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Consistency Preservation and Feature Entropy
Regularization for GAN based Face Editing
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Abstract—Generative Adversarial Network (GAN) has been
widely used for image-to-image translation-based facial attribute
editing. Existing GAN networks are likely to generate samples
with anomalies, which may be caused by the lack of consistency
preservation and feature entanglement. For preserving image
consistency, many studies resorted to the design of the network
framework and loss functions, e.g. cycle-consistency loss. How-
ever, the generator with the cycle-consistency loss could not well
preserve the attribute-irrelevant features, and its feature-level
noises may possibly cause synthesis abnormalities. For feature
disentanglement, previous works were devoted to mining the
implicit semantics of feature spaces, while these semantics are
not stable and intuitive enough. For consistency preservation,
we propose a target consistency loss to complement the cycle-
consistency loss, and enable the network to learn to preserve
features of the image more directly. Meanwhile, we filter out
outlier feature maps to reduce the synthesis abnormalities and
propose a dynamic dropout to better preserve the attribute-
irrelevant features. For feature disentanglement, we encode the
image semantics more stably and intuitively and propose an
entropy regularization to decouple these semantics to allow
independent editing of different attributes. The proposed modules
are general and can be easily integrated with available image-to-
image-based GAN models like StarGAN, AttGAN, and STGAN.
Extensive experiments on CelebA dataset show that the our
strategy can largely reduce the artifacts and better preserve the
subtle facial features, and thus significantly improve the facial
editing performance of these mainstream GAN models, in terms
of FID, PSNR and SSIM. Additional experiments on realistic
expression editing show that our method outperforms StarGAN
on RaFD, and achieves much better generalization performances
than the three baselines on datasets of FFHQ, RaFD and LFW.

Index Terms—GAN; Consistency preservation; Entropy regu-
larization; Self-adaptive dropout.

I. INTRODUCTION

GENERATIVE adversarial network (GAN) has been fre-
quently applied to image-to-image translation and has

achieved appealing results [1]. StarGAN [2], AttGAN [3] and
STGAN [4] achieved multi-domain translations using a single
generator. In the facial attribute editing, artifacts frequently
occur in the samples generated by existing models. For exam-
ple, the existing models often change the features of a face
and produce artifacts when translating a hair color attribute.
We collectively refer to the changes of irrelevant attributes
and artifacts in the sample as abnormalities. What is more,
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preliminary experiments show that these abnormalities will be
more serious as the number of training iterations increases.
There are two possible reasons for these abnormalities in the
generated samples. (i) It has been a challenge to preserve the
consistency of irrelevant attributes in facial attribute editing.
(ii) Feature entanglement causes attribute entanglement, which
in turn causes other attributes to change when one attribute is
edited.

To preserve consistency, many studies proposed different
network architectures and losses to constrain the generator.
Zhu et al. [5] proposed a cycle consistency loss for unpaired
image-to-image translation. Cycle consistency loss preserves
consistency by encouraging the generator to re-synthesize
the images toward the original images during training. This
reconstruction in face attribute editing has widely used in
many GAN networks [2], [6], [7], [8], [9]. Some works
made improvements on cycle consistency loss to adapt to
different tasks, e. g. handling asymmetric unpaired image-
to-image translation [10] and preserving consistency in latent
space to maintain the identity of the person [11]. In recent
years, the preservation of attribute-irrelevant regions has been
extensively studied [6], [8], [9]. Specifically, based on cycle-
consistency loss that guides the network to preserve the
consistency of attribute-irrelevant regions, these works learned
a mask of the editing area. However, in facial attribute editing
where a single generator realizes multi-attribute translation,
cycle consistency loss may not well preserve the features of
the image. For example, when the network takes the already
edited image as input and uses its attribute as the target label,
it can be observed that the generator does not tend to preserve
the features of this image. This is due to the lack of consistency
constraints of the generator in the target attribute space. In this
work, to give the generator a more comprehensive and stable
consistency constraint, we propose a target consistency loss to
complement the cycle consistency loss.

On the other hand, some works resort to additional regu-
larizations to preserve the consistency of the GAN network.
Zhang et al. [12] and Zhao et al. [13] focused on penalizing the
sensitivity of generators or discriminators on the augmented
data. This allows the network to learn more robust features
from the original and augmented data, which can in turn
stabilize training and improve the quality of synthesis. SPA-
GAN [14] used the attention in the discriminator to narrow
the distribution gap between the source and target domains.
SReGAN [15] regularized the distinction among classes in
the feature space. Wei et al. [16] proposed dropout-based
regularization in the discriminator to maintain the consistency
between the images before and after dropout. However, noises
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Fig. 1. Visualization of the face attribute editing results of three popular GANs, i.e. StarGAN [2], AttGAN [3] and STGAN [4]. The first row presents the
edited images where the attribute-irrelevant regions are changed. The second row shows the problem of inconsistency between images before and after editing.

may possibly appear in the feature space of the generator,
which will affect the editing of attributes. Thus, the suppres-
sion of such noises is useful to reduce the abnormalities in the
generated samples. Dropout [17] is a common regularization
method, but the original dropout based on random dropping is
not desirable to the GAN generator. In recent years, many
works have proposed new dynamic dropout strategies for
different tasks [18], [19], [20], [21]. Thus, we propose to filter
out the feature maps with such noises, and introduce dynamic
dropout to suppress these features to improve the generator.

In addition, feature entanglement will also cause abnormal-
ities in the generated samples. More intuitively, the entangle-
ment of features makes the editing of multiple attributes en-
tangled as well, i.e. manipulating each feature map to edit the
attribute-related regions will undesirably affect other semantic
regions. To reduce feature entanglement, many works have
proposed improved network structure [24], [25] and feature
map-based orthogonality [26], [27]. However, the devised
network structures are often task-specific, which are difficult to
generalize to other tasks. Node-based and feature map-based
disentanglement are not efficient enough since a large number
of nodes and feature maps are included in each network. Some
studies [28], [29], [30] excavated and pruned the features in
the context of hidden semantics, i.e. these features are mapped
into the semantic space for disentanglement. PA-GAN [22]
disentangled attribute semantics via an overlapping loss of the
attention maps specific to the attributes with disjoint regions,
while hidden semantics are not stable and intuitive enough to
achieve accurate attribute editing. EigenGAN [23] proposed
to control the semantic attributes via an unsupervised mining
of interpretable and controllable eigen-dimension, i.e. a latent
feature from each layer of the generator, while the specific
network architecture employed by EigenGAN cannot be di-
rectly applied to image-to-image translation. In this work, we
propose a regularization module that can offer a more stable
and intuitive guidance to achieve semantic disentanglement for
the feature maps.

