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Cross-layer Contrastive Learning of Latent
Semantics for Facial Expression Recognition

Weicheng Xie, Zhibin Peng, Linlin Shen*, Wenya Lu, Yang Zhang, Siyang Song

Abstract—Convolutional neural networks (CNNs) have
achieved significant improvement for the task of facial expression
recognition. However, current training still suffers from the
inconsistent learning intensities among different layers, i.e., the
feature representations in the shallow layers are not sufficiently
learned compared with those in deep layers. To this end, this
work proposes a contrastive learning framework to align the
feature semantics of shallow and deep layers, followed by an
attention module for representing the multi-scale features in the
weight-adaptive manner. The proposed algorithm has three main
merits. First, the learning intensity, defined as the magnitude of
the backpropagation gradient, of the features on the shallow
layer is enhanced by cross-layer contrastive learning. Second,
the latent semantics in the shallow-layer and deep-layer features
are explored and aligned in the contrastive learning, and thus
the fine-grained characteristics of expressions can be taken
into account for the feature representation learning. Third, by
integrating the multi-scale features from multiple layers with
an attention module, our algorithm achieved the state-of-the-art
performances, i.e. 92.21%, 89.50%, 62.82%, on three in-the-wild
expression databases, i.e. RAF-DB, FERPlus, SFEW, and the
second best performance, i.e. 65.29% on AffectNet dataset. Our
codes will be made publicly available.

Index Terms—TFacial expression recognition; Contrastive learn-
ing; Latent semantic alignment; Multi-layer attention

I. INTRODUCTION

ACIAL expression is one of the most intuitive, natural

and common non-verbal signals for humans to express
their internal emotional state and intention, whose recognition
has been widely used in various applications, such as human-
computer interaction, driver fatigue detection, and medical
treatment assessment. Due to powerful feature representation
learning abilities, deep neural networks have been extensively
studied in facial expression recognition (FER), which can well
encode the muscle movements and subtle wrinkle textures
from different facial displays.

Current DNNs frequently use the features produced from
the latter layers as expression embedding. Actually, the middle
or shallow layers of a network often imply expression-related
local information, which is not well explored in the feature
representation. Zeiler and Fergus [1] showed that the feature
maps on different layers represent diverse information cues,
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Fig. 1: (a) The norms of the back-propagated gradient for the
features on shallow and deep layers. (b) The feature maps
specific to different semantics by the baseline and ours, where
the red stars label the feature maps output from shallow
layers, while others are output from a deep layer, i.e. the last
convolution block. It also shows the difference between the
baseline and ours.
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i.e., while shallow layers represent the geometry features,
deep layers encode complicated semantic features. However,
the features on shallow layers are not explored much in
the feature representation, since they are not learned with
sufficient intensity compared with those on deep layers, i.e.,
shallow layers frequently suffer from the gradient vanishing
problem during the training of networks with large numbers
of layers [2], [3]. As shown in Fig. 1(a), the gradients of the
loss with respect to (w.r.t.) the feature maps are attenuated as
they are back-propagated to the shallow layers. This suggests
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that the shallow layers are not sufficiently learned and there
is a large inconsistency between the learning intensities of the
shallow-layer and deep-layer features. This inconsistency may
largely deteriorate the representation performance when the
shallow-layer features are integrated with deep-layer features
for object recognition tasks.

To alleviate this inconsistency, Yao et al. [4] proposed the
knowledge distillation between teacher and student networks.
Yu et al. [5] resorted to sharing the parameters of the shallow
layers on the global and local tasks. Rather than using cross-
network or cross-task learning, Mostafa et al. [6] devised an
auxiliary supervision classifier, Sun et al. [7] proposed to learn
the knowledge using an auxiliary supervision branch, Garg
et al. [8] used the contrast of latent features from adjacent
two layers to regularize this consistency. Instead of learning
from several layers, Huang et al. [9] proposed to couple
each shallow layer with all the deep layers to strengthen
feature propagation. These cross-layer learning methods can
improve the learning intensity at shallow layers. However,
they are based on the global feature representation, which
does not consider the fine-grained semantics implied in facial
expressions.

Latent semantics, i.e. the muscle deformation of facial
organs associated with expressions, or a fixed pattern of texture
variation in expressions, are revealed to be common and useful
for expression feature representation. Yang et al. [10] showed
that each action unit (AU) of expressions consists of a specific
semantic description, and Ruan et al. [11] revealed that facial
action-aware latent features can well characterize expression
similarities and variations. Especially, Zhang et al. [12] shows
that semantic learning can improve network robustness against
the face occlusion and poses that are ubiquitous for the in-the-
wild expressions [13]. Thus, we explore the hidden semantics
on the deep layer, and enable shallow layers to learn these
semantic cues based on cross-layer feature alignment in a
semantic-wise manner. For the semantic exploration and cross-
layer semantic alignment, we take advantage of the contrastive
learning paradigm that can learn object semantics by exploring
image prior knowledge in a self-supervision manner [14], and
its enhanced variants with feature clustering [15], [16].

Since features from shallow and deep layers present dif-
ferent scales of cues that are complementary, integration of
them can theoretically produce multi-scale and strong repre-
sentations for FER [17], [18], [19]. Specifically, it assembles
the global and local features [20], i.e., encoding both deep
semantics as well as shallow geometry features [21]. Con-
sequently, such multi-scale features are more discriminative
and less sensitive to the face occlusion and poses for fa-
cial expressions recorded in-the-wild. For the integration of
shallow-layer and deep-layer features, the attention mechanism
is widely employed to strengthen the responses of key features
[22], [23], [8], [13], [24], due to its weight adaption with
network back-propagation. In this work, we use the attention
mechanism to weigh the contributions of the deep-layer and
enhanced shallow-layer features to produce the multi-scale
feature representation.

However, existing multi-scale models [17], [21], [25], [26]
learned from the features in the shallow layers as a whole.

ADDL [27] and MANet [21] utilized network multi-layer
outputs to fuse multi-scale feature representation, while they
did not well address the mismatched learning intensities of
features in shallow and deep layers, which may limit the
performance of the fused feature representation. Consequently,
we propose a contrastive learning framework to align the latent
semantics of the expression features from different layers. In
this way, the learning intensities of the shallow layers are
enhanced with the supervision of the deep layer. As shown
in 1 (b), the feature maps by our approach are activated more
on the expression-perceptive regions, compared with those by
the baseline. Meanwhile, by aligning the cross-layer features
in a semantic-wise manner, the proposed algorithm can suf-
ficiently use the latent semantics that are robust against the
face poses and occlusions for feature representation learning.
Furthermore, the enhanced features on the shallow layers are
integrated with those on the deep layer based on an attention
module, to leverage their complementarity.

