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Abstract

With the advantage of exploiting complementary and consensus information across
multiple views, techniques for Multi-view Clustering have attracted increasing attention in
recent years. However, it is common that data on some views is not completed in real-
world applications, which brings the challenge of partial mapping between the views.
To explore the information hidden in the local geometric structure and recover missing
instances through mining the information hidden in existing instances, a self-inferring
incomplete multi-view clustering algorithm is proposed. Firstly, the incomplete multi-
view data is replenished directly and exploited as variables for inferring the missing in-
stances. And then, a feature graph constraint is united in consensus learning. Besides, a
similarity graph learning method is imposed to preserve the local manifold structure. At
last, the inferred instances are filled in the missing instances for learning better consensus
representation in the iterative process. Extensive experiment results show that this
method can improve the clustering performance compared with the state-of-the-art
methods.

attracting more and more attention. The purpose of MvC is to
integrate the information shared among different views and
then cluster the data into several clusters [6]. In recent few

In the big data era, the data generated from different
sources or observed from different views are regarded as
multi-view data [1, 2]. For example, images shared on the
social platform are often published with relevant text
description; surveillance videos are usually derived from
cameras located in different locations to achieve more in-
formation from one place; human action information can be
captured by both camera and wearable sensor. Existing
works [3-5] concluded that these multi-view data share
complementary and consensus information, which is bene-
ficial to clustering and classification.

For better mining of the information hidden in multi-view
data, Multi-view Clustering (MvC) has been proposed and is

years, there have been many works proposed to address
problems of MvC, such as multi-kernel clustering [7], MvC
based on graph [8], and MvC based on subspace learning [9]
etc. For MvC, extracting the consensus information across all
views is crucial for achieving better results. Thus, in ref. [10],
the robust multi-view graph recovery was learned to aggregate
a consensus graph to perform better clustering or classifica-
tion. Besides, based on spectral clustering, De Sa [11] proposed
a two independent view-based algorithm. Moreover, in ref.
[12], Guo proposed to learn a convex subspace representation
across all views and could be used as the input of standard
clustering algorithms.
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The mentioned MvC algorithms require that every view
should be complete in multi-view data. However, in real-world
cases, it is common that data on some views is unavailable or is
only partially available, which leads to incomplete multi-view
data. For instance, it is hard to capture webpages containing
texts or images in webpage clustering. It is noteworthy that
incomplete multi-view data degrade performance of MvC al-
gorithms. To address this issue, Rai et al. [13] proposed a
general approach that allows the MvC to be applicable in
incomplete multi-view data, in which only one view was
complete and the auxiliary views were incomplete. Specifically,
the kernel canonical correlation analysis-based MvC was taken
as an example research to illustrate their approach. To handle
more independent incomplete views, more and more novel
methods have been proposed in recent years, such as partial
MvC [14], multi-incomplete-view clustering (MivC) [15], online
multi-view clustering algorithm (OMvC) [16], and doubly
aligned incomplete multi-view clustering (DAIMC) [17].
However, these methods either failed to sufficiently explore the
information hidden in the local geometric structure or were
unable to recover missing instances through mining the in-
formation hidden in existing instances. Specially, Wen et al.
proposed to infer missing instances by using an error matrix,
combined with the incomplete view in a unified framework to
learn a common latent representation [18]. Nevertheless, it also
ignores the correlation between existing instances and missing
instances.

To address the above-mentioned problems of existing
methods, a novel algorithm is proposed, named self-inferring
multi-view clustering (SIIMvC), to learn a common represen-
tation for all views while inferring the missing instances at the
same time. Firstly, the missing instances of incomplete multi-
view data are replenished with zeros. And then, the replen-
ished multi-view data are exploited as variables and a feature
graph is constructed for each view. Based on feature graphs,
the missing instances can be inferred, so the consensus rep-
resentation can be generated simultancously. An improved
consensus learning model and an improved similarity graph
learning model are presented to better infer the missing in-
stances and generate the consensus representation in the
learning process.

The contributions of this paper are summarised as
followings.

(1) A novel inferring method for missing instances in
incomplete MvC is presented that the incomplete multi-
view data are replenished with zeros and exploited as
variables for inferring. Furthermore, a feature graph
constraint is united in the consensus learning to ensure
consistency between the inferred instances and the existing
instances. With this method, the inferred instances can be
used directly with the existing instance for consensus
representation learning with alignment.

(2) An improved similarity graph learning model is introduced
to preserve the local manifold structure, which benefits the
consistence of the common representation. Furthermore,
it is noted that the proposed similarity graph learning

model has fewer parameters to be calculated compared to
the most relevant state-of-the-art method of Unified
Embedding Alignhment Framework (UEAF).

(3) All terms of the proposed model are unified in an
Incomplete Multi-View Clustering (IMC) framework,
which can provide better performance for clustering
Extensive experiments show that the proposed SIIMvC
outperforms the existing incomplete MvC methods.

The remaining content of this article is organised as fol-
lows. Section 2 introduces the related work briefly. Section 3
details the proposed method and the updating steps. In Sec-
tion 4, extensive experiments and results are presented to verify
that our method is effective. Section 5 provides conclusions of
our article.

2 | RELATED WORK

In this section, some representative incomplete MvC methods
are introduced and a unified framework proposed for
combining incomplete view data and inferring view data is
emphasised.

21 | Incomplete multi-view clusting
methods

To solve the incomplete MvC problem, Rai et al. [13] first
proposed an approach based on the kernel canonical corre-
lation analysis to exploit incomplete multi-view data for
clustering, in which only one view was complete, and the
auxiliary views were incomplete. To deal with more inde-
pendent incomplete views, the matrix factorisation technique
was popular in incomplete MvC. Partial MvC [14] focuses on
learning a common latent subspace for all views, in which
instances belonging to the same example have the same
representation. However, Partial MvC can only handle two
independent views. MivC [15] extended matrix factorisation
to more than two views through weighted non-negative ma-
trix factotisation with L regularisation. It is noted that MivC
fills missing instances with average values of existing in-
stances. In order to deal with large-scale incomplete views,
Shao et al. [16] proposed OMvC seeks to reduce the influence
of incomplete instances by using a dynamic weight setting. In
DAIMC [17], the weighted matrix factorisation and a
regression constraint were introduced to capture more
information.