A. Contributions

In this work, to give insight into the abnormalities, i.e.
changes of irrelevant attributes and artifacts (see labeled
regions in Fig. 1 for examples), caused by GAN generator,
we propose two modules for consistency preservation and one
module for feature entropy regularization. As far as we know,
this is the first work to specifically study the abnormalities in
generators.

These proposed modules are general and can be easily
transferred to most image-to-image GANs for face attribute
editing. Our contributions are summarized as follows
• A target consistency loss is proposed to preserve the

generation consistency within the target attribute space,
which help generators to preserve the global image con-
sistency, especially for the face-irrelevant attributes.

• A dropout algorithm that adapts to the response location
is proposed to suppress outlier feature maps and retain
more subtle features, where a filtering mechanism with
an efficient hash encoding and a dynamic dropout is
introduced to detect and suppress outlier features.

• We propose a semantic entropy regularization on feature
maps to decouple the features of different attributes, to
enable each feature map in the generator to edit semantic
attributes independently.

• Three popular GANs equipped with our approach achieve
better visual, quantitative and generalization perfor-
mances than the baselines on four face datasets, where the
artifacts of the synthesized images are largely reduced and
the attribute-irrelevant identity cues are better preserved.

II. RELATED WORK

A. Facial Attribute Editing by Image-to-Image Translation

GANs [1] has shown impressive results in image-to-image
translation. Isola et al. [31] used a conditional adversarial
network to learn a mapping from paired images. Since paired
images are not easy to obtain, CycleGAN [5] constrained the
conditional generation of unpaired images. Odena et al. [32]
proposed auxiliary classifier for multi-domain translation. Fur-
thermore, several unified network architectures based on GAN
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are proposed to train a single generator for the task of multiple
attributes editing [2], [3], [4]. For photo-realistic attribute
editing, Dorta et al. [33] proposed WrapGAN to learn the
smooth wrapping fields. Xiao et al. [34] proposed ELEGANT
to exchange attributes in a pair of images by exchanging
attribute-related latent codes. Yang et al. [25] proposed L2M-
GAN, a model based on StarGAN-V2 [7], to separate and
orthogonalize style vectors into attribute-relevant and irrele-
vant codes for preserving irrelevant attributes. Though well
preserving the attribute-irrelevant facial regions, L2M-GAN
could possibly cause background distortion. Thus, existing
models still change irrelevant attributes and generate artifacts
in the editing of local facial attributes. In this work, we
propose to suppress these artifacts from two perspectives, i.e.
consistency preservation and attribute disentanglement.

B. Consistency Preservation

Zhu et al. [5] proposed the cycle-consistency loss to en-
courage model to preserve consistency, which is also used in
[2], [6], [7]. To further preserve consistency in image-to-image
translation, Arantes et al. [9] proposed a new cycle-consistency
loss based on semantic segmentation. Some works resort to the
preservation of semantic structure [35] and spatial structure
[36] during translation. The studies [6] [18], [37] enabled the
network to learn a mask of the edited region to preserve the
consistency of irrelevant attributes. Most of these modules are
based on cycle consistency loss, while this loss may ignore
image feature preservation in the target attribute space of the
generation. In this work, we propose a target consistency loss
to preserve this image consistency.

C. Regularization of GAN

The regularization in GAN can play important role in
stabilizing training, preventing overfitting, feature disentangle-
ment, and improving the quality of generation. To stabilize
training and improve the model generation ability, DQE-GAN
[38] dynamically evaluated the image quality with discrim-
inator, TWGAN [39] selected the optimal discriminator to
optimize the generator, and many works [40], [41] proposed
normalization and regularization of feature maps. As noise is
common in the feature space of the generator, we introduce
a regularization-based method to suppress such abnormal
features with noises.

For feature disentanglement, some works have proposed
methods based on feature orthogonality [26], [27], [42] and
network architecture improvement [24], [42]. The studies [22],
[28], [29], [43], excavated the semantic information in the
feature space to achieve independent editing of attributes.
Previous works were devoted to mining the hidden semantics
of feature space, and decoupling them to achieve independent
editing of attributes. In this work, we resort to the segmentation
to explicitly encode the semantics in a stable way. Based on
this, an entropy regularization is introduced to disentangle the
semantics for independent editing.

III. THE PROPOSED ALGORITHM

The entire framework of the proposed generator is shown
in Fig. 2, where the motivation and method of each proposed
module are introduced below.

A. Target Consistency Loss

1) Motivation: Although most GANs introduced the re-
construction loss, during the training process, it is not easy
to preserve irrelevant attributes and features. As shown in red
boxes in Fig. 1, when we change the smiling attribute, the hair
color is undesirably changed as well. And when AttGAN is
requested to translate the color of brown hair to brown, the
hair color is not well preserved.

Specifically, in current GAN-based face attribute editing, in
order to preserve consistency, i.e. retaining attribute-irrelevant
regions, the following reconstruction loss has been proposed.

LCCL = Ex,c,c′ [∥x−G(G(x,c′),c)∥1] (1)

where x is the input image, c and c′ are original and target
attribute labels, respectively, G(x,c′) is the generated image
with target attribute c′, E[·] is the expectation operator.

