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Abstract—Cross-database facial expression recognition (CD-
FER) has attracted increasing attention when evaluating the
systems’ generalization performance. Although the attention
mechanism can capture the feature-wise importance or feature-
correlation of expression sensitive regions, the attention-based net-
work suffers from the overfitting to the source database, due to pos-
sible over-dependence on most salient features, without exploring
feature characteristics during removal of feature redundancy. To
address this issue, this paper introduces a multi-kernel competitive
convolution in feature-wise attention to obtain more salient regions
and let each kernel compete with others to enhance the expressive
ability of features, by reducing attention overfitting to the source
domain. For feature-correlation attention, we resort to a Monte
Carlo-based dropout to not only reduce the over-learning of the
feature relationship, but also model the dropout probability dis-
tribution more specifically by taking the characteristics of feature
maps into account. Experimental results show that our algorithm
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achieves much better generalization performances than the state of
the arts (SOTAs) on six publicly available datasets, in the scenarios
of single source domain, multiple source domains and domain
adaption.

Index Terms—Facial expression recognition, cross database
generalization, multi-kernel competitive convolution, Monte Carlo-
based dropout.

I. INTRODUCTION

FACIAL expression recognition (FER) and cross-database
FER has received extensive attention in the field of com-

puter vision due to its usefulness for various applications in
human-computer interaction psychiatric health diagnosis and
intelligent access control. Due to the possible domain gap
(e.g. different distributions, races and poses) between databases,
cross-database FER puts forward a higher requirement for the
generalization capacity of the learned model.

Compared with the domain adaptation-based methods that
alleviate the domain discrepancy between the source and target
domains and thus require target domain data, domain general-
ization (DG) methods aim to train a model with enhanced gener-
alization capacity without the aid of unseen target domain data.
Specifically, typical DG methods involve data augmentation and
generation [1], domain invariant feature representation [2] and
meta-learning-based approaches [3].

For cross-database expression recognition [7], attention
mechanism has been widely used for the feature-based or
feature-correlation-based adaptive weighting [8], developing a
feature representation common to different databases due to its
adaptivity. However, attention-based networks frequently suffer
from the overfitting to the source domain [9]. As shown in
Fig. 1, both attention operations only focus on certain local
regions, when they are trained on a single source domain and
tested on the target domain. This means that the attention may
over-fit to the source database. When the number of source
domains increases, the well-trained network would focus on
more sensitive regions of the entire face in a more comprehensive
way. Thus, as shown in Fig. 1(e), we aim to achieve the effect
of multi-source domains in the case of single source domain.

Although feature-wise attention (i.e., feature contributions are
weighed adaptively in a feature map-wise manner) usually can
make the network focus on certain local key information [8], it
may not give enough attention to the contribution of sub-salient
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Fig. 1. Class Activation Map (CAM) [4] visualization of two attentions in two
scenarios. (a) and (c) the focus of channel attention [5] for the target domain in
the scenarios of the single-source domain and the multi-source domains, (b) and
(d) the focus of feature-correlation-based self attention [6] for the target domain
in the two scenarios, and (e) the focus of our method in the single-source domain
scenario.

features [10], [11], while these features play an important role in
robustness of the cross-domain recognition tasks [12]. Existing
works mainly suppress salient regions, forcing the network to
pay attention to sub-salient regions [13], or combine multi-scale
global and local salient regions to improve feature representation
learning [14]. For example, InceptionNet [15] uses multi-branch
to obtain multi-scale information, SKNet [16] uses multiple
kernels of different sizes to obtain features of different receptive
fields, and EPSANet [17] resorts to multi-scale and channel-wise
feature maps. Despite that these methods have shown the effec-
tiveness of multi-convolution kernels in classification, the opera-
tions that direct concatenating features in InceptionNet [15] and
treating different kernels equally important in SKNet [16], and
considering only the channel-wise features in EPSANet [17],
ignore the respective characteristic of each kernel.

In addition to the feature-wise attention, feature-correlation-
based attention also has been frequently exploited for the con-
tribution adaption of associated features, where the most typical
representative is the vision transformer model [6]. Recent stud-
ies, e.g., [18] showed that there is a large amount of redundant
attention weights in self-attention, resulting in over-learning to
the source domain. Accordingly, several works aim to reduce
this redundancy [19], and the most classic one is based on
dropout [20]. Traditional dropout [20] discards neurons with
a fixed probability, which has too much randomness, thus a
number of dropout variants, e.g., blocks [21], channels [22] and
attention [23], etc. are developed to reduce this randomness.
Whereas, these methods learn redundant and less informative
cues about the objects during the training [24]. Zeng et al.
propose the CorrDrop [25], which samples an adaptive dropout
mask in the Bernoulli distribution to discard the feature maps.
However, the above-mentioned dropout are based on fixed distri-
butions not capturing the specific characteristic of each sample,
which thus do not make full use of the information specific to
the feature maps.

To address the limitations discussed above, we propose a
novel multi-kernel competitive convolution (MKCC) and Monte

Carlo-based dropout for the cross-database FER task. (i) In
contrast to existing single-kernel methods, our MKCC lets
multiple kernels compete with each other to take into account
both salient and sub-salient regions. To make use of the ben-
efit of different kernels on behalf of the respective regions,
intra- and inter- feature map cues specific to each kernel are
aggregated via an attention mechanism. (ii) To take into ac-
count the specific characteristics of feature maps in reducing
the co-adaptation among them, unlike the random or sample-
unrelated manner widely used in existing works, our Monte
Carlo-based dropout aims to integrate feature map-specific cues
and reduces the feature-wise redundancy in a sample-dependent
manner.