In summary, our main contributions are shown as follows

e We propose a simple yet effective cross-layer contrastive
learning paradigm to enhance the learning intensity of
features on shallow layers of CNNs.

o To take into account the characteristics of latent semantics
of facial expressions, we proposed two modules to align
the cross-layer features in a semantic-wise manner.

e An attention module is introduced to produce multi-
scale feature representation by integrating the enhanced
shallow-layer and deep-layer features. Extensive exper-
imental results show the effectiveness of the proposed
algorithm for the recognition of in-the-wild expressions.

The rest of this article is organized as follows. Section II
reviews the related works. Section III describes the proposed
contrastive learning and multi-scale representation modules.
The experimental results and analysis are presented in Section
IV. Finally, Section V presents the conclusions and discus-
sions.

II. RELATED WORKS
A. Facial Expression Recognition

The task of recognizing expressions in the wild is chal-
lenging, since it may suffer from the problem of multi-scale
geometry deformation of key expression parts, as well as face
occlusions and poses.

For the representation of multi-scale features, multi-layer
feature maps can represent multi-scale features [17], i.e. the
spatial perception information on shallow layers and high-
level semantic information on deep layers. Fan et al. [26]
embedded the attention module in multi-level layers to capture
rich feature representations. Ruan et al. [27] observed that
the features from different layers are complementary, and thus
proposed a multi-layer attention mechanism to fully exploit
these cues. Zhu et al. [28] proposed cross-layer attention and
center-guided attention, to leverage the features from multi-
level granularity in a unified way. These works motivate us to
design the multi-scale feature representation of multiple-layer
outputs with the aid of an attention module.
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For alleviating the influence of face poses, illumination, and
occlusion [29], outlier sample suppression [30] [31], attention
networks [32], [33], adversarial feature learning [34], align-
ment of the distributions of the occluded and non-occluded
features [35], [36] were proposed. FLEPNet [37] utilized
modified homomorphic filtering to normalize the illumination,
which minimized the intra-class difference. FER-net [38]
combined low-level texture features and high-level features to
learn realistic edge variations. Siqueira et al. [39] revealed that
shallow layers learn simple and local visual patterns such as
oriented lines, edges, and colors, which appear more robust to
face poses and occlusions than those learned on deep layers
[40].

Despite shallow and local visual patterns are robust to
occlusions and poses [39] and indispensable for FER, the
features on shallow layers suffer from the insufficient learning
intensity compared with those on deep layers, due to the
gradient vanishing problem during network back-propagation.
These inconsistent learning intensities hinder the effective
exploitation of robust shallow-layer features for representing
posed and occluded expressions.

B. Cross-Layer Feature Representation

To enhance the learning intensity for the shallow layers, Yao
et al. [4] proposed knowledge distillation between teacher and
student networks, to alleviate semantic gaps of the knowledge
learnt at different-staged layers. Chen et al. [41] introduced
feature-map transfer by semantic calibration via soft layer
association, while they mainly targeted at the cross-layer
learning between the teacher and student networks.

Rather than learning from multiple networks, the contrast
of latent features from multiple layers on the same network
can also enhance the learning intensities of shallow-layer
features [8]. Yu et al. [42] introduced a guidance term to
constrain the lower-level flow vector to be similar to the
corresponding higher-level counterpart. By competing for a
common resource, i.e. the shared layers, multiple layers can
be mutually learned [39]. Yu et al. [43] proposed the technique
of cross-layer bilinear pooling that simultaneously established
the inter-layer interaction of features.

However, these methods align cross-layer features in a
global representation, which may neglect the characteristic
of the fine-grained semantics [44]. Actually, latent informa-
tion, e.g. content, statistical or structural information [45]
that are implicitly encoded in network outputs, may appear
more robust against complicated circumstances than the global
representation [12], [14]. Thus, we take the latent semantics
into account during the cross-layer feature representation
learning, with the aid of the self-supervision paradigm of
contrastive learning [46], for better recognition of fine-grained
expressions.

C. Expression Semantic Learning

Expression semantics consist of diverse muscle deforma-
tions and texture characteristics, which contribute differently
for FER. Yang et al. [10] revealed that each action unit (AU)
depicts a specific semantic related to facial expressions, each

semantic may represent large variations of expression features
[47], and its relationship is useful for guiding the repre-
sentation learning [48]. For FER, semantics were frequently
explored and modeled via, e.g. temporary auxiliary branches
[49], separate residual blocks [50], visual semantic tokens [51]
or semantic facial graph encoding AU occurrence [52], for the
feature representation learning.

Especially, Zhang et al. [12] show that the learning on
semantics can make the network more robust against the face
occlusion and poses available for in-the-wild expressions [13].
Li et al. [53] also revealed that semantically separable features
can well narrow the domain shift for cross-domain FER. Ruan
et al. [11] showed that facial action-aware latent semantics
can well characterize expression similarities and variations,
and this high-level semantic information in the expression
face is limited, which implies the advantage of the semantic-
wise learning for FER. Meanwhile, Fu et al. [54] stated that
semantics can be represented as the actions of key facial parts,
such as the raising of lips or eyebrows, whose perturbation
augmentation can well improve the robustness of FER.

Thus, these works implied that semantics can represent
relatively fine-grained information that is less sensitive to
posed and occluded faces, compared with the global feature
presentation. However, this robustness characteristic of seman-
tics is rarely considered in the cross-layer feature learning of
expression representation. This is because the above methods
[11], [54] fail to address the learning intensity gap between
the hidden semantics of shallow and deep layers. Thus, we
explore the latent semantics on deep layers and use them to
guide the learning of latent features on shallow layers in a
semantic-wise manner.

III. PROPOSED METHOD

In this section, the overall architecture of the proposed
algorithm, together with the proposed cross-layer contrastive
learning module, and the multi-layer feature representation
module, are presented. Compared with existing methods, our
method can well enhance the learning intensity of shallow-
layer features, with an easy-to-implement self-supervision by
deeper layers. Meanwhile, the cross-layer alignment in a
semantic-wise manner can take advantage of the robustness
of fine-grained semantics against posed and occluded expres-
sions. These two main merits make our method particularly
applicable to in-the-wild expression datasets.

A. Overall Architecture

The proposed algorithm includes four parts, i.e. a feature
encoder module for original embedding representation, two
contrastive learning modules, i.e. Contrastive Learning based
on Feature Map (CLFM) and Contrastive Learning based
on Batch Sample (CLBS), and the representation module of
multi-scale features, i.e. Multi-scale Representation (MSR).
An overview of the proposed method is shown in Fig. 2.