During the training of facial attribute editing, the generator
G learns the mapping from the original attribute space X to
the target attribute space X ′. Cycle consistency loss (CCL)
constrains the mapping function learned by G to be cycle-
consistent, as follows{

LCCL = Ex,x′,x̂[∥(x− x′)− (x̂− x′)∥1]
x′ = G(x,c′) ∈ X ′, x̂ = G(G(x,c′),c) ∈ X (2)

As shown in Fig. 3 and Eq. (2), for x∈X , CCL encourages
G to generate an image x̂ similar to x in a translation cycle, i.e.
x→ x′→ x̂ ≈ x. In the translation cycle, G performs mapping
x → x′ and mapping x′ → x̂, respectively, and guides these
two mappings to be the inverse mapping of each other. More
intuitively, CCL guides the changes during the two rounds
of attribute editing to offset each other at the pixel level, i.e.
x− x′ ≈ x̂− x′. CCL emphasizes the consistency of changes
during the mapping between different attribute spaces in a
translation cycle, but does not emphasize the consistency of
features within generation space of the target attribute.

Our intuition is that G should preserve consistency in the
target attribute space while preserving cycle consistency. For
example, taking x′ and target attribute labels c′ as input, G
generates a sample x̂′ = G(x′,c′). In this case, we expect that
x̂′ is similar to x′, i.e. G can well preserve the features of
x′ during the translation in target attribute space. However,
G under the mere CCL constraint may produce unexpected
results, e.g. G will apply the learned information from x to x′

and generate x̂′≈ x′+(x′−x). With a large capacity of possible
mapping space, there may be a large difference between the
input and desired images when x′ and c′ are used for the input,
especially when G lacks the consistency constraint specific to
the target attribute space.

2) Method: To give G more comprehensive and stable
consistency constraints, a target consistency loss (TCL) in
addition to CCL is proposed to improve image consistency. As
shown in Fig. 3, by inputting the generated image x′ and target
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Fig. 2. The framework of the proposed generator: (a) Target consistency loss (TCL). (b) The suppression of outlier feature map based on dynamic dropout
(ODS), where osi is the distance from the maximum response area to the critical area of feature map FMi, and pi is the dropout probability specific to FMi.
(c) The semantic information entropy regularization (SER) based on region segmentation for making each feature map respond to as few regions as possible.
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Fig. 3. The framework of cycle consistency loss (CCL) and target consistency
loss (TCL). X and X ′ denote original and target attribute spaces, respectively,
and x is the original input image. c and c′ are source and target attribute labels,
respectively.

attribute c′ to G, TCL guides G to preserve image consistency
in target attribute space, i.e. x′→ x̂′ ≈ x′, as follows

LTCL = Ex,c′ [∥x
′−G(x′,c′)∥1] (3)

where x′ = G(x,c′). The loss TCL guides the two generated
samples x′ and x̂′=G(x′,c′) to approximate each other as close
as possible.

Through the joint guidance of CCL and TCL, the mapping
learned by G satisfies the cycle consistency and the consistency
within the target attribute space.

B. Dynamic Suppression of Outlier Feature Maps

1) Motivation: Many reconstruction losses are based on
the constraints specific to the entire image, which does not
pay enough attention to the critical regions and important
regions with less pixels. As shown in blue ellipses in Fig. 1,

in the translation of brown hair, a noisy block is undesirably
produced to extend the hair region. Meanwhile, the shapes of
the eyes and nose are also slightly changed.

Fig. 4. (a) An input image. (b) Feature map (FM) of the middle layer of
StarGAN. (c) The image synthesized by StarGAN.

To shed light on the cause of these artifacts, we analyze
their generation in the feature map representation. As shown in
Fig. 4, the feature space of the generator incorrectly responds
to the shaded region in the red circle, which causes artifacts
in the output samples during hair color translation. These
artifacts appear as abnormal responses in the feature space,
mostly around the critical regions to be edited, and affect the
preservation of attribute-independent regions. We define these
maps with abnormal responses as abnormal feature maps.

In this work, we identify outlier feature maps far from
the cluster centers as candidates of abnormal feature maps.
Furthermore, as abnormal responses appear around the key
regions, the feature maps with the maximum response being
close to the edited region are intensively suppressed using the
dropout algorithm. In this way, image information is preserved
as much as possible.

The framework of the proposed outlier feature map suppres-
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Fig. 5. The detection and suppression of outlier feature maps. (a) The clustering of feature maps based on hash encoding. (x1,y1) and (x2,y2) are coordinates
of top-2 largest responses. (xsom,ysom) is the coordinate of the winning neuron of SOM network output. (b) The probability of dropout is obtained based on
the distance os from the largest response to the face, where osmin and osmax are the minimum and maximum distances.

sion is presented in Fig. 5.
2) Method: Hash encoding for outlier FMs screening: To

filter out the outlier feature maps, we cluster the feature maps
and select those far from centers as the outliers. Motivated
from the study [21], we use hash coding to encode each feature
map and speed up the clustering.

In [21], the coordinates of the top-nc largest response areas
are formulated as follows

hrlr = (xi1 ,yi1 , · · · ,xinc ,yinc) (4)

where (xi j ,yi j) is the coordinate of the top j-th largest average
response. In this work, the setting of nc = 2 is employed.

Fig. 6. (a)-(c) are three example feature maps of the 10-th layer of the
StarGAN generator, with the size of 32×32. We divide the feature map into
8×8 regions, and the red labels the largest activation region of the feature map.
Both (a) and (b) respond to the hair region and L2(a,b)< L2(b,c) (L2 denotes
L2-norm distance), while L2(hash(a),hash(b)) > L2(hash(b),hash(c)) after
hash encoding in Eq. (4).

However, as shown in Fig. 6, the two feature maps with
similar maximum-response coordinates may still respond to re-
gions that are largely different, due to the introduced noises in
the feature space. Given this consideration, the self-organizing
mapping network (SOM) [44] that can map similar inputs to
the closer neurons is further used.

More precisely, we use the coordinate clr = (xsom,ysom) of
the winner neuron in the output layer to encode the feature
map after inputting it into a SOM network, while the distance
with winner neuron can well reflect the feature map similarity.