The contributions of this paper are summarized as follows
� A MKCC is proposed to adapt the feature-wise attention

module by considering both sub-salient features and the
most salient features, where a global sub-branch of kernel
weighting can also make the model better generalizable to
unseen data;

� A Monte Carlo-based dropout (MCD) is proposed to re-
duce the redundancy of global feature correlations. Com-
pared with other dropout variants, our dropout is sample-
dependent and well explores the specific characteristics of
feature maps;

� Our method outperforms the related state of the arts for
the task of cross-database FER in terms of single-source
domain generalization, multi-source domain generaliza-
tion and domain adaptation, and is a plug-and-play module
directly integrable with other paradigms.

II. RELATED WORK

A. Cross-Database Facial Expression Recognition (CDFER)

Methods of domain generalization were proposed to improve
the recognition accuracy of the network for unseen databases in
general fields, e.g., PDEN [26] utilized multiple sub-networks to
simulate different domains, DIFEX [2] used high-level Fourier
phases as domain invariant features, and SADA [27] resorted
to suppressing model sensitivity in frequency space. Compared
with these domain generalization tasks, cross-database gener-
alization of FER is also rather challenging, due to the large
differences among expressions from different databases, e.g.,
occlusion, poses, race and gender. Meanwhile, due to the limited
scale of data, overfitting to the source domain exacerbates the
difficulty of the problem. To this end, TDTLN [28] devised the
cross-database-specific discriminative features, and Ji et al. pro-
posed ICID [29] to learn both intra-category common features
and inter-category discriminative features. Since these methods
only use a single kernel to encode features, the sub-salient
regions are not fully explored in the final feature representation.
Ma et al. [30] used attention integration and Transformer struc-
ture to obtain global and local features. However, the overfitting
of the attention mechanism to the source dataset is hardly studied
and addressed.

In this work, to reduce over-learning on the source domain in
CDFER, we resort to the multi-kernel competition mechanism
to make model explore more on the sub-salient features, as well
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as a self-attention with Monte Carlo-based Dropout to take into
account the characteristics of feature maps.

B. Attention-Based Feature Representation

As an adaptive weighting mechanism, attention can be
roughly categorized as the feature-wise and feature-correlation-
based approaches [8]. For example, SENet [5] used channel
attention, CBAM [31] combined channel and spatial attentions,
SKNet [16] adaptively selected feature maps of different re-
ceptive fields, EPSANet [17] used multi-scale channel attention
and Qu et al. [11] applied the attention mask to build the spatial
attention. While these feature-wise attention methods mainly
focus on the local information of the feature maps, such as
channel or spatial information, they do not pay enough attention
to the global cues, including those features of the feature maps
that are not so salient.

Therefore, we design a multi-kernel competitive convolu-
tion module to explore this global information, i.e., the global
sub-branch enlarges the weights of different sub-salient regions
for robust recognition. In this way, there is a broader range of
features for a network to explore, producing more generalizable
feature representation helpful for cross-domain FER.

In contrast, feature-correlation-based attention builds up the
dynamic correlation of features in the high-dimensional space,
e.g., Transformer [32], the combination of CNN and Trans-
former [33], the Attentional Selective Fusion (ASF) of multiple
features with the global-local attention [30]. However, these
works do not consider the redundancy drawback of the feature
correlations, i.e., the feature relationship for the source domain
dataset is overfitted. Dropdim [34] drops part of the embedding
dimensions of Transformer network to encourage it to encode
more better-generalized features. Though this regularization can
enhance the generalization capacity of the attention in Trans-
former, it does not fully explore the characteristics associated
with the feature itself.

In this work, we resort to a feature-adaption dropout to reduce
this redundancy in the attention mechanism.

C. Dropout-Based Generalization Improvement

Dropout [20] can make the model more generalizable and
reduce overfitting, by setting the activation value of a certain
neuron to zero with a certain probability. There have been many
works [21], [22], [23], [35], [36] improving the original dropout.

Since the original dropout may destroy the overall structure of
the feature map, Dropblock [21] was proposed to discard units
in contiguous regions of the feature map in a structured manner.
CamDrop [35] took into account the strength of the surrounding
CAM to selectively discard some specific spatial regions, and
DropKey [23] designed a dropout that sets Key as the dropout
unit for the attention in Transformer. However, these methods
mainly model the internal information of the feature maps, and
do not pay sufficient attention on the co-adaptation or correlation
among them.

To better reduce the co-adaptation between feature maps,
Ding et al. [36] proposed Channel DropBlock (CDB), which
clustered channels by a correlation matrix and randomly dropped

groups of related channels. Xue et al. [33] proposed the Multi-
Attention Dropping module to randomly drop a feature map
with an uniform distribution. CorrDrop [25] sampled an adaptive
mask in the Bernoulli distribution to discard the feature maps.
However, the dropout masks obtained in these methods are based
on the sampling of a fixed distribution, which cannot cope well
with the distribution of different domains since each has its own
characteristics.

Therefore, we propose a feature map-specific dropout with
Monte Carlo-based probability distribution simulation. Accord-
ing to the characteristics of feature maps, our dropout is able to
adaptively reduce the redundancy of feature correlation accord-
ing to an instance-dependent dropout mask.

III. METHODOLOGY

In this section, we first illustrate the motivation of our newly-
proposed modules or how they differ from the existing meth-
ods. Then, we introduce the main modules of our proposed
framework, including Multi-Kernel Competitive Convolution
(MKCC), Self-Attention with Monte Carlo-based Dropout
(SAwMCD), and Inter-Scale Attention (ISA), as shown in
Fig. 2. While MKCC aims to encode features from areas of
different salient degrees, SAwMCD further reduces the redun-
dancy in the global information between them to obtain a concise
feature correlation representation. ISA is used to adaptively
weigh feature maps with different scales for classification. Fur-
thermore, we summarize the training process of the entire model
and conduct an analysis of the proposed modules.