In the past few years, many novel works have been pre-
sented to better address the incomplete MvC problem by
various methods. The Deep incomplete multi-view clustering
network (DIMC-net) method integrates the deep multi-view
encoding, view-missing information based weighted fusion,
graph embedding, and Kullback-Leibler divergence based
clustering into a joint deep network [19]. Different from the
conventional deep learning based IMC methods, it only exploits
the instances with complete views for network pre-training,
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DIMC-net designs a more flexible graph embedded incomplete
multi-view Autoencoder that can effectively exploit informa-
tion of all incomplete views for pre-training, The inCOMPlete
mulLti-view clustEring via conTrastivE pRediction method
learn the informative and consistent representation by max-
imising the mutual information across different views through
contrastive learning, and recover the missing views by mini-
mising the conditional entropy of different views through dual
prediction [20]. The adaptive graph completion-based incom-
plete multi-view clustering (AGC_IMC) method develops a
joint framework for graph completion and consensus repre-
sentation learning, which mainly contains three components,
that is, within-view preservation, between-view inferring, and
consensus representation learning [21]. Furthermore, to reduce
the negative influence of information imbalance, AGC_IMC
introduces some adaptive weights to balance the importance of
different views during the consensus representation learning.
Aiming to deal with various incomplete clustering situations
and be applied in large-scale datasets as well, Yu et al. [22] use
an auto-weighted Sample-level Fusion with Anchors for
Incomplete Multi-view Clustering, which can not only handle
incomplete samples but also effectively explore the relationship
between each instance and anchors. What's more, the robuSt
mUlti-view clusteRing with incomplEte information method
uses the available pairs as positives and randomly chooses some
cross-view samples as negatives, providing unified solution to
simultaneously handles Partially View-unaligned Problem and
Partially Sample-missing Problem [23].

Unlike the previous works, this paper focuses on
combining the common representation learning and missing
view inferring into a unified framework for resolving incom-
plete MvC problem, which can improve the classification
performance and rely on fewer parameters.

2.2 | The UEAF method

In this subsection, we emphatically introduce the UEAF, which
provides a framework for robust incomplete MvC [18]. UEAF
creates an error matrix for the missing views recovering, which
enables the alignment of the incomplete views for the
consensus representation learning and to exploit the hidden
information of the missing views. Moreover, a reverse graph
regularisation term is developed to learn the common latent
representation. The overall model can be written as follows:

||X(v) + E@ W(v) _ U(v)PH;
- @y | +2a Tr(E<”)TL<”)E(”)>
min 35 (o) 1
+2.Tr(PLgP")
st UOTU® =13 a® = 1,0 >0,Vi,5;.1=1,
v=1

0 SS;‘J <1S;i= O,?‘dﬂk(Lg) =n-c.

(1)

where ¥'= {E®, U™, P, S, a™}, Ay, A, are penalty parameters.
X® € R™*" includes the existing instances and the missing
instances, where the missing instances are filled with zeros. 72,
denotes the feature dimensionality of vth view, v, denotes the
number of views, and 7 is the total number of instances.
P € R is the common representation of all the views and
U™ e R™* is the basis matrix for each view. ¢ is equal to the
number of objective cluster numbers. E® € R™*"™ denotes
the error matrix, which is used to infer the missing instances of
the vth view, 7]’ denotes the number of missing instances
of the vth view. L™ is the Laplacian matrix of graph G, G®
is defined as follows:

@ +@\  w® —(©)
G 1, X, E‘P(X]-’: ) or X;. elp(X.#
27
0, otherwise

where ‘P(yj(v)) denotes the set of k nearest neighbours of the

jth feature. X is the set of the available instances of the vth
view. W® € R™>" is defined as follows:

1, if jth instance is the ith missing
Wf;) = instance in the vth view, (3)
0, otherwise.

§ € R™ " denotes the nearest neigbour graph with each
element representing the similarity probability corresponding
to another instance. Lg represents the Laplacian matrix of
similarity graph S. L represents the Laplacian matrix of graph
S ® S) and © is the Hadamard product. a® is a positive
weight to balance the significance of the vth view.

The UEAF use an error matrix to infer the missing instances
and combine them with the incomplete view in a unified
framework to learn a common latent representation. However,
view alignment is necessary, and the correlation between existing
instances and missing instances is not fully explored. Inspired by
the UEAF, we proposed a SIIMvC method to learn the common
representation for all views while inferring the missing instances
at the same time, in which there is no need for view alignment,
and the correlation between existing instances and missing in-
stances can be learned in the missing instances inferring process.

3 | PROPOSED METHOD

To better mine the latent information hidden in the existing
instances for incomplete MvC, we propose SIIMvC, a novel
method to replenish the incomplete multi-view data with zeros
and employ them as variables for inferring the missing in-
stances through the existing instances. Furthermore, an
improved consensus learning model and a similarly graph
learning model are proposed in the inferring framework to
learn the consensus representation of the incomplete multi-
view data. A computational complexity analysis of the pro-
posed SIIMvC is also presented at the end of this section.
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3.1 | Consensus learning

Clustering results are usually driven directly from the common
consensus representation. Therefore, consensus representation
learning is a significant method in incomplete MvC. However,
most of the existing wotks [14-17] use a simple strategy of
filling the missing instances with the average of existing in-
stances, and thus ignore the relation between existing instances
and the missing instances. Although the UEAF [18] algorithm
uses an error matrix to infer missing instances, the relation
between existing instances and missing instances is still outside
their consideration. In this work, we propose an improved
model that can simultaneously infer the missing instances and
learn the consensus representation as following;

129 - UV
min zn: "y
2| +a oIz - Z0Q | @
ij
st UOTU@ =1

where 4, is a positive penalty parameter, Z*) € R”*" tepre-
sents instances from vth view, including the existing instances
and the missing instances. It is noted that we initiate the
missing instances with zero. m,, is the feature dimensionality of
the vth view, 7 represents the number of the instances, v,
is the number of views. ZEZ)) and Z@ represents the ith row
and the jth row vector of matrix Z% respectively. U'®) € R™*¢
denotes the basis matrix of the vth view. V' € R is the
consensus representation of all views, in which c is the cluster
number of the latent representation. [ represents the identity
matrix. The orthogonal constraint UP7U® = [ is used to
avoid the trivial solution.

