EXPERIMENTAL RESULTS training set consists of 28,709 examples, both the validation
(the public test) and testing (the private test) datasets contain
3,589 expression images. Each face was labeled with neutral
We perform the experiments using four-kernel Nvidia TI(Ne) or one of the six typical expressions, i.e. angry (An),
TAN GPU Card and CAFFE package. The parameter settingisgust (Di), fear (Fe), happy (Ha), sad (Sa) and surprise (Su).
of the proposed algorithm are presented in Table I. TheActed Facial Expressions in the Wild (AFEW-6.0) [39] is
network in Fig. 6 is chosen as the backbone network, whichasdata corpus of dynamic temporal facial expressions labeled
trained for 120 epochs on each dataset via stochastic gradigith neutral and the six typical expressions. The images are
descent (SGD) with initial learning rate of 0.01 (decayed bgxtracted from movies, where 757 and 365 of 1,122 sequences
a factor of 0.5 for each 30 epochs), while the momentum aade used for training and testing, respectively. The three peak
the weight decay value are set to 0.9 and 0.0001, respectivélgmes from each sequence of the original validation dataset

A. Experimental Setting and Databases
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TABLE |
THE PARAMETER SETTING OF THE PROPOSED ALGORITHM

-5

Parameter Name¢ Value | Parameter Name Value
Ac in Eq. (12) 0.1 At in Eq. (12) le-5
Learning rate le-2 Batch size 64
Tpin Eq. (11) | 0.025| 71y in Eq. (11) 0.05

K in Eq. (6) /3 B in Eq. (7) 15

-

Tk

are selected as the testing dataset.
The CK+ database [40] consists of 593 expression se-

:M!. L #

v -7 BB
B BB .
HECER
-
Ly

>
ey |’

quences from 123 subjects, which are labeled with the six e ae BN e BE
typical expressions and contempt (Co). For our testing, the k4 A=y : L;-.., =
‘contempt’ expression is not considered, the three peak and JE - + ¢
neutral frames from each of the remaining 415 expression K& 27 E
sequences, from 106 person identities were selected as the an Di Fe Ha Sa Su Ne

testing dataset.

The AffectNet [41] database contains about 420,300 marfug. 7. Example images of the seven public datasets, i.e. BERAFEW,
ally annotated facial expression images, i.e. 28,7651 trainififj* AffectNet, Oulu-CASIA, MMI and BU-3DFE.
samples and 4,000 validation samples with neutral, contempt
and the six typical expressions. For our testing, the ‘contem %
expression is not employed. Since the original testing datase%jss
not made public, the original validation set is used for teStin%ith multiple-fold cross validation, is employed for testing
while the similar division as the study [41] is performed on thSnd comparison. '
original training dataset to generate our training and validation
datasets, with 283,901 and 3,500 samples, respectively.