By concatenating hrlr in Eq. (4), the final hash encoding is
formulated as follows

hc = (hrlr,clr) (5)

Based on the K-means clustering with hash coding of the
feature maps, the outlier feature maps [21] are defined as those
far from the cluster centers as follows

di > κ
γ√

2nN(io)
, (6)

where κ = 1.5 is a predetermined value; γ is the L2−norm
of the feature map; n is the dimension of feature map after
vectorization; di is L2−norm distance between feature map fi
and the center of the class it belongs to, N(io) is the number
of feature maps in this class.

We argue that the outlier feature maps mainly reflect the
attribute-irrelevant cues [21], which are also useful for pre-
serving reconstruction consistency. Thus, instead of getting rid
of these outlier feature maps directly, we suppress them with
dynamic dropout.

Feature re-screening based on semantic regions: Moti-
vated from the study [45], we highlight the attribute-irrelevant
features that are not well preserved, and propose a dropout
with dynamic probabilities in Fig. 5. In these outlier feature
maps, we argue that those with maximum response close to
the face region are associated with attribute-relevant features,
which should be suppressed with a larger dropout probability.
In this way, the feature maps specific to the attribute-irrelevant
cues are more prone to be retained, which enables the gener-
ator to preserve more subtle feature information.

To this end, a segmentation algorithm, i.e. BiseNet [46] is
used to locate the face region, then the distance from the
largest response to the face region is used for the dynamic
update of the specific dropout probability, which is formulated
as follows

osi = in f
cd∈CD

∥cd f i − cd∥2 (7)
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where cd f i is the coordinate of maximum response area of the
feature map f i, CD is the collection of the coordinates specific
to the attribute-relevant regions via BiseNet [46].

The dropout probability specific to the i-th feature map f i

is updated as follows

pi =

{
0 f i /∈ FMol
pmax− pmax−pmin

osmax−osmin
· (osi−osmin) f i ∈ FMol

(8)

where FMol is the set of outlier features, osmin and osmax are
the minimum and maximum distance values. pmax = 0.7 and
pmin = 0.3 are predetermined hyperparameters.

In order to make up for the loss of information caused by
feature map dropout, we minimize the difference of generated
images with and without dropout as follows

LODS = Ex,c′ [∥G(x,c′)−Gdrop(x,c′)∥1] (9)

where Gdrop denotes the generator with the proposed dropout,
∥ · ∥1 denotes the L1-norm distance.

C. Semantic Information Regularization

1) Motivation: In addition to the outlier feature maps, the
generator of GAN may also suffer from feature entanglement.
As shown in yellow circles in Fig. 1, the generator mistakenly
treats the shadow area as the hair to be edited, and yields
abnormal generation.

We speculate one possible reason of generating these arti-
facts is that the semantic information represented by each fea-
ture map is entangled. More precisely, each feature map may
represent the cues associated with multiple sematic regions,
which makes it hard for the generator to edit the attributes
independently. As shown in Fig. 4, a feature map that mainly
responds to the hair region also represents a shadow region in
the red circle. In this way, when the hair region is edited by
this feature map, feature entanglement will inevitably produce
this shadow region.

Another possible reason maybe that the semantic informa-
tion learned by the generator is inaccurate, e.g. generators
often treat hair-surrounding shadow as a hair region for editing,
causing abnormalities.

In this work, in order to make each feature map represent
as few semantic regions as possible, an entropy regularization
of the semantic information is proposed, where the semantics
are explicitly represented based on face segmentation model.

2) Method: Specific to the task of facial attribute editing,
we divide the face into three semantic regions, i.e. hair, face,
and the five sense organs.

The framework of the proposed entropy regularization is
presented in Fig. 7, where we obtain the information encoding
of each feature map (FM) for the following entropy regular-
ization of semantics.

For the sample x, we obtain the masks of the three semantic
regions based on BiseNet [46], i.e. M = {m1,m2,m3}, where
m j is the 0− 1 mask of j-th semantic region, i.e. a pixel
is assigned with 1 if it belongs to the j-th semantic region,
and 0 otherwise. As shown in Fig. 7, for each feature map
f i ∈ F = { f 1, · · · , f n}, we obtain its information encoding

Fig. 7. The framework of the proposed semantic entropy regularization (SER).
m j is the mask of j-th semantic, and S( f i,m j) is the information value
specific to the i-th feature map of the j-th semantic. ⊗ denotes element-
wise multiplication.

{S( f i,m1),S( f i,m2),S( f i,m3)} for three semantic regions by
weighted averaging as follows{

S( f i,m j) = mean(abs( f i)⊗m j)
S( f i,m j)← S( f i,m j)/∑ j ∥S( f i,m j)∥2

(10)

where abs(·) is to take the absolute value of each element, ⊗
and mean(·) are element-wise multiplication and the averaging
operation.

Based on the information encoding of each semantic region
of the feature maps, we introduce the information entropy
regularization by minimizing the following loss

LSER =−1
n

n

∑
i

3

∑
j

S( f i,m j)log(S( f i,m j)) (11)

By minimizing LSER, the gradient backpropagation causes
the largest value S( f i,m j0) = max(S( f i,m j))→ 1, and makes
S( f i,m j)→ 0 ( j ̸= j0).

By minimizing the loss in Eq. (11), we not only encourage
each feature map to respond to as few semantic regions as
possible, but also offer the model more prior knowledge to
represent the semantic region. This can facilitate the decou-
pling of the semantic attributes during editing and allow the
model to edit these attributes independently.

D. Network Training

In a nutshell, we propose three modules in the generator
and design the corresponding loss functions.
Target Consistency loss (TCL). Besides of the cycle con-
sistency loss enabling the generator to preserve consistency
between source and target attribute spaces in Eq. (1), a target
consistency loss in Eq. (3) is proposed to preserve consistency
in the target attribute space.
Dynamic Suppression of Outlier Feature Maps (ODS). In
order to suppress abnormal FMs and preserve more subtle
attribute-irrelevant information, ODS with the specific loss in
Eq. (9) is proposed.
Semantic Information Entropy Loss (SER). To enable each
feature map to reflect as few semantic regions as possible to
allow independent editing, the entropy regularization loss is
proposed in Eq. (11).
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Generator. All the three modules are generator-specific oper-
ators, yielding the final loss as follows

LG = LGori +λTCL ·LTCL +λODSLODS +λSERLSER (12)

where LGori denotes the original loss of GANs. The setting
of the regularization parameters, i.e. λODS = 10 and λTCL =
0.5 ·λCCL is employed, while λCCL is set as 15 for StarGAN
and STGAN, and 70 for AttGAN. The number of clusters in
ODS is set the same as that of semantic regions in SER.