A. Motivation and Goals

1) Multi-Kernel Competitive Convolution (MKCC): For dif-
ferent databases, the feature distribution obtained by a single-
convolution kernel will be overfitting to the specific distribu-
tion of each database, i.e., the convolution kernel is always
learned to fit the distribution of the corresponding dataset. As
a result, the well-trained model will focus on the areas that
are specifically salient to images of the specific database, and
may not sufficiently explore the remaining sub-salient areas that
may informative for recognizing facial expressions collected by
other datasets. Though improving the performance on the source
domain, this characteristic is not beneficial for cross-domain
FER.

As shown in Fig. 3, the setting of the single-kernel makes
the network concentrate on few sensitive regions like the nose
region, which may be not helpful for the unseen data with dif-
ferent expression cues. By contrast, multi-kernel setting makes
the network explore different salient areas, such as eyes, nose,
mouth, and eyebrow frown, allowing the network to better
distinguish expressions from different databases. In addition, we
allow these kernels to compete with each other, i.e., assigning a
greater weight to the kernel with more discriminative ability.

2) Monte Carlo-Based Dropout: Traditional dropout inac-
tivates a feature map based on a fixed dropout probability, as
shown in Fig. 4(a). For the distribution-based dropout that drops
a feature map based on a more general distribution, as shown
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Fig. 2. Our method consists of the modules of Multi-Kernel Competitive Convolution (MKCC), Self-Attention with Monte Carlo-based dropout (SAwMCD) and
Inter-Scale Attention (ISA). SDG, MDG and DA in the ‘Downstream Tasks’ block mean single-source domain generalization, multi-source domain generalization
and domain adaptation, respectively, where the specific source and target domains are presented.

Fig. 3. The motivation of our MKCC. (a) The source domain representations
of two expressions; (b) the representations of existing single-convolution kernel
methods do not fully explore sub-salient regions; (c) the representations with
our method leverages more diverse discriminative cues.

in Fig. 4(b), whether a feature map is dropped or not is deter-
mined by sampling a 0-1 mask value in a fixed distribution, e.g.
Gaussian distribution. However, these methods use a dropout

Fig. 4. Illustrations of different dropout variants. (a) Random dropout with a
fixed probability, (b) sampling from a fixed probability distribution (e.g. normal
distribution or uniform distribution) to generate a mask for dropout, (c) sampling
from a varying distribution using the Monte Carlo method to generate a mask
for dropout.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 28,2025 at 01:36:22 UTC from IEEE Xplore.  Restrictions apply. 



XIE et al.: GENERALIZATION-ENHANCED FEATURE-WISE AND CORRELATION ATTENTIONS FOR CDFER 5

Fig. 5. Schematic diagram of our MKCC module.

probability distribution independent to the feature maps or the
samples, thus do not take into account the characteristics of the
feature maps themselves.

In this work, we propose a Monte Carlo-based dropout
(MCD), as shown in Fig. 4(c), by using Monte Carlo sampling
to randomly simulate the probability distribution of dropping
a feature map. This approach dynamically adjusts the dropout
probability based on the characteristics of the feature maps, mak-
ing it sample-dependent. Specifically, a global average pooling
(GAP) vector is used to capture the global characteristics of each
feature map, which guides the Monte Carlo sampling process
to generate adaptive dropout masks. Unlike traditional dropout
methods that rely on fixed probabilities, MCD ensures that the
dropout distribution reflects the specific characteristics of the
feature maps, reducing over-learning to the source domain and
improving generalization to unseen data. By exploring a broader
range of features, including sub-salient regions, MCD enhances
robustness in cross-database FER.

B. Multi-Kernel Competitive Convolution (MKCC)

To prevent the learned convolution kernel from overfitting
to the source domain, we propose to use multiple kernels via
different branches, where each branch contains a convolution
and three attention operations that are learned to extract features
of a unique degree of salience. The schematic diagram of our
MKCC is shown in Fig. 5.

Specifically, for a batch of feature mapsFi, multiple branches
are used to obtain feature maps of the same scale as:

μ
(i)
k = Convk(Resize(Fi)), k = 1, . . . , n (1)

where Fi are the feature representation extracted from the i-th
block, and are resized as c× h× w, where c, h, w are the
numbers of channels, height and width of the feature map,
respectively. Convk means the k-th convolution operation and
n is the number of its kernels.

To further enhance the feature representations corresponding
to different salient regions, we resort to three attention strategies
in the spatial, channel and global dimensions for each kernel-
specific branch. First, in the spatial dimension, we integrate the
information of different positions of each feature map as:

s
(i)
k = Sigmoid(Conv(ReLU(BN(Conv(μ

(i)
k ))))) (2)

where BN denotes the batch normalization [37]. Then, to model
the importance of each channel, the channel-wise weight of the
feature representation is obtained as:

t
(i)
k = Sigmoid(W2(ReLU(W1(GAP(μ

(i)
k ))))) (3)

where GAP represents the global average pooling and W1 ∈
R

c
4×c,W2 ∈ R

c× c
4 are the weights of the two fully connected

(FC) layers.
Third, in addition to the local spatial and channel information,

we obtain the specific global information with a global sub-
branch to weight the importance of different kernels as follows:

g
(i)
k = Softmax(W4(tanh(BN(W3(GAP(μ

(i)
k )))))) (4)

where W3 ∈ R
c
4×c,W4 ∈ R

1× c
4 are the weights of the two FC

layers,
∑n

k=1 g
(i)
k = 1. Based on this global sub-branch, each

kernel is encouraged to compete with others, allowing network
to assign a larger weight to the more important features.