In model (4), Q®) € R™*™ is the neighbour graph of
feature dimensionality of initial Z® from the vth view. The
definition of Q® is proposed as follows:

@t 2ozl en(z)

0, otherwise

where ¢ (21(1))) indicates the set of k nearest neighbours of the

1th feature. 2(7)) trepresents the set of existing instances of AL
from vth view.

The proposed consensus learning model can thus be
reformulated as:

o (1129 = UV
—l—/hTr(Z(v)TLZ(y) Z(v)> (6)

min
Z® U@ v o=1

.. YTy = 1

where L.« is the Laplacian matrix of graph Q™ and it is
calculateg as LZ(”) =D — Q(v). D9 isa diagonal matrix and

its ith diagonal element can be calculated through
Dl(;) =3 ij) Tr denotes the trace function.

By replenishing the incomplete multi-view data with zeros,
all views can be aligned naturally and the missing instances can
be inferred from the existing instances. Furthermore, the
consensus representation can be learned simultaneously in the

inferring process.

3.2 | Similarity graph learning

As is well known, the graph-based methods successfully pre-
serve the local manifold structure [24]. For each instance, it is
connected by other instances with the probability s; in the
similarity matrix, which means that they belong to the same
class. In other words, if two instances are closer, they should be
assigned higher probability s;;. Therefore, learning a similarity
matrix is crucial to the performance of the clustering [18, 24,
25]. However, for incomplete MvC problem, it is unable to
exploit the local manifold structure through incomplete data
instances from each view. Thus, in order to overcome this
difficulty, we propose the following similarity graph learning
model:

Vp
min
S v

2 UV = UV 1385+ a X [ISill3
1] 2

s.t.V,8;1=1,0 SS;/ < 1,51'71' =0,

rank(Lg) =n —c.

(7)

where § € R”™" denotes the similarity graph, where each
element represents the similarity degree corresponding to
another instance. Constraint 7ank (Ls) can ensure that graph §
has ¢ components, which is equal to the number of the multi-
plicity of the cigenvalue 0 of Lg [26, 27]. Ls = Ds — (ST + $)/2
is the Laplacian matrix. Ds is a diagonal matrix and its ith di-
agonal element can be calculated by Y i(S;; + §;;)/2. a is an
automatically adjusted parameter, which is determined by the
number of nearest neighbours [24]. I is a vector that all ele-
ments are 1.

The proposed similarity graph learning model can preserve
the local manifold structure by mining the relationship among
multi-view data. As a result, a better consensus representation
can be learned through the well-learning similarity graph,
where each element has c¢ neighbours. The advantages
mentioned above can be further beneficial to recover the
missing instances.

3.3 | Overall objective function

In this subsection, the above proposed models are incorpo-
rated into a unified incomplete multi-view learning framework
named SIIMvC. And the overall objective function is written as
follows:
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Un
Y129 - UV
v=1

+ A/ Tr (Z(v) TLZ(W) Z(W))

min

Up n
FURES 43 A DMV = UV,
v=1 i

+a) IS
i

st UPTU® = 1)¥4,5,1=1,0<5;;<1,8;; =0.

rank(Ls) =n —c.

(®)

Figure 1 shows the framework of the proposed SIIMvC.
Firstly, the incomplete multi-view data are replenished with
zeros and considered as variables for inferring missing in-
stances. And then in the inferring process, the missing in-
stances can learned under the constraint of the improved
consensus learning model and similarity graph learning model.
Based on the learning result, the consensus representation can
be obtained for further clustering.

Through the constraint UPTU® = I and the method in
ref. [24], model (8) can be reformulated as:

Inferring Instances

______o_____
r—————a

—

S

S

o
rTTT-—T—™a
i S

Instances +

> (12 - v v
v=1
- AT (z@) "L z@)) )
7@ ,U(”) V.S

1 n n
31 DIV = Vil + @y IS5
iy i

+ 22, Tt (FT LgF)
st UPTUW = 1)¥4,5:1=1,0<8;; 1,8, =0,

FTF=1.
9)

where y = and A, is a penalty parameter. F

[ S

S oVi=Vil5Si
denotes the cluster indicator matrix, and the last item with the
constraint F'F = [ is deduced through Ky Fan's theorem [28].

3.4 | Solution to the SIIMvC

In order to find the solution of the function (9), we exploit an
alternating iteration procedure in which the objective function
is optimised with only one variable while fixing the remaining

matrix Z®) !

|
[ S ]
1) ]
/[ ]
Co 1
o I\

]
o
[

5 A
> D~ v, s, +a Y i i3
ij i

r-r—-———F"F~™—~—~—~—F~——————— il
| Consensus Learning | : Consensus representation
)| | V=1V ]
. 2
D 11z® = v VL + 4 Tr @1,z : V,V, v,
- | [ [
| um | |
) N _EN NN
‘ vy |4 | n
| u ]
| Similarity Graph Learning | | u u i N
: L L}
|
|

| Inferring Instances |

FIGURE 1 The framework of the proposed SIIMvC. The incomplete multi-view data are replenished with zeros and considered as variables for inferring
missing instances. In the inferring process, the improved consensus learning model and similarity graph learning model are incorporated into the proposed
SIIMvC framework, and the consensus representation can be obtained for further clustering the learning result. SIIMvC, self-inferring multi-view clustering,
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vatiables. The updated procedure of each variable is described
in detail as following.

Update V: By fixing U, Z®¥, S, F, the optimisation
formula becomes:

) =31z

v=1

1 n
~ U9V + Eyz 1Vei = Vl138i
i

©V|5+yTe(VLsVT)

_ i Hz(v) _
v=1

Let 61;(&/ ) = 0, we can get the following equation:

_ (vzn U('v)Tz(v)> ([+J/LS)_1 (11)

v=1

Update S: By fixing U®, Z¥, V, F, the optimisation
formula becomes:

. 1 & 2 - 2
min =y Y Vi = VijllaSis +a Y ISl
ij i

(12)
+ 2, Te(FT LgF)

st Vi,8,1=1,0<8;<1,8,;,=0,F F=1I.

which can be further deduced as:
R 2 & 2
min Eyz IVei = Vil3Sij+a Y lISill3
i ;

- (13)
+a2 ) B = EilI3S:;
5

5. Vi, 5:1=1,0<8;;<1,8,;=0,F F=1.

Then, we denotePll] zwa”V V. ||2+/1221J”E7
|| 5» and further denote P; as a vector with jth element equal to
PZ - The problem (13) can be simplified in a vector form as:

5 14
ViS5 1= 10<S <1S”_OZH i ”2 ( )

(AR

This problem has a closed-form solution, which can be
calculated through an efficient algorithm proposed in ref. [29].