The training process of the proposed generator G is sum-
marized in Algorithm 1.

Algorithm 1 Training process of the proposed algorithm
Require: The input image x; original label c; target label c′;

the set of semantic segmentation masks of x: M.
Initialization of G(·) and D(·).

Ensure: Trained G(·) and D(·).
1: for each all training steps do
2: Train discriminator D(·) in the original way.
3: # Employ TCL module
4: Obtain x′← G(x,c′), G(x′,c), and G(x′,c′) in Eqs. (1)

and (3);
5: Calculate LCCL and LTCL in Eqs. (1) and (3);
6: # Employ ODS module
7: Cluster feature maps (FMs) based on hash encoding in

Eq. (5) and select the outlier FMs in Eq. (6);
8: Perform dropout on the outlier FMs with the loss in Eq.

(9);
9: # Employ SER module

10: Calculate the regularization loss LSER in Eq. (11);
11: #Perform forward calculation and backpropagation
12: Calculate the loss LG in Eq. (12);
13: Update G(·) with gradient backpropagation;
14: end for

IV. EXPERIMENTAL RESULTS

We use StarGAN [2], AttGAN [3] and STGAN[4] as base-
lines. StarGAN [2] learns mappings among multiple domains.
AttGAN [3] encodes conditional information into the decoder
of generator. To study the performance of the proposed mod-
ules for face attribute editing, CelebFaces Attributes Dataset
(CelebA) [47] is used for training and testing, which includes
more than 200K images. We pick 4 out of 40 attributes for
the experiments. While 198K images of CelebA are used for
training, the remaining images are used for testing. To explore
the performance of our proposed modules on facial expression
editing, the Radboud Faces Database (RaFD) [48] is used
for the evaluation with the baseline of StarGAN, where each
participant displays eight expressions in three poses and three
gaze directions. To study the generalization performance of
our model, RaFD, Flickr Faces-HQ (FFHQ) [49] and Labled
Faces in the Wild (LFW) [50] are used. FFHQ consists of
70k high-quality images with the size of 1024× 1024. LFW
consists of 13,233 images with a resolution of 250× 250,
where the images are all derived from natural scenes in life.
For FFHQ and LFW, the preceding 2k images are resized to be

the resolution of 128×128 for testing. We get the mask of face
semantic segmentation based on BiseNet [46]. The baseline
models are trained for 300K steps using images with the size
of 128× 128 as input. We integrate both ODS and SER on
the 10th or the 2nd layer of the baseline encoder for StarGAN
or STGAN, respectively. For AttGAN, we integrate SER and
ODS on the 2nd and 3rd layers, respectively. Meanwhile,
StyleGAN-based generator [53] and GuidedStyle [54] are
further used to test the performance of the proposed modules
on the latent code-based generator.

A. Feature Maps Visualization

Input StarGAN StarGAN*

Fig. 8. Feature maps visualization and synthesized results of StarGAN and
our proposed model StarGAN* on CelebA.

To shed light onto the hidden layer with our proposed
method, we present the synthesized results together with
the feature maps of StarGAN and StarGAN*, i.e. StarGAN
equipped with the proposed three modules, in Fig. 8. Both
the synthesized images and the feature map visualization of
StarGAN in Fig. 8 show that the generator could not well
edit the attribute-relevant regions. For example, accessories,
shadows, and brown skin are made more likely to be confused
as hair region. Besides, each feature map of StarGAN may
respond to both hair and accessory regions. By contrast, the
feature maps of our proposed algorithm enable StarGAN to
accurately edit the hair region.

To investigate how our proposed modules represent seman-
tic regions in feature space, we show the resulted feature maps

Fig. 9. Visualization results of the feature maps in the 10-th layer of
StarGAN* on CelebA, where StarGAN* denotes StarGAN equipped with
the proposed three modules.
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Black Hair Brown Hair Male SmilingInput  Image

Black Hair Brown Hair Male SmilingInput  Image

StarGAN

StarGAN
*

STGAN

STGAN
*

AttGAN
*

AttGAN

Fig. 10. Results of each baseline and the variant equipped with our
proposed three modules on CelebA, where StarGAN* stands for Star-
GAN+TCL+ODS+SER. The red circles highlight the performances of the
proposed algorithm for the suppression of artifacts, and the green circles
represent the performances of consistency preservation. For more visual
results, please refer to supplemental materials.

in Fig. 9. Fig. 9 shows that the our model well disentangles
semantic information in the feature space. The activation
regions of each feature map using the proposed modules are
more clustered to reflect as few semantic regions as possible,
which facilitates independent editing of semantic regions for
each feature map in the generator.

B. Visual Results
The visual results of baselines and the algorithms equipped

with our modules are shown in Fig. 10. The performances of
StarGAN and StarGAN* for black hair translation and smiling
editing, AttGAN and AttGAN* for smiling attribute translation
are presented in Figs. 11 and 12, respectively. We summarize
the following observations.

(1) Reduction of artifacts: In the translation of brown
hair attribute, StarGAN and STGAN generate artifacts that
appear on background, shadows, and occlusions adjacent to
the hair region, which indicates that these generators are not
good at decoupling attribute-relevant and attribute-irrelevant
features. Although AttGAN reduces obvious artifacts in the
background, it still could not eliminate the artifacts of the
shadow region next to the hair area in the red circles of Fig.
10, possibly due to the confusion of the hair area with shadows
and occlusions. By contrast, AttGAN* can yield the edited
images that are more realistic. STGAN generates abnormalities
on the background and earrings, while STGAN* can reduce
these artifacts.

Fig. 11. The performances of StarGAN and StarGAN* on CelebA.