Without loss of generality, we assume that the feature
encoder consists of L network blocks, and each block includes
several convolution layers. Given a mini-batch of samples with

np images, i.e. {z;}.,, we use this encoder to extract features
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Fig. 2: Framework of the proposed algorithm. Based on the features represented with an encoder, Contrastive Learning (CL) and
Multi-scale Representation (MSR) models are performed to learn cross-layer semantic features in a self-supervision paradigm
and weigh the multi-layer features for a multi-scale representation. GAP(512) denotes the global average pooling with 512-dim
output features. The CL and MSR modules are illustrated in Figs. 3 and 4.

from different blocks, and f; ; denotes the feature specific to
the sample x; from the j-th block (1 < j < L).

The encoded features { f; ; } are then used in the Contrastive
Learning (CL) and MSR modules. CLFM and CLBS are
proposed to enhance the learning intensity of the shallow
layers and align the semantics across different layers, where
losses in the CL module are introduced to reduce the difference
between features of the same semantic. Meanwhile, MSR
is proposed to fuse the multi-scale features from multiple
layers for the feature representation based on the attention
mechanism.

B. Contrastive Learning (CL) Module

To enhance the learning intensity of the features on the
shallow layers, as well as align the latent semantics across
different layers in a semantic-wise manner, the contrastive
learning modules, i.e. CLFM and CLBS are proposed, and
illustrated in Fig. 2.

1) Contrastive Learning based on Feature Map (CLFM)
Module: As shown in Fig. 3, CLFM consists of three stages.
The first stage aims to find clusters and the specific centroids
of similar high-level semantic information from the deep layer
outputs; The second stage assigns the features extracted from
the preceding blocks with a semantic category according to the
similarities between these features with the centroids; In the
third stage, cross-layer features learn from each other based
on the contrastive learning loss.

In the first stage, let’s denote the feature corresponding to
the output of the j-th layer as f; ;, which is extracted from
the i-th sample. The latent feature g; ; is generated as follows

gi,; = Flatten(HashCoding(AP(Conv(f; ;)))) (1)

where Conv(-) and AP(-) denote the convolution operator
and average pooling. To speed up the clustering process, hash
coding [55], i.e. the encoding with the coordinates of the
maximum response area of each feature map is employed to
reduce the dimension of the features to fdy,. A flattening
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Fig. 3: The contrastive learning between the deep semantic
centroids and the center features of shallow layers in the metric
space.

operator is then followed to transform the feature map into
a vector representation. Thus, the size of g; ; is C; x fdfp,
where C; represents the channel number of the j-th layer.

We argue that there are high-level semantics hidden in the
feature maps of deep layers, and they are shared across differ-
ent expression samples. Thus, we use the K-means clustering
on the features from the last block, i.e. g; 1, to construct K
clusters, i.e. (1,--- ,(x, to simulate the expression semantics.
The corresponding cluster centroids, i.e. {¢r,1 < k < K},
namely as ‘Deep Centroids’, are then found with the following
minimization

2
mms—z > el — ol
=1g) e @)
_ 1 (c)
ok = 1¢e] Z 9i,L
gf“ﬁeck

where gl(cg represents the c-th channel of g; 1, ¢ is the

feature centroid of the cluster (;. Each ¢ represents a kind
of high-level latent semantic, which indicates the sensory
information related to expressions in CLFM, while in CLBS
it indicates the unique information specific to each expression
category. Meanwhile, the number of latent semantics of facial
expression is limited, which is beneficial for us to fine tune
an approximate value.

In the second stage, as shown in Fig. 3, each of the
shallow-layer features on the preceding blocks, i.e. g;;,j €
{1,---, L—1}, are classified according to the cosine similarity

between these features and the deep centroids, i.e. {¢y}, as:
mih, = cos( g\, on) 3)
(c)

where g; / represents the c-th channel of g; ;. The high
similarity correlation indicates that the shallow-layer feature
implies similar semantic cues as that of the deep-layer feature.

Based on the similarity of the shallow-layer and deep-layer
features, i.e. {mlc]k}, the features on the shallow layers can be
categorized into K subsets, then the specific center features,
namely as ‘shallow centers’, are obtained for the following
cross-layer contrastive learning. We use X( 7 ) X%’j ) to
denote the K groups for the j-th shallow layer of the i-th
sample:

(e) (3,9)

97 € Xk max mbJ “4)

,with k = ar
ng{Lm Ky P

Then the mean feature specific to the k-th semantic category
on the j-th shallow layer is obtained as follows

- 1
ko _ (c)
b= 2 9 5)

| f)E (1 7)

where | - | denotes the cardinality of the set.

In the third stage, it is desirable that the deep centroids of
the L-th layer features and the shallow mean features of the
j-th layer (1 < j < L —1) are pulled as close as possible.
Specifically, a contrastive loss, i.e. [Z ), is minimized to
align the semantic representations on d1fferent layers. In this
way, each layer of the network can better represent relevant
semantic information, while shallow layers can leam the
informative cues with enhanced intensity. The loss E?T)n is
formulated as follows

— Z aJ ﬁ(lxj L
(6)
£(%J L)y _ vec(Iz j) Uec((b)
 vee(Zi g2 - llvec(@)ll2
where I ;= [I}. -, Zj] € Rfdm . K, ¢ -
[f1,--- ,dK] € Rf fm x K. vec(-) denotes vectorization and

| - ||2 denotes the Lo norm, {e;,1 < j < L — 1)} are the
hyperparameters.

2) Contrastive Learning based on Batch Sample (CLBS)
Module: While CLFM can align the latent semantics between
the shallow and deep layers, it does not take into account the
expression characteristic implied in the expression categories.
Since the expression categories naturally imply a number of
the semantic cues, we further introduce the CLBS module to
supplement CLFM, so as to enhance the learning intensity
of the shallow-layer features. Meanwhile, CLBS takes into
account the correlation among samples in a batch for the
contrastive learning, which is also supplementary to CLFM
that uses the correlation cues of feature maps in each sample.

As shown in Fig. 2, CLBS first obtains the feature repre-
sentation of each sample with the operators of ‘Conv’, ‘GAP
(512y’, ‘FC’ and ‘ReLU’. For the clustering of the features on
the deep layer, the number of clusters is set as the number
of expression categories, rather than the number of latent
semantics in CLFM. Then, the similar classification of shallow
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Fig. 4: The multi-scale representation module. The employed
pixel shuffling is used to generate high-resolution feature maps
by enabling associations between adjacent feature maps. The
attention block is used to produce the weight 1; ; specific to
the j-th layer feature.

layer features in Egs. (4) and (5), contrastive learning in Sec.
II-B1 and Fig. 3 are performed, and the specific contrastive
learning loss is formulated as follows

L—-1
Los ==Y B LY (7)
j=1

where Ez(i’L) denotes the cosine similarity between the mean
feature of the j-th shallow layer and the cluster centroid of
the deep features on the L-th layer. 3; is the hyperparameter
specific to the j-th shallow layer.