Finally, the coefficients, i.e., s(i)k , t(i)k and g
(i)
k for the three

attention sub-branches are assigned to the original feature map
accordingly, and the feature map F

(i)
MKCC after MKCC is for-

mulated as follows

F
(i)
MKCC =

n∑
k=1

μ
(i)
k ⊗ g

(i)
k ⊗ (s

(i)
k ⊕ t

(i)
k ) (5)

where ⊕ represents the broadcasting addition and ⊗ means
broadcasting element-wise multiplication [30].

C. Self-Attention With Monte Carlo-Based
Dropout (SAwMCD)

To model the relationship between feature maps of different
representations, i.e., F (i)

MKCC in (5) at the same scale, as well as
obtain more diverse feature representations without large run-
time overhead, we resort to the self-attention mechanism defined
in the Transformer [32], i.e., this is achieved by optimizing the
weights of learnable queries, keys and values. Specifically, we
first usemFC layers to mapFF

(i)
MKCC intom specific represen-

tation spaces, where FF
(i)
MKCC ∈ R

c×hw is the channel-wise

token representation of the feature maps F
(i)
MKCC ∈ R

c×h×w

(hw, c are the number and length of tokens) and each output is
namely as a head, as shown in Fig. 2. Each head is formulated
as:

head
(i)
j = Softmax

(
FF

(i)
MKCCW

Q
j (FF

(i)
MKCCW

K
j )T√

d

)

× FF
(i)
MKCCW

V
j (6)

where WQ
j ,WK

j ,WV
j ∈ R

c×d are the learnable weights for the
queries, keys and values of the attention operation in the j-th
head, respectively; d = c/m is set to normalize the variance of
each head output, and m denotes the number of heads.

Then, our MCD is performed on the concatenation
of the heads specific to the i-th block, i.e., H(i) =

[head
(i)
1 , head

(i)
2 , . . . , head

(i)
m ]. As shown in Fig. 6, a global
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Fig. 6. The proposed Monte Carlo-based dropout (MCD).

average pooling operation is employed to obtain a mask that is
more in line with the feature map in subsequent sampling for
MCD. This is formulated as:

v(i) = GAP(H(i)) (7)

where v(i) ∈ R
m×1.

While the vector v(i) can encode the global information of
each head, we further resort to the Monte Carlo sampling to ran-
domly simulate the distribution information of the feature map,
so as to make our dropout be more specific to the distribution
of the feature map. Specifically, we formulate the thresholds of
generating the binary mask for our dropout as:

u(i) = HF (i)ξ (8)

where u(i) ∈ R
m×1, and the matrix HF (i) ∈ R

m×(hw×hw) (m
rows and hw × hw columns) denotes the flatten heads of
H(i). ξ ∈ R

(hw×hw)×1 are sampled from the Kaiming initializa-
tion [38] distribution with the Monte Carlo technique, which is
realized via a MLP. Since the parameters of MLP in the dropout
method are not renewed with network back propagation, this
MLP mapping is equivalent to randomly simulating a distri-
bution containing the feature map-specific cues. Based on the
threshold values u(i), we formulate the j-th dimension of the
binary mask mask(i) as:

mask
(i)
j =

{
0, v

(i)
j > u

(i)
j , j = 1, 2, . . . ,m

1, otherwise
(9)

This mask can be adaptively adjusted according to the threshold
u
(i)
j that encodes the distribution of the feature map-specific

cues via ξ in (8), and thus can represent the distribution of the
feature map as well. Meanwhile, the sampling features that have
larger responses than the average are masked out, reducing the
possibility of overfitting to these salient features.

Finally, we perform dropout with the mask of heads to make
the model better explore the sub-salient features, i.e., formulat-
ing the output of SAwMCD module as follows{

F
(i)
MCD = LN(MCD(H(i))WMLP ) +MCD(H(i))

MCD(H(i)) = LN(H(i) ⊗mask(i)) +H(i)

(10)
where LN denotes the layer normalization, following Monte
Carlo Dropout (MCD) and an additional MLP layer with the
weight matrix of WMLP , as shown in Fig. 2.

D. Training and Inference

1) Inter-Scale Attention (ISA): While the lower layers of the
neural network learn the low-level general features, the higher
layers tend to learn domain-specific features [39]. To make our
model learn the domain-common features in lower layers in
addition to the domain-specific features for the CDFER task,
we integrate the cues from different blocks. Specifically, we
formulate the weight of the feature representation with respect
to the i-th block as follows

ω(i) = Sigmoid(ReLU(GAP(F
(i)
MCD)W5)W6) (11)

where ω(i) ∈ R
c×1, and W5,W6 are the weights of the two FC

layers.
Finally, by integrating the cues of self-attention feature FISA

and the feature FN with the CNN backbone, the following
feature representation Fout is used for classification{

Fout = Concat(FISA, FN )

FISA =
∑N

i=1 F
(i)
MCD ⊗ ω(N) (12)

whereConcat(·, ·)means stitching along the channel dimension
and N indicates the number of blocks.

2) Overall Training: The single domain generalization is
trained using the cross-entropy loss as follows

Lce = − 1

MS

MS∑
e=1

ye log(F(xe, θF)) (13)

where MS is the number of samples from the source domain
data, xe and ye are the e-th training sample and its ground
truth label, F means our employed network and θF means its
parameters.