Input

AttGAN

AttGAN *

Non-smiling to Smiling Smiling to Non-smiling

Fig. 12. Visual results of smiling attributes translation on CelebA, AttGAN*
stands for AttGAN equipped with the proposed three modules. The preceding
four columns show the results of translation from non-smiling to smiling, and
the following four columns show the translation from smiling to non-smiling.

(2) Consistency preservation: As shown in Fig. 11, all
the three baselines suffer from the undesirable changes of
attribute-irrelevant regions. When editing black hair with base-
lines, the face, eyebrows and eye contours become darker,
even their shapes are also changed. Meanwhile, for the smiling
attribute translation, the baselines fail to preserve the original
hair color. By contrast, StarGAN* can retain not only obvious
features, but also those subtle features that are sensitive to
noise. As shown in red boxes of Fig. 11, our proposed method
enables the generator to better retain subtle attribute-irrelevant
information, where earrings, contours of the five sense organs
are well preserved. Similar observations can be concluded in
Fig. 12, where the proposed AttGAN* better preserves the
identity information and synthesizes more realistic five sense
organs when translating from non-smiling to smiling.

C. Quantitative Results

To quantitatively evaluate the performance of our meth-
ods, we use Fréchet Inception Distance (FID) [51] scores to
evaluate the realism of the synthesized image, peak-signal-to-
noise ratio (PSNR) [52] that reflects the contrast and lightness
of the global image to evaluate the consistency preservation
of attribute-irrelevant regions and structural similarity index
(SSIM) [52] to measure the preservation of image structure.
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FID score. The similarity between the ground truth and
synthesized images is measured by FID using visual features
obtained with InceptionV3. We present FID scores for four at-
tributes in Table I. Compared with the baselines, our proposed
method achieves the lower FID scores, which indicates that it
improves the quality of face synthesis.

TABLE I
THE FID SCORES OF THE THREE BASELINE GANS AND THE VARIANTS

EQUIPPED WITH THE PROPOSED THREE MODULES ON CELEBA.

Model Black
Hair

Brown
Hair

Gender Smiling

StarGAN 19.18 15.79 16.59 12.67
StarGAN* 12.62 9.79 11.26 8.44
AttGAN 14.23 13.61 20.47 11.77
AttGAN* 11.35 10.46 11.04 9.73
STGAN 12.55 10.86 9.4 7.66
STGAN* 7.52 6.76 6.73 6.84

PSNR. We use PSNR with the mean squared error (MSE)
to evaluate the consistency preservation for only attribute-
irrelevant regions in Table II. Compared with the baseline
GAN, Table II shows that our proposed method can better
preserve attribute-irrelevant regions.

TABLE II
THE PSNR RESULTS FOR FOUR ATTRIBUTES ON CELEBA.

Model Black
Hair

Brown
Hair

Gender Smiling

StarGAN 19.71 19.64 26.36 19.96
StarGAN* 23.12 23.6 31.39 24.28
AttGAN 21.56 22.67 27.45 23.28
AttGAN* 24.32 26.29 32.62 27.30
STGAN 21.74 22.42 31.86 24.65
STGAN* 25.9 26.14 32.38 28.06

SSIM. SSIM measures the similarity of two images in terms
of luminance contrast and structure. For the evaluation, we use
the entire image for the hair color attribute, and the regions
that should not be edited for the other attributes. The results
of SSIM are shown in Table III, they show that our proposed
method can better preserve the contrast and lightness of the
global image than the baselines. Especially, STGAN* largely
outperforms STGAN for the attributes of black and brown hair
by margins of 9.9% and 7.2%, respectively.

D. Ablation Study

1) Feature Maps Visualization: To study the performance
of each proposed module for StarGAN, we perform an ablation
study in Fig. 13. Because CCL could not directly supervise the
preservation of image features in attribute-irrelevant regions,
StarGAN generates the artifacts on the face and background
regions, while these artifacts are largely reduced by StarGAN*
with the aid of our TCL. As shown in the red circles of Fig. 13,
ODS pays more attention to the critical regions and suppresses

TABLE III
THE SSIM RESULTS OF THREE BASELINE GANS AND OUR MODELS FOR

FOUR ATTRIBUTES ON CELEBA.

Model Black
Hair

Brown
Hair

Gender Smiling

StarGAN 0.757 0.794 0.944 0.873
StarGAN* 0.840 0.883 0.970 0.935
AttGAN 0.774 0.809 0.943 0.881
AttGAN* 0.885 0.841 0.961 0.919
STGAN 0.827 0.856 0.961 0.940
STGAN* 0.909 0.918 0.978 0.956

Fig. 13. Feature maps and results of brown hair editing with StarGAN and
our proposed variants on CelebA.

noises in the feature space, thus can prevent uneven facial skin,
which is not well addressed by TCL.

When the noises in the background in yellow circles of
Fig. 13 are suppressed by StarGAN+TCL+ODS, the noises in
the feature space specific to the critical regions such as the
forehead, eyes are also suppressed, which is helpful for the
proposed variant to better preserve the subtle features of the
generated samples. Meanwhile, SER facilitates StarGAN* to
generate samples that have more even skin tones and clearer
eyes, and feature maps that respond only to the the hair region,
while avoiding changing the features of other regions.

2) Visual Result: (i) Consistency preservation and artifacts
suppression: Since brown hair is likely to be confused with
facial shadows, its editing is a challenge and used for the ab-
lation study of the proposed three modules. Fig. 14 shows the
results edited with our proposed modules based on StarGAN.

The results in the 2nd and 3rd columns of Fig. 14 show that
StarGAN+TCL can reduce artifacts in the non-facial region
and better preserve the features of the input image, e.g. skin
tone, eyebrows, eyes, etc. The results in the 3rd and 4th
columns show that the proposed ODS can facilitate StarGAN
to better preserve the consistency of key facial regions, e.g.
face skin color, eyes, and mouth. The results in the 5th column
reveal that the proposed SER can accurately locate the hair
region for editing, i.e. largely reducing the influence on the
attribute-irrelevant regions.