C. Multi-scale Representation (MSR) Module

While the features on deep layers are strongly relevant to
a particular task, the features on the shallow layer are more
general across different tasks. Meanwhile, the features on
different layers are generated with different receptive fields.
Thus, the multi-scale features from different layers appear
complementary.

To make use of the multi-scale features from different
layers, an attention module is proposed to weigh the contri-
butions of these features. More precisely, the Pixel Shuffling
[56] method is first used for the upsampling, to better utilize
the distribution of original features, rather than the gener-
ated features through bilinear interpolation. Meanwhile, the
coupled representation among adjacent feature maps can be
produced and leveraged. Specifically, the feature maps with
r2C channels are transformed to be high-resolution features
with periodic shuffling, where r is the upscaling factor for
feature map magnification.

As shown in Fig. 4, based on the pixel shuffling (PS), the
employed reshaping block on the feature representation of the
j-th layer, i.e. f; ;, is formulated as follows

Hij = J(WTfil,j)

i j = Conviyi (Flatten(AP(Conv(PS(fi5))))) ®

where f] ; denotes a feature vector with the dimension of fd
after reshaping. Conv(-), AP and o(-) stand for convolution
block, the average pooling and the sigmoid function. C'onv; x1
denotes the 1 x 1 convolution for reducing the dimension of

features and the runtime cost. W is the parameter matrix of
the FC layer, and each vector can be viewed as a specific
class prototype. ji;; € R is the output importance weight of
the feature specific to the j-th layer.

Based on {y; ; } in Eq. (8), the fusion of multi-scale features
from multiple layers specific to the ¢-th image, i.e. Fj, is
obtained with an attention mechanism:

L
F; = Zum’ : f{,j
j=1

In this way, the MSR module integrates multi-scale features
from different layers, which can adaptively select the specific
scale of features corresponding to the variation characteristic
of expression categories. Especially, since the latent semantics
on the shallow layers are enhanced, i.e. rich shallow-layer
semantic cues similar to those of the deep layer can be also
learned, yielding an intensity-homogeneous representation of
multi-scale semantic features.

(€))

D. Joint Loss Function

The joint loss of the proposed algorithm training for a batch
of samples is formulated as follows

L=y L)+ L85 + Ly (10)
where ﬁg% and Ly, are formulated in Egs. (6) and (7). CS)S is

the cross entropy loss for the i-th sample, which is formulated
as follows

LY == Ny, log(T(F;,0)) (11)

t=1

where F; is the feature representation in Eq. (9), n. and
6 denote the number of expression categories and network
parameters; y; and 7'(-) denote the ground-truth label and
the network prediction probability at the y;-th dimension. For

clarity, the pseudo code of the proposed algorithm is presented
in Alg. 1.

IV. EXPERIMENTS

In this section, we evaluate our algorithm on four public in-
the-wild expression datasets. First, type of dataset used, eval-
uation measures, techniques used, pre-processing techniques,
and the hyperparameter setting are clarified. Then algorithm
analysis of learning intensity and training complexity, etc.,
ablation study, sensitivity analysis, feature map visualization,
and the comparison with the state of the arts are conducted
to evaluate the performance of each proposed module and the
overall algorithm. We follow the state of the arts to choose
the same evaluation metrics, i.e. evaluating the performance
of the models both quantitatively and qualitatively.

A. Databases and Implementation Details

The in-the-wild expression dataset includes more noisy,
largely posed and occluded faces than the dataset collected in
the lab, which is closer to real-world circumstances, and more
challenging for recognition algorithms. The details of the used
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Algorithm 1: Training of the proposed algorithm

Input: Training dataset { n,, Mini-batch }, Mini
batch {(x;,v:),1 < i < np}, model parameters
f and iteration epoch 7.
Output: Optimized model.
1 Initialize § with a pre-trained model;
2 while epoch < 7 do

3 Divide the training dataset into n,, mini-batches
randomly

4 for iteration < 1 to n,, do

5 Obtain deep semantic centroid {¢y} by Eq. (2)

6 Calculate the similarity between shallow-layer
features and deep centroids by Eq. (3)

7 Classify shallow-layer features by Eq. (4)

8 Obtain the shallow centers of the classified
features by Eq. (5)

9 Compute the loss E(f?n of CLFM by Eq. (6)

10 Compute the loss L5 of CLBS by Eq. (7)

11 Derive multi-scale feature representation by Eq.
©))

12 Compute the joint loss £ by Eq. (10)

13 Update 6 with SGD

14 end

15 end

datasets are presented below and the detailed distributions of
the datasets are shown in the supplementary material.

RAF-DB [57] is a large-scale facial expression dataset
containing 30,000 images, with basic or compound expres-
sions labeled by 40 trained volunteers. There are six basic
expressions, i.e. happy, surprise, sad, angry, disgust and fear,
as well as neutral in the dataset. In our experiment, we use
12,271 images for training and 3,068 images for the testing.
Our evaluation protocol is consistent with that in FDRL [11],
RAN [33], SCN [13], ADDL [27], etc.

FERPIlus [58] is extended from FER2013 [59], where the
images have been re-labeled into one of 8 emotion types,
i.e. neutral, happy, surprise, sad, angry, disgust, fear, and
contempt. While FER2013 consists of 35,887 facial expression
images, including 28,709 training images, 3,589 validation
images, and 3,589 test images, with a size of 48x48, we
then strictly use the code' officially provided by FERPIlus to
re-label and reduce the samples in FER2013. We report the
overall accuracy on its testing set, which is consistent with
that in SCN [13], RAN [33], ADDL [27], etc.

SFEW [60] is created by selecting keyframes from AFEW
[61], which contains 958 training images, 436 validation
images, and 372 testing images, showing one of six basic and
neutral expressions. This in-the-wild database also includes
posed faces, multiple faces in a scene, occlusions, and different
lighting conditions. The performance is reported on its vali-
dation set, which is consistent with that in SCN [13], ADDL
[27], MA-Net [21], etc.

AffectNet [62] is by far the largest database of facial

I'The source code link is https:/github.com/microsoft/FERPlus

expressions in the wild. It contains 450,000 facial images
from the Internet with both categorical and valence-arousal
annotations. For FER, 7 or 8 expressions are often employed.
In this experiment, we use the seven categories, i.e. the six
basic and neutral expressions, 28,3901 images for training and
3,500 images for testing. The evaluation protocol is set as the
same as that in DACL [24], IPA2LT [63], EfficientFace [64],
ADDL [27] and FDRL [11].