The Oulu-CASIA NIR&VIS expression database [42] conB. Algorithm Analysis

tains videos of 80 subjects, which are captured with two imag-To evaluate the overall performance, the confusion matrix of
ing systemsNIR (Near Infrared) an¥ IS (Visible light), under  the proposed algorithm for the FER2013 database is presented
three different illumination conditions, i.e. normabtfong in Fig. 8(b), while the confusion matrices of the other six
indoor illumination, weak illumination and dark illumination.qatabases are presented in Fig. 9. The confusion recognition
Each face sequence presents one of the six typical expressiefs in Figs. 8(b) and 9 show that the expressions ‘angry’,
where the three peak expressions of the databasél®for gisqust, fear’ and ‘sad’ are relatively more difficult than
Strong are used. A simple augmentation with 16 differenhe other three expressions, and are easier to be confused
crops for each face is conducted to generate 23,040 imagegith each other due to the smaller differences. Meanwhile, the
The MMI database [30] includes 31 person identities witbonfusion accuracies among different expression pairs present
ages vary from 19 to 62, which is either a European, Asian, frong inconsistency.
South American. The faces present the six typical expressionsTo study the usefulness of the proposed class-pair margin-
The peak frames with the top three deform intensities in eaghfor inconsistent performances among different expression
of 205 expression sequences are employed for testing, gpgks, Fig. 8 also presents the confusion matrices with and
the selected faces are further augmented to generate 15®ithout the proposed class-pair margins. Fig. 8 shows that
images. the improvement with the class-pair margins for difficult
The BU-3DFE database [43] consists of 2,500 pairs of 38asses is more significant than that for relatively easy classes,
face models and texture images from 100 subjects, i.e. B6. the improvement for the ‘Fear’ expression is about 4%,
female and 44 male. Each subject displayed one of the sikich is almost 4 times the improvement for the ‘Happy’
typical expressions with four intensity levels. Following thexpression. Thus, the class-pair margins are more beneficial
test protocol in [44], only the texture images with the top twéor the expression classes with finer deform intensity.
deform intensities were selected for the testing. To study the correlation between the confusion probabilities
For the recognition of each testing sample, majority voand the adjusted margins, Figs. 8(b) and 8(c) further present
ing based on the probabilities of augmented face regionstlige confusion probabilities and the updated pairwise margins.

ployed. For the following experiments, the same strategy
the state of the arts, i.e. the person-independent strategy
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Fig. 8. The confusion matrices without (a) and with (b) thepmsed class-pair margins, the values of the adjusted pairwise margins (c) for the FER2013
database and their evolution curves (d). The top 15 smallest and largest nonzero margins are marked with blue and red colors, respectively. The evolt
curves of six pairwise margins, i.@nean, ONeDi» ONeFe: ONeHa: ONesa and nesy are visualized.
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Fig. 9. The confusion matrices of the AFEW (a), CK+ (b), Afféet (c), Oulu-CASIA (d), MMI (e) and BU-3DFE (f) databases.

While the mean margins of the top 15 smallest (blue) amthepi, ONeFe, ONeHa, ONesa @nd dnesy for FER2013 dataset
largest (red) nonzero margins are 0.66 and 1.53, the mear visualized in Fig. 8(d). Fig. 8(d) shows that the margins
confusion probabilities corresponding to the small and largan gradually evolve to the corresponding values in Fig. 8(c).
nonzero margins are 3.93% and 5.07% for the FER20137p study the outliers detected for the proposed triplet loss,
database. Larger confusion probability of a class pair impligge |argely posed and occluded faces detected for the FER2013
the finer difference scale. In this case, a larger margin dgatabase are demonstrated in Fig. 10. The figure shows that
consequently more beneficial since more triplets can be $gmely posed and occluded faces are properly detected by the
lected in the training to boost the discriminative ab|l|ty fo‘ntroduced face_pose regressor and multi_task CNN.

this class p‘.”‘"- The large variance_ among the pai_rwise margin.?:ig_ 11 further demonstrates six example outliers before
corresponding to all the expression pairs also illustrates tﬂﬁe 2nd row) and after (the 3rd row) the removal of largely
usefulness of the class-pair margin strategy. posed and occluded expressions. As shown in Figs. 11(a)-

The evolution curves of six class-pair margins, tean, 11(c), the largely posed and occluded expression images can
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3 TABLE I

ﬁ THE PERFORMANCEY %) WITH DIFFERENT TRIPLET LOSS SETTINGS FOR

THE SEVEN DATABASES ‘BASIC SETTING DENOTES THE COMBINATION

5 OF THE SOFTMAX, CENTER LOSSES AND THE FEATURE NORMALIZATION

| ‘TRI1’ OR‘TRI15 DENOTES THE SETTING OFL OR 15 MARGINS;
f ‘RANDTRI’, ‘HARDTRI’, ‘D ISSUPTRI’, ‘P OSSUPTRI’, ‘O CCSUPTRYI’
- AND ‘ALLSUPTRI' DENOTE THE SELECTION STRATEGIES OF RANDOM