For multi-domain generalization and domain adaptation, we
utilize both cross-entropy loss Lce and domain adversarial loss
as follows

Lda = −
nd∑
q=1

1

MSq

MSq∑
e=1

y
Sq
e log(Fda(x

Sq
e , θFda

)) (14)

where Sq represents the q-th of nd source domains and MSq

represents the number of samples from it, xSq
e and y

Sq
e are the

e-th training sample and its ground truth label from the q-th
source domain. Fda means a domain adversarial network, i.e.,
three FC layers, and θFda

means its parameters. For clarity, the
training procedure of our algorithm is shown in Algorithm 1.

Lemma 1: The probability of dropping a head is approximate
to the cumulative probability of a normal distribution.

Proof: Assume each of multi-layer perception (MLP) weight,
i.e., the r-th dimension value ξr ∼ U(−a, a) obeys Kaiming

initialization [38], where a =
√

6
dim and dim is the dimension

of MLP. Without loss of generality, let O(j) ∈ R
1×(hw×hw)

denote the j-th flatten head, i.e., the j-th row of HF (i) in (8).
According to the central limit theorem:

η = u
(i)
j =

hw×hw∑
r=1

O(j)
r ξr ∼ N(0,

√
b‖O(j)‖2) (15)
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Algorithm 1: The Training Procedure of Our Method.
Input: Samples of source domains
{xSq

e , y
Sq
e , q = 1, . . . , nd}.

Output: Final model parameter θF for the prediction.
1: While not converged do
2: Input feature maps Fi to the MKCC module for fusion

feature map F
(i)
MKCC in (5);

3: Input F (i)
MKCC to the SAwMCD module to get the

redundant-reduced feature maps F (i)
MCD in (10);

4: Input FMCD from all blocks into the ISA module to
obtain multi-scale feature map representation Fout in
(12);

5: Input Fout to the classifier and compute the
classification loss Lce in (13) (and additional domain
adversarial loss Lda in the settings of multi-source
and domain adaptation);

6: Update network parameters θF using loss Lce (and
additionally update θFda

using the loss Lda in (14)
under the settings of multi-source and domain
adaptation);

7: end while

where b = [a−(−a)]2

12 = 2
dim represents the variance of ξr, O(j)

r

and ‖O(j)‖2 represent the r-th value and theL2-norm of the j-th
flatten head.

Let Φ represent the distribution of η we simulated, ϕ is its
probability density function. When η is greater than mv = v

(i)
j

in (7), i.e., 1
hw×hw

∑hw×hw
r=1 O

(j)
r , it means to keep the r-th head,

and the specific probability is formulated as follows

Φ(mv) =

∫
ϕ(η > mv)dη =

∫ +∞

mv

ϕ(η)dη (16)

Thus, the probability of dropping this head is approximate to the
cumulative probability of N(0,

√
b‖O(j)‖2). �

IV. EXPERIMENT

A. Database and Experimental Setup

We evaluate the proposed approach on six public databases,
i.e., RAF-DB [40], FER2013+[41], SFEW2.0 [42], Affect-
Net [43], ExpW [44] and JAFFE [45]. All the databases contain
face images with seven expressions, i.e., six basic expressions
and neutral.

RAF-DB database is a large-scale facial expression database,
containing 29,672 in-the-wild facial images downloaded from
the Internet. Each image has been independently labeled by
about 40 annotators.

JAFFE database consists of 213 images from 10 different
Japanese female subjects and the expressions were annotated
by 60 annotators.

SFEW2.0 database was created by selecting static frames from
the AFEW database [46]. It has been divided into three sets: 958
training samples, 436 validation samples and 372 test samples.
In our experiment, the validation set is used for the testing.

TABLE I
PERFORMANCES AND COMPLEXITY INDICATORS IN THE SCENARIO OF

SINGLE-SOURCE DOMAIN

FER2013+ database annotations provide a set of new labels
for the standard Emotion FER2013 [47] database. In FER2013+,
each image has been labeled by 10 crowd-sourced taggers and
it consists of 35,886 facial expression images with the size of
48× 48, including 28,708 training images, 3,589 public vali-
dation images and 3,589 private testing images. We use public
validation and private testing images for the evaluation.

ExpW database contains 91,793 faces downloaded using
Google image search.

Non-face images were removed in the label annotation pro-
cess.

AffectNet database contains more than 1 M facial images col-
lected from the Internet by querying three major search engines
using 1,250 emotion related keywords in six different languages.
We adopt facial images from 7 basic emotion categories for the
experiments.

We use ResNet18 pre-trained on ImageNet as the backbone
and the batch size is 32. For our MKCC, the input feature of
each block is fixed to the size of 512 × 14 × 14, and the number
of kernels is set to 4. In our SAwMCD, the number of heads is
set to 16. The networks are optimized via the AdaW algorithm
with the learning rate of 0.0002, the weight decay of 0.01 and
the momentum of 0.9. We train the networks for 50 epochs.

Specifically, for the single-source domain setting, we use the
training set of the labeled source domain for the learning with
the cross-entropy loss in (13), which is evaluated on the testing
set of the target domain. For the multi-source domain setting,
we leverage multiple labeled source domain training sets for
training, with both the loss in (13) and domain adversarial loss
in (14), and evaluate it on the target domain testing set. For
the domain adaptation setting, we leverage the labeled source
domain training set and unlabeled target domain training set for
the training, with both the losses in (13) and (14), and evaluate
it on the target domain testing set. The open source codes of
the SOTA methods used for comparison are appended in the
supplementary material.