Implementation details. For pre-processing, each image is
resized to 256x256, which is further randomly cropped to the
size of 224x224, erased and horizontally flipped for the data
augmentation. Our method is implemented with the backbone
of ResNet-18 [2] based on Pytorch. Correspondingly, ResNet-
18 has 4 basic blocks, then the number of blocks (L) in Fig.
2 is set to 4. And the r value in Fig. 4 is set as 27! for the
feature maps of the j-th block. The feature dimensions of fd ¢,
and fdys in Fig. 2, and fd in Eq. (8), are set as 16, 128 and
128, respectively. The detailed architectures of the backbone
and its modules are shown in the supplementary material.

The network is trained for 100 epochs with a single P100
GPU based on the Adam algorithm [65], which is pre-trained
on ImageNet [66]. The initial learning rate, the weight decay,
and the base gamma are set as 0.001, 0.0001, and 0.9,
respectively. An exponential decay strategy is employed to
adjust the learning rate.

B. Algorithm Analysis

Learning intensity analysis. To study the learning intensity
of features on shallow layers, we compare the average gradient
norms by the baseline and our method, together with the
average gradient norms of different semantic groups in Fig.
5.

Fig. 5(a) shows that the proposed algorithm can effectively
enhance the learning intensity of the features on shallow
layers, compared with the baseline, i.e. the gradient norms
specific to the shallow layers after the training with our algo-
rithm are enlarged. As shown in Fig. 5(b), the gradient norms
of different semantic groups on the shallow layers show large
differences, which means that the proposed semantic clustering
is necessary to take the characteristic of each semantic into
account during the feature representation learning.

Training complexity analysis. To study the runtime cost
of the proposed modules in addition to that of the original
training, we conduct a comparison between the proposed
algorithm and other methods in terms of the number of
parameters (Params), Floating Point operations (FLOPs) in
Table 1. EfficientFace [64] uses Label Distribution Generator
(LDG) in training, and its model size is 23.5M. Compared
with ADDL [27], our model is lighter, i.e. 6.1M smaller than
its 20.6M. Table I shows that the proposed modules do not
bring too much additional burden over the baseline training in
terms of Params and FLOPs.

More rigorously, we mainly introduce a clustering process
and the similarity calculation between features in addition
to the baseline training, while their runtime costs are only
O(r-maz(ny, C) - K -max(fd ¢y, fdps)) and O(maz(ne, C)-
K - max(fd ¢y, fdps)), where 7, np, C, K and fdy,, are the
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Fig. 5: The mean norms of the back-propagated gradients with
training on RAF-DB. (a) Comparison between baseline and the
proposed model. (b) Comparison of gradient norms specific
to different latent semantics, where the norms are normalized
with logarithmic function.

TABLE I: Comparison of model complexities between the
other methods and ours.

Methods | Params FLOPs
IPA2LT [63] 23.5M 4.11G
gACNN [32] 134.3M 15.48G

RAN [33] 11.2M 14.54G

SCN [13] 11.2M 1.82G
MA-Net [21] 50.5M 3.65G
ADDL [27] 20.6M 3.82G

EfficientFace [64] 1.3M+23.5M (LDG) 0.15G+4.11G (LDG)
Training the baseline 11.2M 1.82G
Training ours 14.5M 2.01G

numbers of iterations, samples, feature maps, clusters and
feature dimension defined in Sec. III. These time complexities
are linear to the numbers of feature maps and samples. There-
fore, our proposed modules do not introduce much additional
runtime cost over the complexity of the baseline training.
Confusion matrix. The confusion matrices of the perfor-
mances for the considered four databases are presented in Fig.
6. It is shown that our method outperforms the baseline for
most categories of expressions, and improves the accuracy of
the ‘Neutral’ and ‘Sad’ categories on almost all the testing
datasets. Specifically, our method improves the accuracy from
89% to 98% for ‘Neutral’, and from 81% to 90% for ‘Sad’
on RAF-DB. Since there are minor deformations or texture
variations in the key expression regions, e.g. ‘mouth’, ‘eyes’

TABLE II: The performances of baseline, Simsiam [67] and
ours on RAF-DB and AffectNet when different numbers
of labeled samples are used in the training. The notation
“20% supervised’ represents using the cross-entropy loss in
the supervised learning with 20% of the training samples.
The notation ‘unsupervised*’ represents using our proposed
unsupervised cross-layer contrastive loss, while ‘unsupervised’
denotes using the contrastive loss of Simsiam.

Methods | RAF-DB  AffectNet
Baseline (Only 20% supervised) 78.52 53.09
Ours (Only 20% supervised) 82.86 57.43
Simsiam (20% supervised + 80% unsupervised) 83.25 59.86
Ours (20% supervised + 80% unsupervised*) 86.28 61.69
Baseline (100% supervised) 85.78 58.20
Ours (100% supervised) 92.21 65.29

and ‘eyebrows’, the specific semantic cues of these two ex-
pressions are relatively fine-grained. To this end, our algorithm
conducts cross-layer representation learning in a semantic-
wise manner, which can better represent these fine-grained
cues than the global feature representation, thereby enhancing
the discriminative capacities for these expressions.

The performances of our contrastive learning under
partial supervision. To study the performance of our con-
strastive learning when only a part of labels are used in model
training, we use 20% of the labeled samples in the training
set for the supervised cross-entropy loss, while the remaining
80% unlabeled samples in an unsupervised contrastive learning
loss. ResNet-18 [2] is used as the encoder, and the contrastive
learning framework of Simsiam [67] is used in the comparison,
the results on RAF-DB and AffectNet are shown in Table II.

We conclude the following observations: (i) Table II shows
that our proposed model achieved the best performances for
both RAF-DB and AffectNet, in the case of ‘Only 20%
supervised’. For the reasons, our model limits the feature
learning within a limited number of semantics, which enables
the network to learn more discriminative features with a
small number of samples. (ii) For the case of 20% samples
for supervised learning and 80% samples for unsupervised
learning, the proposed algorithm outperforms Simsiam [67] by
the margin of 3.03% on RAF-DB, and 1.83% on AffectNet.
For the reasons, in addition to the learning of features in deep
layer employed in Simsiam [67], our unsupervised method can
also well explore the features in the shallow layers to against
the influences of face poses, occlusion, etc. [39]. (iii) Our
model achieves the performances of 86.28% on RAF-DB and
61.69% on AffectNet under the setting of ‘20% supervised +
80% unsupervised*’, which are already better than those using
100% labels in the baseline model, i.e. 85.78% and 58.20%.