- THE HARDEST, THE OUTLIER-SUPPRESSED TRIPLETS ACCORDING TO
FEATURE DISTRIBUTION, POSE OCCLUSION AND THEIR COMBINATION,
RESPECTIVELY ALL THE ALGORITHM SETTINGS EXCEPT'BASE LINE’
: INCLUDE ‘BASIC SETTING.
. - Recognition
Database Algorithm Description rates (%)
Fig. 10. The posed (the 1st row) and occluded (the 2nd row)fdetected Softmax Only 68.91
with face-pose regressor and multi-task CNN for the FER2013 database. Basic setting. 71.66
Tril + RandTri 71.80
Tril + HardTri 7141
o8 Tri21 + HardTri 72.14
7 Tri42 + HardTri 71.83
3., FER2013 Tril + DisSupTri 71.86
= Tri21 + DisSupTri 72.64
3 Tri42 + DisSupTri 72.22
* . ‘ Tri21 + DisSupTri + OccSupTri 73.28
1 d(f(x,).(x)) 4 Tri21 + DisSupTri + PosSupTri 73.78
: Tri21 + AllSupTri 73.56
Tri42 + AllSupTri 73.27
Softmax Only 41.64
Basic setting 42.19
Tril + RandTri 40.82
Tri21 + HardTri 43.01
(a) (b) AFEW Tri42 + HardTri 44.12
; 1 Tri21 + DisSupTri + OccSupTri 43.01
i Tri21 + DisSupTri + PosSupTri 44.93
- Tri21 + AllSupTri 46.30
. . A Tri42 + AllSupTri 46.84
; j Softmax Only 95.17
| ' ; Basic setting 95.87
@ © O Tril + RandTri 96.21
i _ _ CK+ Tri21 + HardTri 96.64
Fig. 11. Largely posed and occluded faces ((a)-(c)) and simjuoutliers Tria2 + HardTri 96.48
((d)-(f)) that lie in the non-rejection and rejection regions during positive Tri21 + DisSupTri 97.61
sample selection. Tri42 + DisSupTri 97.13
Softmax Only 58.03
Basic setting 58.63
. . . I . Tril + RandTri 59.74
lie on the acceptance_ region of the feature distance dl_strlbut_|o N, AffectNet Tri21 + HardTri 59.50
and correctly recognized as ‘happy’, ‘sad’ and ‘surprise’ with Tri42 + HardTri 59.8
large probabilities. However, these outliers may misguide the Tri21 + DisSupTri 60.12
. . q Tri42 + DisSupTri 59.92
network to correlate the expression features with the pose ané Softmax Only 5479
occlusion, and decrease the generalization ability on the frontal Basic setting 85.90
and un-occluded faces. Thus, the exclusion of the largely pos¢ dO LCASIA TTF_'115+ R:nf(ijTT”, gg-gz
. . . . . ulu- Il + Raralri .
and occluded faces is beneficial for the triplet loss Iearnlqg. Tri30 + HardTri 87.13
The last row of Fig. 11 presents three example outliers Tri15 + DisSupTri 87.29
detected with feature distance distribution during positiv Trgoﬁ+ D'S(S)UFT“ %-?‘2‘
. _ . . P oftmax Only .
sa_mp!e sele(_:tlon, whose anchor-positive dlstanc_es lie in the Basic setting 76.10
rejection region of the normal sample hypothesis. One can Tril + RandTri 76.10
observe that the expressions labeled with ‘angry’, ‘fear’ and ~ MMI Piég + H"’“g?? ;g-gg
i y G H H . (] + RHaralri .
neutrgl in Figs. 11(d)-11(f) can be easily confused_wnh Tri15 + DisSupTri 78.05
‘surprise’, ‘'sad’ and ‘sad’, respectively. Thus, the exclusion of Tri30 + DisSupTri 78.53
these confusing expressions from the triplet loss can reduge Séoftr_nax Only gg-g%
H H : Fs asic setting .
m|sgmd_ance during network tralnmg and help the network tg Tril + RandTri 8215
generalize well to normal expressions. BU-3DFE Tri15 + HardTri 83.16
Tri30 + HardTri 83.74
Tril5 + DisSupTri 84.50
Tri30 + DisSupTri 84.41
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. . TABLE 11l
C. Ablation Study of the Proposed Triplet Loss COMPARISON OF DIFFERENT RELATED ALGORITHMS ON THE SEVEN