B. Overall Performance Comparison

1) Single-Source Cross-Domain: We first evaluate the gener-
alization performance and complexity indicators of our method
trained on single source database, and the accuracy on the other
databases are shown in Table I. We use RAFDB, FER2013+,
SFEW, ExpW or AffectNet as source domain, and the remaining
five databases as target domains for testing.
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TABLE II
PERFORMANCES ON THE TESTING DATASET OF THE SOURCE DOMAIN IN THE

SCENARIO OF SINGLE-SOURCE DOMAIN

TABLE III
PERFORMANCES IN THE SCENARIO OF MULTI-SOURCE DOMAIN

Compared with ICID [29] designed specifically for cross-
domain FER, Table I shows that our method achieves an im-
provement of more than 3% on all source databases, and a large
margin of 5.09% when ExpW is used as the source domain.
This improvement maybe resulted from the multi-scale salient
features obtained by our method, largely different from ICID that
uses only a single feature in the last layer. Compared with the
generalization-oriented multi-level attention, i.e. MLA [48] that
is designed for FER, our algorithm outperforms it by 1% on all
target domains. The achieved better generalization performance
may be due to the alleviated over-learning in the self-attention
operation via the introduced MCD. Compared with other state-
of-the-art (SOTA) DG methods, including PDEN [26], Se-
queener [49], SADA [27], etc., that are not specially designed
for FER, our method consistently outperforms these SOTAs in
all five sets of experiments. For example, when RAFDB is used
as the source database, our method achieves an improvement of
13.87% over the Sequeener [49].

Meanwhile, our model achieves a better balance between
efficiency and effectiveness, with a computational complexity
of 4.5 M that is largely lower than the complex models like SNR
(20.51 M) and Sequeener (49.59 M), as well as a parameter
count of 34.24 G, that is largely lower than those of current state
of the arts, e.g. SADA (49.32 G). Despite its moderate resource
overhead, it achieves the state-of-the-art performances.

To study the performance of our algorithm on the testing
dataset of the source domain, Table II presents the accuracy
of our method compared with the baseline.

In addition to the SOTA performances on the target domains in
Table I, Table II shows that our method also achieves improve-
ments over the baseline on the testing datasets of all source
domains, e.g., our method achieves the highest improvement
of 4.13% on the test dataset of SFEW. There is also a 2.23%
improvement on the challenging database AffectNet in the wild.

2) Multi-Source Cross-Domain: We further evaluate our
method of domain generalization in the setting of multiple
source domains, and Table III presents the results.

Compared with the setting of single source domain of SFEW,
the average accuracy on the target domain database has signif-
icantly improved by a margin of 16.18% when the domains of
SFEW and RAFDB are used for the training. Compared with
other SOTA methods, our method achieves the best result in
terms of average accuracy. Specifically, our method outperforms
the Sequeener [49] by a margin of 6.44% in the multi-source
domain scenario and MixStyle [1] by 1.55% when RAFDB
and SFEW2.0 are used as source domains. Compared with
MLA [48], which also extends to the scenario of multi-source
domains, we achieve improvements larger than 1% in all cases.

3) Domain Adaptation: To study the performance of our
algorithm in terms of domain adaptation, we present the results
of the SOTA methods [50], [51], [52], [53], [54] and ours in
Table IV, where ECAN [51] is specially designed for cross-
domain expression recognition.

Table IV shows that our method better trades off the domain-
adaption performance on each of target dataset and achieves
the best average results on all databases, no mater when the
large-scale dataset, i.e., AffectNet or the small-scale dataset, i.e.,
SFEW2.0 is used as the source dataset. By contrast, other SOTAs
such as JUMBOT [52] do not perform stably. Taking JAFFE as
the target dataset for example, while JUMBOT [52] achieves
the SOTA performance, i.e., 65.79% when AffectNet is used as
source dataset, its performance declines to only 19.74% when the
small-scale dataset SFEW2.0 is used for training. These results
show that our method can also work well for the laboratory-
controlled database JAFFE that has a large domain shift in terms
of gender and race.

Since EADA [57] and ELS [58] are designed specially for
the domain adaptation task, they utilize additional strategies
that differ much from ours, such as data selection, data aug-
mentation, and other paradigms. To evaluate the performance
of our algorithm generalized onto other paradigms, we use
them as the baselines, and integrate our modules with their
methods and present the results in Table VI. One can see that
our module outperforms the baselines by 1%-2% in accuracy,
i.e., our modules are plug-and-play and can effectively enhance
the recognition ability of the SOTA models.

4) Dropout Method: Our proposed method builds upon
Monte Carlo Dropout (MCD) and leverages its uncertainty esti-
mation capabilities, which is especially advantageous for facial
expression recognition in challenging conditions. We further
compare our dropout with several dropout algorithms (repro-
duced the codes by ourselves), i.e. CDB [36], MC-FerNet [55]
and RIFAD [56] in the scenario of single-source domain (with
the same setting of Table I) and present the results in Table V. As
shown in Table V, by combining MCD with techniques specif-
ically tailored for facial expression data, our approach delivers
the best performance, surpassing other dropout methods.

C. Ablation Study

In this section, we perform ablation study on each module of
our method.

1) Ablation Study on Three Modules: To validate the pro-
posed modules of MKCC, SAwMCD, and ISA, an ablation study
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TABLE IV
PERFORMANCES IN THE SCENARIO OF CROSS-DOMAIN ADAPTATION

TABLE V
COMPARISON WITH RECENT DROPOUT-BASED METHODS

TABLE VI
RESULTS OF OUR ALGORITHM IN TERMS OF CROSS-DOMAIN ADAPTATION

WHEN A SOTA ALGORITHM IS USED AS THE BASELINE

is introduced in Table VII, where RAFDB or AffectNet is used
as the source domain.