Evaluation of model robustness against semantic varia-
tions. To investigate the robustness performance of our model
against semantic variations, we propose to remove a large
proportion of samples or all the samples of a category during
the training. In this way, new semantics that are unseen for the
trained network can be simulated, and the accuracy on them
can thus reflect the capacity of a learned network generalizing
to unseen semantics.
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Fig. 6: The confusion matrices

on the testing sets of RAF-DB, SFEW, FERPIlus and AffectNet.
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Baseline on AffectNet

Prediction

Ours on AffectNet

‘SU’, ‘FE’, ‘DI’, ‘HA’, ‘SA’,

‘AN’, and ‘NE’ represent ‘Surprise’, ‘Fear’, ‘Disgust’, ‘Happy’, ‘Sad’, ‘Angry’, and ‘Neutral’ expressions, respectively.

TABLE III: The recognition accuracy (%) of the baseline,
SCN [13] and ours on RAF-DB when different numbers
of samples in one category are retained for the training.
‘0% neutral’ represents removing ‘neutral’ expression samples
from the training, while the training samples of the other
classes are retained. ‘10% neutral’ represents removing 90% of
‘neutral’ training samples from RAF-DB during the training.
The performance is evaluated on the testing set of RAF-DB.

Setting | Baseline SCN [13] Ours
0% neutral 77.90 79.07 88.66
0% happy 73.66 73.96 88.40

0% sad 76.08 78.19 86.02
0% surprise 78.49 80.12 88.04
0% angry 81.88 83.05 89.41
0% disgust 82.33 84.35 90.94

0% fear 82.07 86.47 90.48
10% neutral 84.45 85.01 89.96
10% happy 82.20 82.69 88.59

10% sad 81.32 81.88 86.64

10% surprise 83.12 84.32 89.37
10% angry 84.03 84.68 89.86
10% disgust 84.91 85.85 89.24
10% fear 83.70 85.56 90.74
30% neutral 83.34 84.62 91.46
30% happy 84.75 86.08 89.08
30% sad 83.41 84.49 88.46
30% surprise 85.01 86.64 90.84
30% angry 84.62 85.63 91.04
30% disgust 85.20 85.53 90.91
30% fear 85.07 86.83 90.84

For this experiment, we classify a testing sample to be the
removed class if the maximum prediction probability (after
Softmax normalization) is lower than a threshold of 0.25, i.e.
the confidence degree of the network prediction is lower than
this threshold. For the detailed explanation of this experiment,
please refer to the supplementary material. The recognition
accuracies (%) of the baseline, SCN [13] and ours on RAF-
DB are shown in Table III, where different numbers of samples
in one category are used for the training. Meanwhile, to shed
light on the activation of the learned feature maps, we present
the visualization of feature maps on shallow layers in Fig. 7.

We conclude the following observations: (i) Table III shows
that our method consistently outperforms SCN [13] and base-
line when a category of expression samples are removed
during the training. (ii) Table III also shows that our model
trained on largely-reduced data can achieve an accuracy, e.g.
91.46%, that is approximate to the performance using the
entire training dataset, i.e. 92.21% on RAF-DB, which reveals
the effectiveness of our model in combating against the overfit-
ting of semantic variations. (iii) Compared with the baseline,
Fig. 7 shows that our model can still focus on expression-
related regions on images of the unseen (removed) category
during training. It reflects that the features on shallow layers
can also learn the expression-related semantics for this unseen
category, are thus not overfitted to the semantic variations.

C. Ablation Study and Sensitivity Analysis

To show the performance of each proposed module, an
ablation study is performed in Table IV. The performance
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TABLE IV: Ablation study with recognition accuracy (%) of
the proposed modules on RAF-DB, AffectNet and FERPIlus.

CL

MSR RAF-DB  AffectNet  FERPlus
CLFM  CLBS
X X X 85.78 58.20 87.63
X X v 90.38 62.66 88.58
X v X 90.34 61.69 88.44
X v v 90.94 62.29 88.75
v X X 87.40 59.28 87.94
v X v 91.88 62.97 89.22
v v X 91.69 63.66 89.08
v v v 9221 65.29 89.50

TABLE V: Accuracy (%) sensitivity of our algorithm against
the settings of the hyperparameters {c;, 5;} on RAF-DB.

a1 s as B1 B2 B3 Accuracy
0.01 0 0 0.01 0 0 91.34
0 0.01 0 0 0.01 0 91.88
0 0 0.01 0 0 0.01 91.10
0.01 0,01 0.01 0.01 0.01 0.01 91.56
0.1 0 0 0.1 0 0 91.10
0 0.1 0 0 0.1 0 92.21
0 0 0.1 0 0 0.1 90.38
0.1 0.1 0.1 0.1 0.1 0.1 90.94
0.5 0 0 0.5 0 0 89.39
0 0.5 0 0 0.5 0 90.34
0 0 0.5 0 0 0.5 89.56
0.5 0.5 0.5 0.5 0.5 0.5 89.77

TABLE VI: The performances of different strategies for ob-
taining the semantic centers on RAF-DB and AffectNet, where
the backbone is ResNet-18.

Methods | RAF-DB  AffectNet
Baseline 85.78 58.20
Center® 89.15 63.66
Ours (proposed) 92.21 65.29

sensitivity against the hyperparameters of {«a;,3;} and the
number of clusters are presented in Table V and Fig. 8,
respectively.

Ablation study. The ablation study for each of the proposed
module is conducted on RAF-DB, AffectNet and FERPlus and
the results are shown in Table IV.

As shown in Table IV, MSR enables the learned network
to achieve the improvements of 1.62%, 1.08% and 0.31% on
RAF-DB, AffectNet and FERPlus over the baseline, CLFM
improves the baseline by the margins of 4.56%, 3.49% and
0.81%, and CLBS achieves the improvements of 4.60%,
4.46% and 0.95%. Meanwhile, the integration of MSR, CLFM
and CLBS achieves the best performances on all the three
databases, which reveals the complementarity of these mod-
ules in feature representation learning.

Table IV shows that neither mere CLFM nor MSR could
achieve a large improvement on the basis of CLBS, while
the integration of MSR and CLFM always achieves large
improvements. This is because the modules of CLFM and
MSR are complementary, i.e. CLFM demands the attention
information in MSR to well trade off the semantics in both
shallow and deep layers, while MSR demands CLFM to well
enhance the learning intensity of the shallow-layer semantics
via semantic alignment of shallow and deep layers.

Table IV also shows some biases on different datasets.
Specifically, it shows that CLFM helps CLBS to improve the
accuracy from 88.58% to 88.75% for the FERPIus dataset, and
90.38% to 90.94% for RAFDB. However, this observation is
different for AffectNet, which may be because AffectNet is
more complex than RAF-DB and FERPlus, i.e. its training set
has a more serious long-tail distribution problem and there is
a larger distribution bias between its training and testing sets.

Evaluation of the hyperparameters {c;, 5, }. To study the
layers used for the contrastive learning in CLFM and CLBS,
we conduct the sensitivity analysis of the proposed algorithm
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against {«a;, 5;} in Table V.