H XPRESSION DATABASES ‘PROT.” DENOTES THE EMPLOYED PROTOCOL
To test the performance of the proposed triplet loss, thAéNDITSVALUE 3 DENOTES'3-FOLD'. ‘D ATA " ‘SUB.", 'FER.", ‘AF.".

ResNet network is trained with different loss strategies, i.e:A N, ‘0O LU’ AND ‘BU." ARE THE ABBREVIATIONS OF ‘D ATABASE',
the class-pair margins, different outlier suppressions and theigusiecT, ‘FER2013’,'"AFEW’, ‘A FFECTNET’, ‘O ULU-CASIA’ AND

combinations, then their performances on the seven databases ‘BU-3DFE".
are presented in Table II. R
; [P Data Algorithm Sub. | Prot €cog.
In Table Il, the performance with the softmax loss is listgd~ "> 9 ' | rate (%)
as the benchmark, while the setting with the combination [of Dzﬁep‘?{h%’\\‘/’;‘w[“g - - g’?-;‘
the softma>_<, ceqtgr Iosseg and the feature normalization is Usegp Multi_:gale CNN[[ZL]%] i i 72.82
as the basic training setting. To compare the performances of Adaptive Feature Losses [38] | - - 72.67
the proposed loss with other variants of the triplet loss, the M?tk"sl (21Fma}fg'”[i)7] - - ‘7“31-‘712
. . . . P . ulti-clue Fusion - .
combination ofTril andRandTriis used as the o_r|g|nal tnple’F Score-level Classifier Fusion [48] - 3 44.47
loss. Table Il shows that both class-pair margins and outlierar. 3D CNN [49] - - 39.69
suppressed hard triplet selection improve the performance of Single CNN-RNN [49] - - 45.43
the original triplet loss on all of the seven databases Ours (42 margins) - - 46.84
g P , - Deeper DNN [45] 06 | 5 93.2
For the FER2013 database, while the proposed loss achigves Salient Facial Parts [50] - 10 94.09
an improvement of 0.84% over the original loss (the 3rd apdck+ Adan DFeR% [44]L 8] 1(1)2 18 g;gg
. H : aptive Feature Losses .
_8th rows), the proposed loss with 21 margins achieves |an Ours (21 margins) 106 | 10 97 61
improvement of 0.78% over the variant with single margim PG-CNN [51] - _ 55.33
(the 7th and 8th rows), which justifies the effectiveness of the gACNN [52] - - 58.78
class-pair margins. Meanwhile, benefited from the exclusipr™": ”DRA:NLT[S[if] T e
of abnormal samples with feature distance distribution, the Ours (21 margins) . N 60.12
proposed loss achieves an improvement of 0.5% over the STMI-EXp|e[t [?5] 80 10 7459
; ; ; ; Atlases [56 80 | 10 75.52
variant with the hgrdest triplet selection (the 5_th and 8th rowg). DTAGN.Joint [57] 80 10 8146
When the detection of largely posed faces is embedded, {thgy. DeRL [44] 80 10 88.0
proposed triplet loss achieves the best performance of 73.78%, Adaptive Feature Losses [38] | 80 10 85.83
i.e. 4.87% above the baseline, and about 2.12% over the Augmentation with GAN [58] | 80 | 10 88.25
. . - . . Ours (30 margins) 80 10 87.94
basic loss setting. Similar improvements by the triplet logs STM-Explet [55] 205 T 10 Z5 12
with #clasg#class— 1)/2 margins over the Softmax-only loss DTAGN-Joint [57] - - 70.24
and the basic setting are also observed for AFEW, wheérevwmi IACNN [59] 208 | - 71.55
) o d 4.11% hieved. M Hil DeRL [44] 208 | 10 73.23
improvements of 4.66% and 4.11% are achieved. Meanwhijle, Augmentation with GAN [58] | 208 | 10 81.13
the triplet loss with #lasg#class— 1) margins achieves an Ours (30 margins) 205 | 10 78.53
i 0 i Geometric Scattering [60] - - 84.80
improvement of 0.54% over the loss witbl#sg#class—1)/2 BU Sample Order [61] o4 ) T 89
margins. . . ' DeRL [44] 100 | 10 84.17
For the other five databases with less posed and occlugded Ours (15 margins) 100 | 10 84.50