Compared with the baseline, the MKCC module improves the
average accuracy by (2.51%, 0.85%) and gains improvements
of (0.89%, 0.94%) with the addition of SAwMCD module. This
shows that the multiple levels of salient features with MKCC
and the reduction of feature map correlation with SAwMCD are
both helpful to cross-domain FER. The proposed ISA further im-
proves the accuracy by the integration of multiple-layer features
with different scales, which facilitates our algorithm to achieve
the SOTA performances of (53.86%, 63.57%).

2) Ablation Study on the MKCC Module: For this ablation
study, we compare the results of multi-kernel representative
SKNet [16], EPSANet [17] and ours in Table VIII.

It shows that our MKCC achieves the average accuracy of
53.86%, which is 1.99% higher than that with SKNet and 1.69%
higher than that with EPSANet. Instead of assigning the same
weights for all the branches in SKNet, our global sub-branch in
MKCC enables the network to assign specific weight to each
scale of features in the corresponding branch by encouraging
competition between different kernels, can thus better cope with
samples from different domains. When this global sub-branch

Fig. 7. The visualization of the learned feature maps. The left column shows
those of the baseline, the right four columns present those of the respective
convolution kernels in MKCC. The red and green represent the wrongly and
correctly classified categories, respectively.

is imposed on SKNet, it gains an improvement of 1.2%. Com-
pared with EPSANet which only uses multi-scale channel-wise
features, our algorithm additionally considers the spatial and
global features, and achieves an improvement of 1.69%.

To shed light on how the proposed MKCC works, we visualize
the feature maps obtained by the baseline and our MKCC in
Fig. 7. It visualizes the feature maps learned by the baseline
model and the proposed MKCC module. The baseline model
focuses primarily on the most salient regions (e.g., the nose),
which may not generalize well to unseen data. In contrast, the
MKCC module employs multiple convolution kernels to capture
features from regions with varying degrees of salience, such as
the eyes, mouth, and eyebrow frown. For the reasons, sine the
output of each kernel is weighted based on its discriminative
ability, making the kernels compete dynamically. This allows
the model to explore a broader range of features, including
sub-salient regions, to facilitate recognizing expressions across
different databases. By leveraging multiple kernels and attention
mechanisms, MKCC enhances the model’s ability to generalize
to unseen data, as demonstrated in the visualization.
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TABLE VII
ABLATION STUDY OF THE PROPOSED MODULES OF MKCC, SAWMCD AND ISA

TABLE VIII
PERFORMANCES OF SKNET [16] AND OUR MKCC, ‘GLOBAL’ MEANS OUR

GLOBAL SUB-BRANCH IN (4)

TABLE IX
PERFORMANCES OF DROPOUT VARIANTS WITH DIFFERENT STRATEGIES OF

MASK GENERATION

3) Ablation Study on the SAwMCD Module: To study the
performance of the proposed MCD, we compare its performance
with those of the baseline (without our MCD) and the dropout
variants with different mask samplings and updating strategies
in Table IX. For this comparison, DynamicViT [19] that uses
Gumbel Softmax method to dynamically adjust the dropout
mask via gradient backpropagation, is also adopted.

Table IX shows that our MCD achieves a performance 2.32%
higher than the baseline. In comparison with mask dropout
based on fixed distributions, our Monte Carlo-based strategy
outperforms the Bernoulli, Gaussian, and uniform distributions
by the margins of 2.78%, 1.94% and 2.56%, respectively, which
means that our MCD can better reflect the specific characteristics
of features than those with hand-crafted or feature-independent
distributions. Compared with the settings of N (0.5, 1

2
√
3
) and

TABLE X
PERFORMANCES OF DIFFERENT ATTENTION VARIANTS TRAINED ON RAFDB

N (0,
√
b‖O(j)‖2), our method leverages the Monte Carlo sam-

pling to match the distribution of the original feature maps more
closely, can thus make the dropout sample-adaptive. Compared
with the strategy of reversing the mask values, our proposed
dropout also improves the performance significantly. This is
probably because the mask reversing will encourage the network
to focus more on the neurons with larger responses, which lead
to over-learning phenomenon of the model. Compared with the
DynamicViT [19] that dynamically updates the dropout mask,
our MCD can still achieve an improvement of 1.62%.

In order to shed light on the role of SAwMCD in alle-
viating the over-learning, we visualized the cosine similarity
between tokens, i.e. FF

(i)
MKCC in (5), under the conditions

of non-dropout, original dropout and SAwMCD. As shown in
Fig. 8, the similarity between the tokens of the original attention
with the setting of non-dropout is relatively higher, implying
larger possibility of over-learning. Compared with the original
dropout that can reduce the co-adaptation between tokens in
original attention to some extent, our method further reduces
the redundancy between tokens, thereby largely reducing the
over-learning phenomenon of the learned model.

4) Ablation Study on the Attention Variants: To study the
performances of our MKCC and SAwMCD on the feature-wise
and feature-correlation attentions, we also introduce different
attention variants and present their performances in Table X.
For the setting of ‘MKCC in SAwMCD’, the MKCC is added
to each SAwMCD layer, and MKCC and SAwMCD are used
alternately. For the setting of MKCC&SAwMCD, the feature
maps after the weighting of the three attention sub-branches in
MKCC using (2)–(4), are input to SAwMCD, and the feature
maps from the branches of all the kernels are finally added up.
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Fig. 8. Heatmaps of the cosine similarity between different tokens (i.e. FF
(i)
MKCC ) of non-dropout (a), original dropout (b), and SAwMCD (c) on RAFDB.

.

For the setting of SAwMCD+MKCC, the output feature maps of
SAwMCD are used as the input of MKCC. Schematic diagrams
of the above attention variants are shown in the supplementary
material.