(ii) ODS: The proposed ODS consists of two stages, i.e.
the screening of outlier feature maps in the feature space and
the dynamic update of the dropout probabilities in Eq. (8). To
investigate this dropout update strategy, we performed ablation
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Fig. 14. Results of the brown hair translation on CelebA, where ‘Star-
GAN+TCL’ is abbreviated as ‘TCL’.

experiments.
The variants of StarGAN+TCL+SER equipped with one of

the following ODS strategies are used for the evaluation: a)
half-ODS: random dropout with a fixed probability for outlier
feature maps, b) all-ODS: drop all outlier feature maps, c)
inverse-ODS: the dropout probability is set as pmin+ pmax− pi,
where pi is defined in Eq. (8), d) ODS. The comparison of
these variants in terms of visual performances and PSNR are
presented in Fig. 15 and Table IV, where brown hair translation
is used for the evaluation.

TABLE IV
THE PSNR VALUE OF THE SYNTHESIZED FACE REGIONS FOR THE

TRANSLATION OF BROWN HAIR ATTRIBUTE ON CELEBA.

StarGAN half-ODS all-ODS inverse-ODS ODS

20.14 24.03 25.29 24.29 26.11

For the strategy of all-ODS, Fig. 15 shows that the artifacts
are not well suppressed, and the attribute-irrelevant regions,
e.g. face regions are over-edited possibly due to the loss of
much information related to the face. By contrast, the proposed
ODS not only suppresses the artifacts to the maximum extent,
but also retains more facial information.

Table IV also reveals the effectiveness of the proposed ODS
for face regions except hair region in terms of PSNR, where
a significant improvement, i.e. 5.97 over the variant without
this module is achieved.

TABLE V
THE FID SCORES OF THE PROPOSED THREE MODULES ON STARGAN.

FOR MORE RESULTS, PLEASE REFER TO THE SUPPLEMENTAL MATERIALS.

TCL ODS SER Black Hair Brown Hair Male Smiling

% % % 19.18 15.79 16.59 12.67
✓ % % 15.58 13.23 14.69 10.75
✓ ✓ % 11.43 10.72 11.7 8.11
✓ ✓ ✓ 12.62 9.79 11.26 8.44

(iii) SER: Since the translation from smiling to non-smiling
involves much texture variation in multiple semantic regions,
it is challenging for the generator to independently edit five
sense organs and facial skin. We use this task to evaluate the

Fig. 15. Results of the brown hair translation on CelebA.

Input 

StarGAN

StarGAN 

  +  SER

Fig. 16. Visual results of StarGAN and StarGAN+SER for translation from
smiling to non-smiling on CelebA. For more visual results, please refer to
supplemental materials.

performance of SER via ablation study, while the results based
on StarGAN are shown in Fig. 16. For StarGAN, artifacts are
likely to appear on the edges, eyes, and noses, possibly due to
the feature entanglement in these smiling-related regions. By
contrast, StarGAN+SER largely suppresses these artifacts and
better preserves the fine face details.

TABLE VI
THE PSNR VALUES OF THE PROPOSED THREE MODULES ON STARGAN

FOR CELEBA.

TCL ODS Black Hair Brown Hair Male Smiling

% % 19.71 19.64 26.36 19.36
✓ % 21.71 22.19 29.7 23.35
✓ ✓ 23.37 23.67 31.85 24.75

3) Quantitative Result: To study the performance of each
proposed module, we conduct ablation studies with the quan-
titative results for the translations of four attributes in terms
of FID in Table V and PSNR in Table VI.

Table V shows that the proposed modules can improve FID
scores for most cases, and Table VI shows that both TCL
and ODS improve the ability of the generator for preserving
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StarGAN
*

StarGAN
*

StarGAN

StarGAN
*

Angry Contemptuous Disgusted FearfulInput  image Neutral Sad SurpriseHappy

Angry

Angry

Neutral

Fig. 17. Visual results of StarGAN and StarGAN* for translation of eight expressions on RaFD.

Generated Edited Generated Edited

StyleGAN StyleGAN+GS StyleGAN* StyleGAN*+GS

Fig. 18. Visual results of StyleGAN and StyleGAN+ODS+SER (StyleGAN*),
where ’GuidedStyle’ is abbreviated as ’GS’. ’Edited’ denotes the result edited
with GuidedStyle for image shown in ‘Generated’.

attribute-irrelevant regions, and largely improve baselines for
each attribute.

For consistency preservation, StarGAN+TCL outperforms
StarGAN by an average margin of 13.96% in terms of PSNR,
and StarGAN+TCL+ODS further achieves an improvement
of 6.86% over StarGAN+TCL. For AttGAN and STGAN,
similar improvements are also observed, which are presented

in supplemental materials.

TABLE VII
THE ATTRIBUTE CLASSIFICATION ACCURACY (ACA) AND PSNR VALUES

OF THE PROPOSED THREE MODULES ON STARGAN FOR CELEBA.

Model StarGAN TCL TCL&ODS SER TCL&ODS&SER

ACA 91.75 89.15 90.55 95.00 92.40

PSNR 19.71 21.75 23.37 20.32 23.12

4) Attribute Classification Accuracy (ACA): In addition to
PSNR, the attribute classification accuracy (ACA) is used to
evaluate the editing accuracy of StarGAN and the integration
of StarGAN with our proposed modules for editing of black
hair in Table VII. For more results of ACA, please refer to
the supplemental materials.

Table VII shows that mere TCL decreases ACA for Star-
GAN, since it is devised to mainly maintain image consis-
tency in the generator, while the consistency preservation of
the irrelevant attributes may affect the editing of the target
attributes due to feature coupling. By imposing ODS on
StarGAN+TCL, one can observe that the performances of
ACA and PSNR are improved, and the best PSNR is achieved,
since ODS is devised to mainly suppress feature maps with
anomalous responses in local key regions. StarGAN+SER
achieves the best performance in terms of ACA, since SER
enables the generator to edit attribute-related semantic re-
gions while preserving attribute-independent regions after
the semantic decoupling. By contrast, our method, i.e. Star-
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StarGAN StarGAN* AttGAN AttGAN* STGAN STGAN*Input Image

FFHQ

LFW

RaFD

Fig. 19. Visual results of three baselines and our models, where all models are trained on CelebA and tested on FFHQ, RaFD or LFW. For more visual
results, please refer to supplemental materials.