faces, the outlier suppression based on only feature dis-
tance distribution is employed, which achieves rather com-

petitive performances wherctasg#class— 1)/2 margins are .
used. Meanwhile, improvements of 0.65% and 0.48% apLoposed approach and state-of-the-art algorithms on tesse

achieved by the setting ofctasgfclass— 1) over the set- databases. For the FER2013 database, our algorithm achieved
ting of #clasg#class— 1)/2 margins for Oulu-CASIA and 25 high as 73.78% accuracy, which is even 2.58% higher than

MMI databases, respectively. Improvements of 2.44%, 2.095}3,at of the ch_allenge winner [46], i.e. 71'20/_0' Itis worthwhile
3.15%, 3.41% and 3.59% over the softmax loss, and 1.74942 the algorithm [23] also employed the triplet loss for FER,
1.49%, 2.04%. 2.43% and 2.17% over the best basic settiff ile our triplet loss achieves an improvement of 0.96% over

are achieved for the CK+, AffectNet, Oulu-CASIA, MMI and'eém [23]. For four of the employed seven databases, the
BU-3DFE databases, respectively. proposed algorithm achieved the best performances among the

algorithms for comparison, where improvements of 0.96%,
) ) 1.41%, 0.26% and 0.62%, are achieved for the FER2013,
D. Comparison with State of the Arts AFEW, CK+ and AffectNet databases, respectively. The pro-

To compare the performance of the proposed algorithposed algorithm also ranks the second on the MMI and BU-
with other algorithms, Table Il lists the performances of th8DFE databases.
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Fig. 12. The average of the feature maps generated by therteaseld the proposed algorithm.

Input Baseline Input Baseline Ours

(b)

(d)

Fig. 13. The 25th feature map generated by the baseline angrdpesed algorithm.

For the AFEW database, although only the peak framesst of the additional construction of the proposed triplet loss
are used (the algorithms [48], [49] employed the sequentialmarginal. Compared with the approach [58] that achieves the
expression video), the proposed algorithm achieves the blesst performance on MM, i.e. 81.13%, the proposed algorithm
performance, i.e. 46.84%, among five state of the arts. does not require an additional GAN training during hard triplet

For the AffectNet database, the proposed algorithm achiev@@neration.
better performance, i.e. 60.12%, than the occlusion-award-or the BU-3DFE database, the proposed algorithm
methods [51], [52], the latent truth discovering method [53jchieved a competitive performance, i.e. 84.50%, compared

and region attention network [54], i.e. an improvement dfith the best performance, i.e. 84.80%, of geometric scattering
0.62% is achieved. representation [60]. While the study [60] used the 3D data for