Update F. By fixing U@, 79V, S, the optimisation
formula becomes:

min Tr(F" LsF) (15)

which can be calculated by the ¢ eigenvectors corresponding to
the first ¢ smallest eigenvalues of Lg.

Update y: By fixing U9, 79 V, S, F yis updated by
B e —

o IVii=Viilsi
Update U™ By fixing Z¥, S, V, F, the optimisation

formula becomes:

}/:

min |2 - UV (16)
Ty =

which can be deduced as follows:

min  [|Z% - U@V}
UT ) =g
<

in - (©)T 7(v) T)
U(”)rTn(ﬁ)zl 2T7(U A4S (17)
=4

max Tr(U(mTZ(W)VT)
UT ) —f

According to ref. [30], we can obtain the optimal solution
to Equation (17) as follows:

U® = g0 R@T (18)
where A® and R® are the left and right singular matrices of
the matrix (Z® VT) respectively.

Update Z: By fixing U®, S, V, F, the optimisation

formula becomes:

r(29) =129 = UV + 1z L0 2 (19
st UOTU® =1

which can be simplified as follows:

F(Z(v)) — Tr(z(v)TZ(v) _ ZZ(W)TU@) V)

(20)
+ 1 ZL 0 2
()
Let arfz%)) =0, we can obtain:
—1
29 = (1+uLy) UOV (21)

In order to preserve the existing data, we update the
equation of Z® as follows:

+ Y@ w (22)

(@)
where Z ‘ € R™” which fills the missing instances with
-1
zero, is the initialisation of Z®. Y = ([ + /11L2(v)) vy

is what we obtain in Equation (21). And W*° € R"*" is defined
as follows:
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if ith instance is not in the vth view, (23)

(v) _ 17
Wi,i - { O,
From Equation (22) we can obtain the inferred instances in

every updating step. Algorithm 1 summarises the solution steps
of the proposed SIIMvC.

otherwise.

Algorithm 1 SIIMvC (solution to Equation [9])

Input: Incomplete multi-view data matrix

{X(v) c Rmvxn}zll

instances with 0. Feature neighbour graph

, which fills missing

0= {Q(V)}Z":l in consensus learning.
Parameters A;, A, and diagonal matrix
Vn
w={w"ermr}" .
Initialisation: Instances matrix
{z) e R’"VX“}Z“:1 whose values equal to data
matrix X. Orthogonal matrix U with
random values and consensus matrix Vis
initialised by using U . Graph S is
initialised through matrix Vand Fis
initialised based on S.
while not converged do
1. Update Vusing (11);
2. Update Susing (14);
3. Update Fusing (15);
4. Update y and o;
for v from1 to v, do
5. Update U using (15);
6. Update 2" using (22);
end for
end while
return V;

4 | EXPERIMENT

41 | Dataset description

In this subsection, we introduce five widely used multi-view
datasets, that is, the BUAA-visnir face dataset (BUAA) [31],
the Digit dataset [32], the 3Sources dataset [33], the BBCSport
dataset [34] and the Berkeley Drosophila Genome Project
(BDGP) dataset [35]. They are chosen to evaluate the perfor-
mance of the proposed algorithm SIIMvC, compared with
several popular state-of-the-art methods.

(1) BUAA Dataset: Similar to ref. [36], a subset of BUAA
dataset that is composed of 90 visual images and 90 near
infrared images of the first 10 volunteers is used to eval-
uate our algorithm in our experiments. Two types of im-
ages are considered as two views in our experiments.

(2) Digit Dataset: It consists of 2000 hand-written digits (0—
9). Six types of features grouped in this dataset, each of
which can be considered as a view. The feature dimensions
of these views are 240, 76, 216, 47, 64 and 6 respectively.

(3) 3Sources Dataset: This dataset is detrived from three
sources in online news. In total, 948 news articles were
collected, which cover 416 different news stories. For our
experiments, a subset containing 169 articles was randomly
selected to evaluate our algorithm.

(4) BBCSport Dataset: There are 737 news articles collected
from the BBC Sport website in this dataset. We chose the
four-view dataset for our experiments to evaluate the
proposed algorithm and other compared incomplete MvC-
based methods. The subset has 116 instances, and the
feature dimensions for four different views are 1991, 2063,
2113 and 2158 respectively.

(5) BDGP Dataset: There are 2500 instances in BDGP,
which can be divided into five classes. The BDGP dataset
has four views, and consists of texture feature and the
visual feature extracted from lateral, dorsal and ventral
images.

4.2 | Compared methods
In this subsection, we briefly introduce 10 relevant methods
that we used to compare with the proposed SIIMvC.

BSV [306]: The Best Single View (BSV) firstly fills missing
instances with average of existing instances, and then performs
k-means on each view.

Concat [30]: Like the BSV, the missing instances are filled
with the average of existing instances in the Contat. After
concatenating all views into one view, k-means is used to
perform clustering on the concatenated single view.

GPMvC [37]: The GPMvC extends MvC into more than
two views and imposes a graph laplacian regularisation term
for consensus representation learning.

OMVvC [16]: The OMvC is presented to deal with large-
scale incomplete views. In order to reduce the negative ef-
fects of incompleteness, the OMvC introduces dynamic weight
setting to give missing instances low weights.

MivC [38]: Through incorporating the weighted-NMF and
a regularised method, the MivC learns a common subspace
across all views.

MVL_IV [9]: The multi-view learning with incomplete
views (MVL_IV) assumes that different views share a common
subspace. To handle large-scale data and obtain fast conver-
gence, MVL_IV integrates a new method to solve the objective
function.

MultiNMF [39]: The key idea of the MultiNMF is
formulating the joint matrix factorisation with a constraint to
learn a common consensus.