GAN+TCL+ODS+SER shows obvious advantage in balancing
the performances of ACA and PSNR via both consistency
preservation and semantic decoupling.

E. Facial Expression Editing

In addition to facial attribute editing on CelebA, our pro-
posed modules are also evaluated on the task of expression
editing, and compared with the baseline of StarGAN. The
visual editing results for eight expression categories on RaFD
are shown in Fig. 17, and the quantitative results of the FID
values as well as expression classification accuracy (ECA) are
presented in Tab. VIII.

Fig. 17 shows that our proposed modules can help the
generator of StarGAN to produce more natural and smooth
expressions while reducing artifacts in facial features, e.g. the
fearful expression. Table VIII shows that StarGAN* achieves
consistently better FID and ECA than StarGAN, i.e. our
modules can facilitate StarGAN to edit expressions more
accurately and generate samples with higher quality.

TABLE VIII
THE FID VALUES AND EXPRESSION CLASSIFICATION ACCURACY (ECA).

Angry Contemptuous Disgusted Fearful Happy Neutral Sad Surprise

FID:StarGAN

19.84 13.41 14.71 13.82 19.58 10.81 13.19 15.49

FID:StarGAN*

16.05 11.05 12.84 10.66 15.83 8.32 11.21 12.09

ECA:StarGAN

97.42 96.63 97.62 97.42 97.62 96.231 96.83 96.23

ECA:StarGAN*

98.21 97.82 98.61 98.02 98.61 97.42 97.62 98.02

F. Exploration of StyleGAN-based generator

To further study the performance of the proposed modules
on latent code-based generator, the StyleGAN-based genera-
tor [53] is used for testing. The generator in StyleGAN is
unconditional and manipulates the latent code to synthesize

TABLE IX
THE FID VALUES OF THREE BASELINE GANS AND OUR MODELS FOR
BROWN HAIR TRANSLATION, WHERE ALL MODELS ARE TRAINED ON

CELEBA AND TESTED ON FFHQ, RAFD OR LFW.

Dataset StarGAN StarGAN* AttGAN AttGAN* STGAN STGAN*

FFHQ 32.27 14.62 21.16 10.89 14.89 9.58

RaFD 42.84 18.75 60.96 12.14 32.15 14.75

LFW 43.61 16.54 23.28 9.36 12.82 10.18

images, and can synthesize images of high-quality with few
artifacts. In this toy experiment, we explore the role of our pro-
posed method by fine-tuning a StyleGAN-based generator [53]
equipped with our ODS and SER for CelebA. Note that the
proposed TCL is not applicable here, since its complementary
cycle consistency loss (CCL) can hardly be used in Style-based
generators. Based on the synthesized images, GuidedStyle [54]
is used to achieve face attribute editing. The editing results of
brown hair are shown in Fig. 18, while the quantitative results
of FID and PNSR, together with the detailed experimental
setup, are presented in the supplementary material.

Fig. 18 shows that our modules facilitate StyleGAN to better
preserve the irrelevant attributes. As shown in the red boxes
of the 1st row and the 2nd column, the eyebrow is changed
and the color of the eye-surrounding region is undesirably
changed to brown, while the generator equipped with our
modules better preserves them. As shown in green box in
the 2nd row, based on the images edited by our generator,
GuidedStyle can successfully change the marginal region of
the hair to brown, i.e. editing the hair area more accurately. We
speculate that the proposed SER enables each feature map in
the generator to represent as few semantic regions as possible,
which allows GuidedStyle to edit the hair region independently
and accurately. As shown in the red ellipse in the 1st column,
artifacts were produced in the images generated by StyleGAN,
while they are reduced in the images generated using our
modules. This improvement may due to the suppression of the
abnormal feature maps achieved by the proposed ODS during
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the fine-tuning.

G. Generalization Performances

To investigate the generalization performance of our
method, we perform the training on CelebA and evaluate the
performance on FFHQ, RaFD or LFW, where four attributes
are used for the evaluation. While the translation for the
brown hair is the most challenging for the three baselines, the
generalization performance for this task appears to be worse
and more unstable than those for the other attributes. Thus, we
only present the results related with the brown hair attribute,
i.e. the FID values are shown in Table IX and the visual results
are presented in Fig. 19, while the results specific to the other
attributes are appended in the supplemental materials.

Table IX shows that our proposed modules help the gen-
erator to achieve consistently better performance for brown
hair editing. Especially, the FID value of our model is only
around 1/5 of AttGAN on RaFD. These improvements of
generalization performances maybe caused by the suppres-
sion of outlier feature maps that reduces the possibility of
overfitting, or the proposed independent editing that alleviates
the attribute entanglement. Fig. 19 shows that our modules
enable the baselines to largely reduce the artifacts shown in red
rectangles, and more detail features can also be well preserved
for this task.

V. CONCLUSION AND DISCUSSIONS

In this work, we give insight into the working mechanism
of the generator in GAN and propose three modules to
reduce its artifacts. The proposed generator has three main
novelties. First, we proposed a target consistency loss, which
complements cycle consistency loss with end-to-end restriction
module, while the blur of the synthesized images can be
largely reduced. Second, we introduced dynamic suppression
of outlier feature maps to preserve subtle feature information.
Third, we proposed semantic entropy regularization (SER) to
disentangle the representations of the feature semantics, and
enable each feature map in the generator to independently
edit different attributes. In terms of generation visualization,
three quantitative metrics and the generalization performance
on four face datasets, our strategies can generate more realistic
samples and better preserve global image cues compared with
three baseline GANs. While the proposed modules are re-
vealed to be effective for the image-to-image based paradigm,
the quantitative results of the toy experiment for latent code-
based generator in the supplemental material show that our
modules need to be slightly adjusted for better adaption to
StyleGAN-based generators [53], [54], and other tasks, e.g.
expression editing.
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