For the Oulu-CASIA database, the proposed algorithfi€ recognition, our algorithm only employed 2D images.
achieves a rather competitive performance, i.e. 87.94%, com- Nough our proposed triplet loss does not achieve the best

pared with the performance (88.0%) achieved by de-expressRjfiformances for all of the databases, it balances the perfor-

residual learning [44]. Though the proposed triplet loss [gances for these databases and yields competitive accuracies,

constructed with only the FC layers, rather than multiple®MpPared with the best performances.

intermediate layers in the study [44], our algorithm achieves

better performances for the CK+ and MMI databases, afd Visualization of the Feature Maps

Significantly better performance for the BU-3DFE database. In order to exp|0re the work mechanism of the proposed al-
For the MMI database, the proposed algorithm ranks tlgerithm, feature maps from the outputs of the second residual

2nd, i.e. 78.53% among six state-of-the-art approaches. WHileck are visualized. Figs. 12 and Fig. 13 present the original

the proposed algorithm employed single network, the runtinmage, and the feature maps after the training with ‘Softmax
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Only’ (baseline) and ‘Tri21 + DisSupTri’ (ours), correspondO(Zf’g’l’wnﬁ]apl -nﬁem -Nehal -1 Nehal ), Wheredeony is the num-
ing to the average and 25th feature maps, respectively.  ber of convolution layersnmapi, Nkeri and Neha are the
Compared with the baseline, Figs. 12(a)-(d) show th&ature map size, the kernel size and the channel number
expression insensitive regions, such as the hair and backgroimthe I-th layer. While the time complexities for the layers
of the non-face region in Figs. 12(a)-(d) and the cheek awnd pooling, ReLU, batch normalization and FC layer are
forehead of the face region in Figs. 12(b)-(d), are betteegligible compared with that of the convolution layers.
suppressed by the proposed algorithm. Fig. 13 shows that thdable V shows that the theoretical runtime costs of the
feature maps generated with the proposed algorithm displagseline and the proposed algorithms are about the same.
larger responses on the expression sensitive regions, suchédle the actual runtime cost of the proposed algorithm
the eyes and lips in Figs. 13(a)-(c), while smaller responsesceeds that of the baseline due to the CPU executions of
on the occlusion region in Fig. 13(d). margin updating and hard triplet selection, they can be speeded
Thus, benefit from the suppression of outlier samples during in GPU for real application. Table V also shows that the
training, the proposed algorithm is able to de-activate the ekeoretical and actual runtime costs of offline computation, i.e.
pression insensitive regions, highlight the expression sensitite detection of largely occluded and posed faces, are almost
regions, and help to improve the generalization performaneegligible compared with the online training, as the offline

of FER. operations run for only one epoch.
X TABLE V
F. Cross-database Experiments THEORETICAL AND ACTUAL RUNTIME COSTS OF THE BASELINE AND THE

To study the generalization performance of the proposedPROPOSEDMETHODTHE?E\L%ABEAUTQ;'STE'5 EVALUATED ON THE
algorithm, cross-database experiment is performed among ' ’
six databases, i.e. FER2013, CK+, Oulu-CASIA, MMI, BU¥f Baseline Ours Ours (Occlusion
3DFE and AFEW. Instead of conducting all the cross-databasBuntime Cost| ~ (Softmax (the Proposed | Outlier and Pose
experiments, the training datasets with the top two competiti Only. Online) | Loss, Online) | Selection, Offiine)

“Theoretical

performances for each testing dataset are used for the evalu-Runtime 1.7047x 10° :ggjg;j(foe 1.2185x% 10
ation and comparison. The results of the proposed algoritl‘rrPOSAt (t':'-?PS) '

. ctual
together with that of the sparse feature loss [62] are presented g e 155 slepoch | 261 sfepoch 576 slepoch

in Table IV. Cost in x 120 epochs| x 120 epochs x 1 epoch
Table IV shows that the proposed algorithm outperforms Seconds (s)

the sparse feature loss [62] in most cases, where the proposed

algorithm achieves improvements of 1.99% or 2.25% over 1V. CONCLUSIONS AND FUTURE WORKS

sparse feature loss [62] for FER2013 when CK+ or MMI To take into account the deform intensity inconsistency