Table X shows that the average accuracy declines from
53.86% to 52.19% when the order of MKCC and SAwMCD
is reversed, i.e., SAwMCD is used to dropout the feature maps
and MKCC is used in aggregating the cues from multiple
heads. When alternatively employing the modules of MKCC
and SAwMCD, one can see that the average accuracy drops by
1.71%, compared with the proposed setting. When using MKCC
and SAwMCD together in the feature-wise attention, one can see
that the average accuracy drops by 2.65%.

To speculate the performance drop in these module settings,
we argue that the network is apt to focus on the most salient
parts in the feature-wise representation, thus, the sub-salient
features captured with our MKCC are preferred. By contrast,
the feature correlation redundancy is easily to be induced when
high-dimensional feature-to-feature relationship substitutes for
the feature-wise representation, our proposed SAwMCD is thus
more preferred.

D. Algorithm Analysis

In this section, we first investigate the sensitivity of the per-
formance of our algorithm against hyperparameter settings, and
then visualize the learned features using the CAM [4] and the
t-SNE technique [60].

1) Hyperparameter Analysis: We present the sensitivity of
our algorithm against the number of kernels, i.e., n of (1) in
Fig. 9. As the number of kernels increases, the average accuracy
increases from 51.47% to the best of 53.86% and then degrades.
These results show that an appropriate number of kernels is
demanded to trade off the feature diversity of the representa-
tion and the capacity of these features in generalization ability
enhancement.

2) Representation Visualization: To study the performance
of our algorithm on each expression, we show the confusion
matrix of the baseline and our method in Fig. 10. For the same
category of expression in different databases, the recognition
accuracy could differ much. When JAFFE or ExpW is used as

Fig. 9. The performance sensitivity against the number of kernels, i.e., n in
(1). The models are trained on RAF-DB, and tested on the other five databases.

the target domain, our algorithm achieves an accuracy of 73% for
‘sad’ on JAFFE, while only 33% on ExpW. This shows that the
same expression may show large variation in different databases,
which reflects the usefulness of the proposed multi-kernel to
explore more sub-salient regions to cover different data. In
addition, compared with the baseline, our method has obvious
advantage in telling apart difficult expression categories, such as
‘fear’ and ‘disgust’. For the ‘fear’ expression in FER2013+, the
accuracy of the baseline is only 4%, but our method can reach
25%.

For the visualization of 2D feature representations with t-
SNE [60], we demonstrate those learned by the baseline and our
model in Fig. 11. As shown in the red boxes of Fig. 11, there are
large overlaps among features of the baseline model for different
categories. By contrast, this overlap is largely reduced by our
method. Meanwhile, our method separates these features much
better than the baseline.

For the feature map visualization with CAM [4], we use
RAFDB as the source domain, and the databases of JAFFE and
SFEW as the target domain, and show the results in Fig. 12.
One can see that the attention of the baseline mainly focuses
on limited expression-sensitive regions, while our method pays
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Fig. 10. Confusion matrices with the baseline (1st row) and ours (2nd row) on five databases. AN, DI, FE, HA, NE, SA and SU are the abbreviations of angry,
disgust, fear, happy, neutral, sad and surprise, respectively. RAFDB is used for training.

Fig. 11. Visualization of the features learned by the baseline and our approach. ‘ Circle’ and ‘×’ are specific to source and target domains, respectively. Each
color represents an expression category. RAFDB is used for training.

Fig. 12. The learned CAMs on facial expressions of seven categories. Warm
and cool colors correspond to larger and lower attention values. The red and
green label the wrongly and correctly classified categories, respectively. RAFDB
is used for training, and each image randomly chosen from a target domain is
used for the visualization. The upper row shows the ground truth labels.

attention to broader regions, covering more key expression-
sensitive parts, which is helpful to reduce the overfitting on the
source domain database.

V. CONCLUSION AND DISCUSSION

To address the problem of overfitting to the source domain
in cross-database facial expression recognition (CDFER), we
propose a generalization-enhanced paradigm for feature-wise
and correlation attentions. Specifically, a multi-kernel compet-
itive convolution module is developed in feature-wise attention
to explore more sub-salient features and provide a dynamic
weight specific to each kernel for comprehensively representing
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unseen samples. Meanwhile, a Monte Carlo-based dropout is
introduced in feature-correlation attention by taking into account
the characteristics of feature maps in reducing their redundancy.
As far as we know, this work is one of the pioneer works to
specifically enhance the generalization capacity of the attention
mechanism. Extensive experiments on six public FER databases,
including the comparison with additional works [61], [62], [63],
[64], [65] in the supplementary materials, demonstrate that our
approach outperforms state-of-the-art methods in the scenarios
of domain generalization and domain adaptation for CDFER.
Ablation studies and visualization results also show the useful-
ness of each module.

In our future work, we will resort to the identification of
outlier samples and reduction of long-tail distribution influence
to further enhance this cross-database generalization capacity.
Quantitative evaluation of cross-database performance in terms
of the generalization metrics will also be explored.

Furthermore, our method is still limited by certain shortcom-
ings: (i) Monte Carlo sampling assumes that the input data
should obey a specific distribution; if the actual distribution
of the data deviates from this assumption, the resulting mask
from sampling may not be ideal. (ii) Utilizing Monte Carlo
sampling for dropout can result in increased computational
costs because it requires multiple forward passes to estimate
uncertainty, thereby bring additional runtime overhead for model
training and inference. (iii) Since our method is mainly devel-
oped for cross-database scenario, enhancing the generalization
performances in both the single-database and cross-database
scenarios, or trading off these performances, is worth exploring.
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