DAIMC [17]: The DAIMC introduces weight matrices for
each view respectively so that the case of more than two views
can be adopted. Every basis matrix in the DAIMC is aligned
through a regression term to reduce the impact of missing
instances.

UEAF [18]: The UEAF constructs a unified framework,
where an error matrix is used to infer missing instances and a
reverse graph regularisation is introduced to preserve the local
manifold structure.
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AGC_IMC [21]: The AGC_IMC proposes a novel
framework composing of with-in view preservation, between-
view inferring and consensus representation learning,

In the experiment, we focus on better inferring the missing
instances and generating the consensus representation in the
same learning process. Firstly, each dataset is randomly
removed 10%, 30% and 50% instances in each view to build
the incomplete multi-view datasets. And then, each algorithm
was conducted to perform the evaluation through 15 randomly
generated incomplete groups, and then the average result
would be recorded. Finally, to evaluate the performance of the
consensus presentation learning by all the compared methods
and the proposed SIIMvC, the K-means is employed as a
classification method for obtaining the clustering result.

All experiments were implemented on the same software
and hardware: Win 10 system, Intel(R) Core(TM) i5-8250U
CPU @ 1.60 GHz 1.80 GHz, 8-GB RAM and Matlab 2020a.

43 |

Experimental results and analysis

Figure 2 shows a demonstration of the missing instances and
the reconstructed instances on the digit dataset under the
missing rate of 0.3. It can be found that the details of the
images are enhanced in the reconstructed instance compared
to the missing instances.

To evaluate the performance of the proposed SIIMvC
and other compared methods, the clustering accuracy
(ACC), the normalised mutual information (NMI), and the
purity are employed as the evaluation criterion. Tables 1-5
show the experimental results of the compared methods
and the proposed SIIMvC on the BUAA dataset,
the Digit dataset, the 3Sources dataset, the BBCSport
dataset, and the BDGP dataset respectively. From these
interesting findings are listed as

experimental results,

following.

N4 94006 /189

a Mlssmg instances

2345 BTRS

(b) Recovered instances

FIGURE 2 The performance of inferring instances on digit dataset. In (a) are the missing instances of ‘mfeat-pix’ view in the digit dataset. And images in

(b) are recovered instances obtained by our self-inferring multi-view clustering.

TABLE 1 ACC, NMI and Purity of Several Algorithms on the BUAA Dataset under missing rate of 10%, 30% and 50% respectively
ACC (%) NMI (%) Purity (%)

Methods 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

BSV 52.82 £ 247 4653 £ 261 3613 + 1.78 57.69 + 145 4726 £ 3.6 3294+ 1.53 558 + 2.17 49.87 + 34  37.82 + 1.69
Concat 5202 4 112 464 £249 3602 + 1.69 5844 + 124 4881 + 113 3598 + 254 5467 + 1.49  49.49 + 281 3824 & 2.24
GPMvC 53.02 £ 1.91 38024 6.66 31.13 + 249 5519 + 1.07 37.87 + 6.82 2891 £3.78 5553 + 1.17 4176 + 6.85  33.2 + 2.58
OMvC 4889 + 85 4578 &£ 3.96 4444 + 342 5046 £ 949 4623 £ 341 4349 + 398 5156 + 887  48.0 + 298 46.67 + 2.48
MivC 4091 + 303 3542 4207 2927 £ 146 4171 £ 441 3473 +£293 2555+ 258 43.62 £3.77 3829 £203 30.78 + 1.56
MVL_IV 50224599 4591 + 849 3387 £ 436 5041 & 648 4645 + 9.68 31.78 + 528 5204 +£ 579 4829 & 852 3551 + 4.28
MuliNMFP 4884 + 413 4413 + 371 3127 £3.36 5147 £ 47 5246 + 128 4356 + 380 51.91 £3.95 4958 £2.6 4111 & 4.4
DAIMC 4778 £ 283 4511 £42 3689 £ 518 5476 £3.7 4911 £ 336 3856 + 646 49.78 £ 2.88 46.80 £ 433 3822 + 5.86
UEAF 5236 £ 242 49.04 £ 266 3898 +£229 5848 £ 153 533422 428+ 174 538 +£ 261 5056 +£ 2.6 4093 £ 2.45
AGC_IMC 5402 4+ 425 4533 + 423 3476 &£ 094 5977 £ 215 49.66 + 227 4051 + 1.85 5518 £ 3.75 46.84 + 407 3749 + 1.75
SITMvC 5436 + 1.22  54.64 + 2.62 46.58 + 414 60.54 + 1.24 58.07 + 1.29 48.39 + 3.76 56.93 £ 1.75 56.76 + 2.03 48.31 & 4.44

Note: The expetimental results show that the proposed SIIMvC method outperforms all compared methods. The bold values denote the best performances in the compared methods

under a specified missing rate.

Abbreviations: ACC, clustering accuracy; AGC_IMC, adaptive graph completion-based incomplete multi-view clustering; BSV, best single view; DAIMC, doubly aligned incomplete

multi-view clustering; GPMvC, partial multi-view clustering using graph regularized nonnegative matrix factorization; MivC, multi-incomplete-view clustering; MultiNMF, multi-view

clustering via joint nonnegative matrix factorization; MVL_IV, multi-view learning with incomplete views; NMI, normalised mutual information; OMvC, online multi-view clusteting

algorithm; SIIMvC, self-inferring multi-view clustering; UEAF, unified embedding alignment framework.
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TABLE 2 ACC, NMI and Purity of Several Algorithms on the Digit Dataset under missing rate of 10%, 30% and 50% respectively

ACC (%) NMI (%) Purity (%)
Methods 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5
BSV 6748 £ 331 5503+ 1.15 4227 +£093 6383 +£199 4913 + 049 3503+ 077 67.81 £3.14 5503 + 1.15 42.33 + 0.8
Concat 5052422 3862+ 079 3128 +£17 5038+ 057 3843 £ 043 3019 4+ 051 5409 +£1.63 403 £ 0.61 3241 £ 0.92