Table V shows that the cross-layer contrastive learning with
the feature maps from the 2nd and 4th blocks performs the
best, and our algorithm achieved the best performance with
the setting of as = B2 = 0.1;; = 0,5 # 2;8; = 0,5 # 2.
Thus, the contrastive learning of the outputs from the 2nd
and 4th blocks, together with this manual parameter setting,
are employed in the proposed algorithm for the following
evaluation and comparison.

Evaluation of the number of clusters K. To study the
performance sensitivity against the hyperparameter of cluster
number, i.e. K in Eq. (2), we evaluate the performances of
CLFM and CLBS with different K values on RAF-DB and
SFEW in Fig. 8. For convenience, we use Krjy; and Kpg to
represent the K value in CLFM and CLBS, respectively.

For CLFM, Fig. 8 shows that the proposed algorithm
achieves the best performance with the setting of Kpjy; = 4.
While too few clusters can not sufficiently represent the
semantics of different expressions, too many clusters may
result in representation redundancy, i.e. different clusters of
feature maps may represent entangled semantics, making the
learning ineffective. By formulating the high-level information
to a few categories of semantics, the learning of expressions
is semantic-wise disentangled, which enables us to reduce the
features with less important semantics, such as hair, identity
information, etc.

For CLBS, the setting of Kpg = 7 performs the best for the
two databases. Based on this, we argue that each expression
class naturally implies an independent category of latent
semantic, the contrastive learning with the cluster number
being that of the expression classes, can guide the network
to explore this semantic for cross-layer feature representation
learning.

Evaluation of the strategy of clustering-based centers.
To evaluate the strategy of our clustering-based centers, we
introduced another strategy to calculate the semantic centers
for the comparison, i.e. directly using the class center of each
class to calculate the contrastive loss, rather than the suggested
clustering centers. First, we formulate the class center of each
class Center® as:

0 _ L% _
Center\" = o ;]lt:yigz,L (12)
where n; represents the number of samples of the ¢-th class in
the mini-batch, and n; is the number of mini-batch samples.
g(,r) obtained by Eq. (1) is the feature of the i-th sample
in the L-th layer, and y; is its label. Then we use Eq. (3)
to calculate the cosine similarity between the class center
and the sample feature representation, and Eq. (4) to assign
each sample to the class whose center is the most similar to
the sample feature. Finally, the average feature of each class
obtained by (5) and the class center Center® obtained by Eq.
(12) are used to calculate the contrastive learning loss by Eq.
(6). The performances of this class-center strategy, together
with the baseline and the proposed clustering-based strategy
(ours) are shown in Table VI.

Table VI shows that the proposed strategy outperforms the
class-center strategy on both datasets. For the reasons, we

found that the features of some hard samples may be initialized
to be far away from its class center at the beginning of training
(Fig. 9(a)), this will impair the robustness of the following
optimization. By contrast, the proposed clustering strategy can
obtain more robust centers for contrastive learning in early
iterations.

D. Visualization

To shed light on the working mechanism of the proposed
algorithm, we compare the visualizations of the network
outputs in Figs. 9, 10, 11, and 12 after training RAF-DB.

For CLBS, we visualize the 2D feature representations of
the baseline and our method in Fig. 9, where the number of
clusters is set as that of expression categories. Fig. 9 shows that
the proposed algorithm can better separate different categories
of expression samples compared with the baseline, i.e. the
yielded feature representations by ours show better inter-
class separation and intra-class compactness, which become
more obvious when training for more epochs. Especially,
our algorithm can better distinguish neutral expressions from
others, compared with the baseline.

For CLFM, we visualize four example feature maps specific
to each of four semantics in one row of Fig. 10, i.e. each row
of feature maps are selected from the same semantic cluster
of the outputs from the 1st block. Fig. 10 shows that different
groups of feature maps correspond to largely diverse geometry
structures and textures, i.e. each feature group may represent
a kind of latent semantic, which reveals the rationality of the
employed semantic-wise manner in cross-layer alignment.

To study the feature representations of different network
blocks by the proposed modules, i.e. CLFM and CLBS (CL),
and MSR, we show the feature maps output from these blocks,
by training with the baseline and the variants of MSR and
CL+MSR in Fig. 11. Fig. 11 shows that CL+MSR can locate
broader salient regions than the baseline and the variant with
MSR. That is, the responses on the feature maps, i.e. feature
learning intensities of shallow layers can be well enhanced by
our algorithm. The enhanced shallow-layer features enable the
model to better utilize features that are robust to face pose and
occlusion to improve expression recognition performance.

To study the convergence of our algorithm, we visualize the
evolution of training and testing losses in Fig. 12. As shown
in Fig. 12, for the training set, our model is not much different
from the baseline, and the loss is slightly larger than the
baseline in the preceding 15 epochs. For the testing set, the loss
of our model is larger than that of the baseline in the preceding
5 epochs, while smaller than that of the baseline after the
5th epoch. These results show that our proposed model can
alleviate the phenomenon of premature convergence.

E. Comparison with State-of-the-art Methods

To compare the proposed algorithm with other related algo-
rithms, Table VII shows the performances of our algorithm and
the state-of-the-art methods on RAF-DB, SFEW, FERPIlus and
AffectNet, where the employed network, pre-trained model,
whether extra-data or oversampling is employed, optimizer,
published year, as well as the baseline performances are also
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Fig. 9: Feature visualization of the baseline (the 1st row) and our proposed method (the 2nd row) using t-SNE on the testing

dataset of RAF-DB.

TABLE VII: Comparison of the accuracy (%) with state-of-the-art algorithms. The best and 2nd best performances are marked
with bold and underline, respectively. ‘Extra-data’ indicates that the model was trained using extra data besides of the basic
training set. Specifically, SCN [13] combines the RAF-DB [68] and AffectNet [62] for training. CPG [69] utilizes datasets
such as Vggface2 [70] and LFW [71]. ADDL [27] utilizes Multi-PIE [72] and RAF-DB [57] to train the Disturbance Feature

Extraction Model (DFEM).