:(S rutsreic:‘il;or trr?(ljnltng:[ix\/heﬂr: Ml\r/” anddOullu-(r:i@]ilA arr]? :se mong expression pairs and the outliers that potentially impair
or training and testing, the proposed aigo achieves gfe network generalization performance for facial expression

i 0
improvement of 14.37% over the sparse feature loss [6 ognition (FER), this work proposed a triplet loss based on

By suppressing outlier samples during training, the proposg : : . . :
. : ) ss-pair margins and multistage outlier suppression. To ad-
algorithm is able to reduce the abnormal features, which CEE ¥ 9 9 PP

consequently imorove its cross-database performances of ess the class-pair inconsistency, class order information and
Iearne?j featZresp P eﬁ—adaptive model are used in the construction and renewal of

the class-pair margins. To reduce the misguidance introduced

) o by abnormal hard triplets, the training samples are screened

G. Computational Efficiency based on multi-stage detections of outliers, i.e. largely posed,
To study the runtime cost of the proposed algorithm, theccluded expressions or faces with abnormal offset from the

oretical analysis and actual runtime costs of network trainimgean feature presentation. Extensive experiments on seven
with the baseline and the proposed algorithm on the AFEWe@pdIblic databases, including ablation study, comparison with

dataset, are presented in Table V. The comparison relathd state of the arts, feature map visualization, cross-database
with network testing is not considered since the same netwakaluation and computational efficiency analysis, show that
architecture is used for inference and the detection of outligre network with the proposed triplet loss achieved better
occlusion and pose is not demanded. For the comparison, preeformance than that without the proposed pairwise margins
online training and offline processing are studied separatelpand outlier-suppression strategies. Compared with state-of-the-

For deep network training, the floating point operationgrt approaches, competitive and balanced performances have

(FLOPs) related with the convolution blocks & ~ been observed.
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TABLE IV
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CROSSDATABASE PERFORMANCESO/O) ON SIX DATABASES. THE DATABASE IN THE BRACKET IS USED FOR TRAINING

Methods FER2013 CKT Oulu-CASIA I BU3DFE | AFEW
1739.72 (CK¥) 77.02 (MMIT 42.08 (CK%) 60.0 (CK%)
Sparse Feature Loss [63] g5 19 (M) | 84.47 (Oulu-CASIA) | 50.83 (MMI) | 61.46 (Oulu-CASIA) - -
41.71(CKH) 76.05 (MM 61.25(CK+) 62.68(CK)
U 62.44(MMI) | 82.42 (Oulu-CASIA) | 65.20(MMI) | 58.53 (Oulu-CAsIA) | 8210 (CK+) | 44.9 (FER)

However, improvements or future works still require furthep]
exploration. First, the region for hard expression selection can
be roughly reduced with a pre-trained model to reduce the ti T
complexity of hard triplet selection. Second, several additiona
hyper-parameters are introduced in equations (4) and (6),
whose best settings, sensitivity analysis and the self-adapti‘e
model can be further explored. Third, the class-pair margj
should be extended to group-pair margin for recognition tasks
with a larger number of categories, where each group shall
include multiple classes. Fourth, the complementarity betwe,
the proposed algorithm and the algorithms that achieve better
performances on the considered databases, e.g. [25], [58]
and [54], needs further exploitation. Lastly, the propos
algorithm is general, which can be used for more recognition
or verification tasks. [9]

V. APPENDIX [10]

Lemma 1. [37] Given the surface of an n-dimensional hy-
persphere (n> 3) with the radius ofy, we use d to denote the
Euclidean distance between any two points randomly samp[@ﬂ
from the surface. The random variable d obeys the normal
distribution with mean(d) and variances? as follows

[12]
(d) = yv2(1— g+ 0(3)), (15)
0=y + a0l 13
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