GPMvC 6413 £ 231 4917 £218 36.71 £ 1.87 61.46 £ 0.61  44.09 £ 1.61 3092 + 1.23 6534 = 1.15  50.08 £ 1.87 37.99 + 1.28
OMvC 66.13 £ 534  51.89 £3.18 41.73 £1.29 60.51 £4.01  46.31 £ 2.57 3238 043 68.21 &+ 4.72 54.6 £ 3.11 43.39 £ 1.15
MivC 77.67 £ 404 5699 £1.76 332+ 1.61 6831 £275 49.01 £1.75 2573+ 19 77.67 £4.04 5723 £1.66 3415+ 1.65
MVL_IV 5823 £ 1146 69.73 £1.78 49.72 £ 347 4795 £ 11.79 5752 £ 2.01 37.64 £ 237 59.4 £ 10.34 69.77 £1.79 50.34 &+ 3.07
MuldNMF  81.12 343 61.31 £ 0.67 40.56 = 0.67 7243 278 6849 &+ 1.04 5545 £ 1.09 81.16 & 3.4 69.67 £ 0.73 5478 £ 0.76
DAIMC 85.26 £ 2.74 7531 £ 6.14 5624 £9.87 77.18 £ 1.98  68.83 £ 4.17 4852 £ 7.19 8526 &£ 2.74 7537 £ 6.11 56.45 £ 9.89
UEAF 66.81 £ 278 3643 £ 1.68 17.92 £289 5999 £ 091  31.74 £1.77 746 £ 432 6732 £ 225 3684 £ 149 183 £ 294
AGC_IMC 83.01 £0.65 82.64 + 0.34 81.81 + 2.59 88.16 + 0.33  86.75 + 0.98 79.95 + 1.23 87.37 £ 046  86.76 + 0.91 83.49 + 1.51

SIIMvC 87.77 + 0.41 7812 £ 5.06 63.44 £1.24 7922+ 035 069.84 & 324 56.83 £ 1.02 87.8+ 038 78.17 £ 5.08 063.93 = 0.98

Note: The experimental results show that the proposed SIIMvC method outperforms the compared methods in most cases and is comparable to the AGC_IMC. The bold values denote
the best performances in the compared methods under a specified missing rate.

Abbreviations: ACC, clustering accuracy; AGC_IMC, adaptive graph completion-based incomplete multi-view clustering; BSV, best single view; DAIMC, doubly aligned incomplete

multi-view clustering; GPMvC, partial multi-view clustering using graph regularized nonnegative matrix factorization; MivC, multi-incomplete-view clustering; MultiNMF, multi-view
clustering via joint nonnegative matrix factorization; MVL_IV, multi-view learning with incomplete views; NMI, normalised mutual information; OMvC, online multi-view clustering
algorithm; SIIMvC, self-inferring multi-view clustering; UEAF, unified embedding alignment framework.

TABLE 3 ACC, NMI and Purity of Several Algorithms on the 3Sources Dataset under missing rate of 10%, 30% and 50% respectively

ACC (%) NMI (%) Purity (%)
Methods 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5
BSV 5338 £25 469 £307 38724 1.88 4302+209 342+£222 219+15 6555+£21 5918 + 153 49.95 + 1.92
Concat 56.36 & 147 5056 & 328 4391 £ 398 4934 + 107 3853 £ 191 2547 £35 7011 £ 094 6347 £ 223 5445 + 341

GPMvC 48.79 & 3.09 45.6 £ 578 36.67 £ 6.73 4326 £ 4.03 3641 £ 321 2357 £733 06534 &£ 311 59.61 £ 325 49.83 £ 591
OMvC 4757 £ 485 4024 £3.42 3799 £ 467 3415277 2503 £233 15.86 £ 6.99 56.8 £ 237 49.47 £ 253 44.85 £ 5.25
MivC 5544 £ 717 48.85 £ 424 3431 £3.65 53.82 %515 41.18 £ 347 2337 £ 649 7338 £55 62.62 £ 2.81 50.06 £ 4.86
MVL_IV 57.57 £3.82 5225 £ 492 3832 %346 5697 & 1.81 40.68 £ 0.74 22.74 £ 391 76.69 & 3.65 06591 &£ 2.55 54.77 £ 2.66
MultiNMF 4456 + 3.49 409 £0.48 3511 £0.85 31.39 £2.18 27.19 £ 245 1871 £1.27 5554 £1.53 52.64 £ 0.87 45.76 & 1.49
DAIMC 5041 £449 5349 £436 4734 £74 4752 £ 533 4274 £ 8.15 346 £9.03 67.81 £515 62.25 £ 5.54 60.0 £ 7.02
UEAF 53.37 £ 4.53 61.3 £ 5.0 51.48 £ 549 5461 £1.82 5332+ 3.64 4277 £ 1.85 729 £ 344 7136 £ 341 64.02 & 231
AGC_IMC  76.33 + 0.94 70.06 + 2.86 55.81 + 5.0 70.04 + 2.09 60.75 + 1.77 43.04 £ 394 83.91 + 0.77 80.36 + 1.79 67.63 &+ 1.62

SIIMvC 5749 £226 60.88 £ 511 5458 £ 1.67 5876 & 3.22 5429 & 1.69 46.88 + 1.98 77.73 £ 1.95 7691 £+ 1.26 69.1 + 1.95

Note: The experimental results show that the proposed SIIMvC method outperforms the compared methods in most cases and is comparable to the AGC_IMC. The bold values denote
the best performances in the compared methods under a specified missing rate.

Abbreviations: ACC, clustering accuracy; AGC_IMC, adaptive graph completion-based incomplete multi-view clustering; BSV, best single view; DAIMC, doubly aligned incomplete

multi-view clustering; GPMvC, partial multi-view clustering using graph regularized nonnegative matrix factorization; MivC, multi-incomplete-view clustering; MultiNMF, multi-view
clustering via joint nonnegative matrix factorization; MVL_IV, multi-view learning with incomplete views; NMI, normalised mutual information; OMvC, online multi-view clusteting
algorithm; SIIMvC, self-inferring multi-view clustering; UEAF, unified embedding alignment framework.