Methods ‘ Network Pre-trained Extra-data  Oversampling Optimizer  Year ‘ RAF-DB SFEW FERPlus AffectNet
gACNN [32] VGG-16 ImageNet - - SGD 2018 85.07 - - 58.78
DLP-CNN [68] DCNN - - - - 2017 84.13 51.05 - -
RMT-Net [73] VGG-16 - - - SGD 2021 87.27 - - 61.98
IPA2LT [63] ResNet-80 - - - - 2018 86.77 58.29 - 57.31
PLD [58] VGG-13 - - - - 2016 - - 85.10 -
RUL [74] ResNet-18 MS_Celeb_IM - - - 2021 88.98 - 88.75 -
FDRL [11] ResNet-18 MS_Celeb_IM - Adam 2021 89.47 62.16 - -
SPDNet [75] DCNN - - - - 2018 87.00 58.14 - -
MA-Net [21] ResNet-18 MS_Celeb_IM - v SGD 2020 88.40 59.40 - 64.53
CPG [69] ResNet-50 ImageNet v - SGD 2020 - - - 63.57
RAN [33] ResNet-18 MS_Celeb_IM - v - 2020 86.90 54.19 88.55 -
SCN [13] ResNet-18 MS_Celeb_IM v v Adam 2020 87.03 - 88.01 -
ADDL [27] ResNet MS_Celeb_IM v v Adam 2022 89.34 62.16 - 66.20
RAN-VGG16 [33] VGG-16 VGG_Face - v - 2020 - 56.40 89.16 -
EfficientFace [64] | ShuffleNet [76] MS_Celeb_IM - - SGD 2021 88.36 - - 63.70
SeNet50 [77] SeNet-50 VGG_Face2 - - SGD 2018 - - 88.80 -
EPMG [78] VGG-Face VGG-Face - - SGD 2022 87.10 - - 62.10
DACL [24] ResNet-18 MS_Celeb_IM - - SGD 2021 87.78 - - 65.20
baseline ResNet-18 ImageNet - - Adam - 85.78 58.03 87.63 58.20
Ours (proposed) ResNet-18 ImageNet - - Adam - 92.21 62.82 89.50 65.29

presented. For fairness, the other protocols, e.g. the data
splitting protocol, are kept the same as those of the state of
the arts.

Among the competing methods, IPA2LT [63], RUL [74],
SCN [13] solved the problem of inconsistency between labels
and samples, RAN [33], MA-Net [21], EfficientFace [64]
differentiated the contributions of spatial feature representa-
tion or relieved the influence of occlusion and pose factors,
EPMG [78] and FDRL [11] modeled the relationship between
expression-related facial regions, and ADDL [27] learned to
explicitly disentangle disturbing factors. As a fundamental
difference to distinguish the above works, we enhance and
explore the shallow layer-semantics to improve robustness

against face poses and occlusions. Table VII shows that our
algorithm achieves the performances of 92.21%, 89.50%,
62.82% and 65.29% on RAF-DB, FERPlus, SFEW, and Af-
fectNet, respectively, outperforms the corresponding baselines
by the margins of 6.43%, 1.87%, 4.79%, 7.09%, respectively.

Meanwhile, our method achieved state-of-the-art perfor-
mances on three of the four databases, where the improve-
ments of 2.74%, 0.66%, and 0.34% over the 2nd best are
achieved on RAF-DB, SFEW, and FERPlus databases, re-
spectively. Compared with the algorithms, i.e. FDRL [11] and
RAN-VGG-16 [33] that achieved the 2nd best, our algorithm
is easy to implement, and does not need to train multiple net-
works, i.e. feature decomposition and reconstruction networks
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Fig. 10: Visualization of feature maps from different semantic
groups of the 1st network block trained by our method.

Block 1

Block 2

Block 3 Block 4

Fig. 11: The comparison of feature maps transformed from
the outputs of different blocks, with the baseline (the Ist,
4th, 7th rows), multi-scale representation (MSR) module (the
2nd, 5th, 8th rows), and contrastive learning and multi-scale
representation (CL+MSR) modules (the 3rd, 6th, 9th rows).
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Fig. 12: Comparison of the training and testing loss evolution
between baseline and our method on RAF-DB.

TABLE VIII: The mean () and standard deviation (p) of the
classification accuracy of our model under ten groups of seed
settings on RAF-DB, SFEW, FERPIus, AffectNet.

Dataset | RAF-DB SFEW FERPIus AffectNet
v 92.151 62.65 89.458 65.266
p 0.055 0.17 0.045 0.032

in [11] or cascaded attention networks in [33].

For AffectNet, our algorithm achieved the 2nd best perfor-
mance among ten algorithms. The algorithm that achieved the
best performance on AffectNet, i.e. ADDL [27] published in
2022, needs to train a model with the number of parameters
(Params) and Floating Point operations (FLOPs) being 20.6 M
and 3.82G, respectively, which largely exceed ours, i.e. 14.5M
and 2.01G. Meanwhile, our method better trades off the
performances on RAF-DB, SFEW, and AffectNet than ADDL.

Statistical significance analysis. To evaluate the signif-
icance of our improvements over the 2nd or 3rd best ap-
proaches, we resort to hypothesis testing. We set up ten groups
of random seeds for each dataset, and report the mean (v)
and standard deviation (p) of classification accuracy in Table
VIII, where the accuracy is achieved by re-training our model.
The second-ranked performance of FDRL [11] on RAF-DB,
i.e. 89.47 is smaller than v — 3 x p = 91.986, indicating
that our algorithm outperforms FDRL on RAF-DB under
the significance level of 0.05. Similarly, our performance on
SFEW, FERPIlus or AffectNet is significantly better than that
of FDRL [11], RAN-VGGI16 [33] or DACL [24], respectively,
under the significance level of 0.05. Meanwhile, it’s worth
noting that our algorithm rarely introduces additional random
factors over the baseline, which may be the reason that it can
achieve stable performances on the evaluated datasets.

V. CONCLUSIONS AND DISCUSSIONS

In this work, a simple yet effective framework of cross-
layer contrastive learning is proposed to enhance the learning
intensity on the shallow layers, as well as align the latent
semantics between different layers. Based on the enhanced
shallow-layer features, the multi-scale features from different
layers are integrated adaptively with an attention mechanism.
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Extensive experimental results on four public in-the-wild
databases show: (1) the learning intensity on the shallow layers
can be well enhanced by our method; (2) the alignment of
the feature semantics between shallow and deep layers is
beneficial for the recognition of fine-grained expressions; (3)
the proposed algorithm can well deal with the posed and
occluded faces, and achieve almost the best performances
on the in-the-wild databases. The excellent performance on
in-the-wild databases, good interpretability, and only a small
amount of additional runtime overhead over the baseline, make
our proposed model promising in practical applications.

Although competitive performance is achieved, there is still
room for further improvement. First, more candidate combina-
tions of cross layers, in addition to the employed combination
of the 2nd and 4th blocks in this work, will be explored
for enhancing the contrastive learning. Correspondingly, the
hyperparameters of their regularization weights can be made
adaptive. Second, more effective clustering algorithms for bet-
ter representation of the latent semantics will be investigated.
Third, more advanced contrastive learning paradigms can be
considered to better align the semantics between different lay-
ers. Finally, the algorithm is general and can be exploited in the
fields of micro-expression detection, cross-dataset recognition,
and general object recognition.
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