(1) It can be found that the proposed SIIMvC outperforms Compared to the AGC_IMC, the proposed SIIMvC shows

most of the compared state-of-the-art incomplete MvC
methods on all datasets on the ACC, the NMI and the purity,
including the BSV, the Concat, the GPMvC, the OMvC, the
MivC, the MVL_IV, the MultiNMP, and the DAIMC. The
proposed SIIMvC also outperforms the UEAF on most of
experimental cases except on the 3Source dataset and
BBCSprot dataset when the instance missing rate is 30%.

advantages on datasets of the BUAA and the BDGP, and
comparable performance on datasets of the Digit dataset,
the 3Sources dataset, and the BBCSport dataset. On the
other side, the worst performances are found that the MivC
method in BUAA dataset, the Concat method in Digit
dataset, the MultitNMF method in 3Source dataset and the
BSV method in BBCSport dataset.
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TABLE 4 ACC, NMI and Purity of Several Algorithms on the BBCSport Dataset under missing rate of 10%, 30% and 50% respectively

ACC (%) NMI (%) Putity (%)
Methods 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5
BSV 5552 4 6.97 4776 £ 482 3879 £ 273 3179 £ 6.68 27.61 = 828 1569 + 248  60.17 + 553 54.66 £ 7.36  43.28 + 1.97
Concat 6476 £ 142 571 £ 1.84 42,69 + 319 4899 £ 1.69 37.41 &£ 1.4 1901 + 288 7241 + 145 6329 £ 1.71 4881 + 3557
GPMvC 581 4+ 583 466+ 45 4474 +229 4333+ 634 2775+ 616 21.61 + 355 6669 £ 545 5321 £ 528 51.97 + 4.59
OMvC 5741 £49 5069 £ 536 37.24 £ 142 3408 £ 535 2758 £9.01 1279 +£ 313  57.93 £ 428 51554589 39.14 + 131
MivC 69.84 £ 223 544 £ 406 3441 £224 5975+ 544 4093 £ 692 1471 +£337 7843 +£234 634 +£545 421+ 324

MVL_IV 63.55 £ 814 400 £4.86 3324 £3.6 4324+ 674 1691 £482 7.724+094 6917 £ 571 46.88 £2.78 39.16 £ 2.95

MultiNMF  73.83 £ 1.71  60.59 £ 4.26 5091 £ 2.08  59.6 & 0.94 58.88 & 3.32 44.54 £1.83 8338 £0.19 7291 £ 244 (6212 £ 1.84

DAIMC 64.66 £ 7.08 5397 £ 7.07 51.72 £ 9.24 5439 & 533 4219 £ 493 31.05 £ 11.58 7431 £ 589 06552 £ 6.54 57.41 £ 10.08
UEAF 7521 £ 489 76.53 + 4.36 57.09 £ 482 06656 & 6.74 588 & 6.14 41.78 £ 579  84.83 £ 413 7757 £ 408 064.05 £ 3.31

AGC_IMC 77.59 + 3.45 7526 £ 437 57.97 £ 479 71.68 + 414 61.89 £ 551 39.63 £ 504  88.28 + 3.69 81.31 £ 3.97 066.38 £ 4.6

SIIMvC 78.07 £ 2.18 7445 £ 222 67.78 + 495 06858 & 1.35 65.72 + 3.81 52.84 + 6.91  86.71 £ 0.5 84.81 + 2.88 77.69 + 5.79

Note: The experimental results show that the proposed SIIMvC method outperforms the compared methods in most cases and is comparable to the AGC_IMC. The bold values denote
the best performances in the compared methods under a specified missing rate.

Abbreviations: ACC, clustering accuracy; AGC_IMC, adaptive graph completion-based incomplete multi-view clustering; BSV, best single view; DAIMC, doubly aligned incomplete
multi-view clustering; GPMvC, partial multi-view clustering using graph regularized nonnegative matrix factorization; MivC, multi-incomplete-view clusteting; MultiNMF, multi-view
clustering via joint nonnegative matrix factorization; MVL_IV, multi-view learning with incomplete views; NMI, normalised mutual information; OMvC, online multi-view clustering
algorithm; SIIMvC, self-inferring multi-view clustering; UEAF, unified embedding alignment framework.

TABLE 5 ACC, NMI and Purity of Several Algorithms on the BDGP Dataset under missing rate of 10%, 30% and 50% respectively

ACC (%) NMI (%) Purity (%)
Methods 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5
BSV 4162 £0.62 36824055 339 £208 2469+ 031 1921 £ 085 1396+ 071 4268 £ 03  38.18 = 0.68 34.82 + 2.2
Concat 4322 4055 30.85+ 046 3092+ 1.08 22324109 19324089 938+ 0.89 44.05 + 055 414+ 058 324 + 092

GPMvC 4317 £3.28 3777 £1.62 3331 £ 135 17.96 =248 13.15 + 0.83 8.05 £ 1.77 449 £ 242 3923 £093 3452+ 1.23
OMvC 39.38 £ 1.32 427 £ 525 3648 £336 11.87 £0.6 19.68 + 4.4 9.98 £ 2.65 40.59 £ 0.62 439 £+ 4.64 37.14 £ 3.05
MivC 2492 £ 094 2534 £0.86 25.16 £ 0.88 35£048 399 £1.06 334+ 1.07 2546+ 046 2586 £ 0.78 26.57 £ 0.86
MVL_IV 39.38 £ 3.06 36.1 £ 29 3048 £ 1.3 13.57 £ 1.31  10.25 £ 1.41 641 £ 0.8 40.27 £ 2.5 37.03 £ 2.5 31.73 £ 1.72
MultiNMF  23.72 & 0.09  23.74 £ 0.04 23.36 &+ 0.18 2.14 £0.04  3.05£0.04 431 £0.05 2448 £0.07 2502 £ 0.02 2522 £ 0.07
DAIMC 42.55 4298 3458 &£ 3.61 26.17 £ 2.65 18.64 =343 10.75 £ 2.95 3.03 £ 2.7 42.94 & 2.48 3556 + 3.33  26.58 £ 3.05
UEAF 4522 +£1.06 3827 £2.01 3193 £0.72 1881 126 1327 £124 796 £ 0.63 4523 £1.06 39.08 £1.75 33.54 £ 1.02
AGC_IMC 3375 £ 1.68 3345 £+ 247 2996 +1.04 11.13 £097 10.12£1.23 579 £ 1.44 34.8 £ 1.47 34.8 £ 252  30.92 £ 0.65

SIIMvC 49.42 + 0.65 43.46 + 1.58 42.08 + 3.31 26.83 + 0.61 21.81 + 1.33 16.09 + 3.27 50.73 + 0.46 44.79 + 0.84 42.33 + 2.81

Note: The experimental results show that the proposed SIIMvC method outperforms all compared methods. The bold values denote the best performances in the compared methods
under a specified missing rate.

Abbreviations: ACC, clustering accuracy; AGC_IMC, adaptive graph completion-based incomplete multi-view clustering; BDGP, Berkeley Drosophila Genome Project; BSV, best single
view; DAIMC, doubly aligned incomplete multi-view clustering; GPMvC, partial multi-view clustering using graph regularized nonnegative matrix factorization; MivC, multi-incomplete-
view clustering; MultiNME, multi-view clustering via joint nonnegative matrix factorization; MVL_IV, multi-view learning with incomplete views; NMI, normalised mutual
information; OMvC, online multi-view clusteting algorithm; SIIMvC, self-inferring multi-view clustering; UEAF, unified embedding alignment framework.

(2) Among the compared methods, the UEAF method also clustering performances than the UEAF method since it
achieves excellent clustering performances among exploits the correlation between existing instances and
compared methods in most cases. The incomplete data is missing instances. For instance, while 30% and 50% of
combined with the error matrix to perform clustering in a instances were removed, the proposed SIIMvC achieves
unified framework. Thus, we can see that instances 3.76% and 5.53% improvements than the UEAFR
completion plays a significant role in the performance of (3) As shown in Tables 1-5, it is clear that the proposed
the clustering. The proposed SIIMvC achieves better SIIMvC performs better than most of the methods when
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1

the missing rates of the instances are growing, It is note-
worthy that while the missing rate of the instance rises in
each view, the clustering performance of all methods
decrease. For example, in the BUAA dataset, while 10% of
instances were removed, the proposed SHHMvC performs
2.00% higher ACC (54.36% vs. 52.36%) than the UEAFE.
When the instance missing rate grows to 30%, the pro-
posed SIIMvC performs 5.60% higher (54.64% vs.
49.04%) than the UEAF And even when the instance
missing rate grows to 50%, the proposed SIIMvC per-
forms 7.60% higher (46.58% vs. 38.98%) than the UEAFE.

We also evaluate the performance of the proposed SIIMvC
under different cases of missing rates. Figure 3 shows that the
performance of classification accuracy degrades while the
missing rate gets bigger from 0.1 to 0.7 under all experimental
datasets. It is reasonable that the classification performances
grow down while more data is missing since the common
representation shared by all views is hard to learn.

4.4 | Computational complexity analysis

To our knowledge, eigenvalue decomposition, singular value
decomposition, and inverse operation consume the most
computational cost. As shown in Algorithm 1, only two inverse
operation processes in stepl and step6 can be found. Specif-
ically, the inverse operation in step6 can be initialised in
advance. The complexity of inverse operation in stepl is o)
in the loop. The eigenvalue decomposition process in step3
costs O(n”) and the singular value decomposition in step5
consumes O(m,¢”). Therefore, our algorithm cost totally
O(z(2n® + >°2" /myc?)), where 7 is the iteration number.
Table 6 lists the computational complexity of all the
compared methods and the proposed SIIMvC. From the table,
we can find that the computational complexity of our algo-
rithm is equal to that of UEAF [18]. In other words, we get
better results but do not increase computational complexity.
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FIGURE 3 'The performances of classification accuracy of the
proposed self-inferring multi-view clustering on all experimental dataset
degrade while the missing rate is getting bigger from 0.1 to 0.7.

4.5 | Parameter complexity analysis

Furthermore, we analyse the sensitivity of all parameters
related to the ACC. There are totally two basic parameters in
the proposed SIIMvC, including 44, 4,. A; is the parameter
contributing to feature graph learning and self-inferring, 4,
controls the similarity graph § to keep ¢ components.
Following the exponential rule in refs. [18, 40] of parameters,
we evaluate the influence of these parameters on the experi-
mental datasets. For different datasets, there is a specific
combination of parameters to obtain the best result. For each
dataset, we fix parameter & = 7 first, then conduct experiments
with different combinations of 4; and 4,. Note that the range
of parameters is from 107 to 10®. As a demonstration,
Table 7 shows the parameter settings of all the compared
methods and the proposed SIIMvC on the BUAA dataset
while the missing rate is 0.3. In Figure 4, we can find that the
proposed SIIMvC is robust on classification accuracy to 4, in
the range from 107 to 10, and the A, in the optimal range
of [10<_5>, 10(_1>] on all five datasets in the experiment.

4.6 | Component analysis

To vertify the effectiveness of the consensus learning and
similarity graph learning, we compare the proposed SIIMvC
with two models in all datasets. (1) Consensus Learning:
We only use consensus learning term (9) in model, including
self-inferring strategy. (2) Similarity Graph Learning: We
remove from  model.

consensus learning term  (9)

TABLE 6 Computational complexity of other methods and our
SIMvC

Methods Computational complexity

BSV oty v m2n)

Concat O( o my) )

GPMvC O(z(Xoom; max(my, ny)nec + tnc?))
OMvC O(e(T Y0 myen + tnc?))
MivC O(r (Tz 1mvcn+tncz))
MultiNMF O (x(vmync))

DAIMC O(t(Tndmupas + vams,,, ) + tnc)
UEAF O(z(27® + 30 muc?))
AGC_IMC O(z(cn?))

SIIMvC O(z(2n® + Y 7 muc?))

Note: T denotes the number of iterations loop. 72, denotes the largest number of
dimensionality among all views. ‘t” is the number of k-means iteration. ‘c’ is the number
of classes.

Abbreviations: AGC_IMC, adaptive graph completion-based incomplete multi-view
clustering; BSV, best single view; DAIMC, doubly aligned incomplete multi-view
clustering; GPMvC, partial multi-view clustering using graph regularized nonnegative
matrix factorization; MivC, multi-incomplete-view clustering; MultiNMF, multi-view
clustering via joint nonnegative matrix factorization; OMvC, online multi-view
clustering algorithm; SIIMvC, self-inferring multi-view clustering; UEAF, unified
embedding alignment framework.

85UB017 SUOWILIOD aAIIeaID a|aedljdde au Aq peusenob ale seoie O ‘8sn Jo se|nl Joj Aeiq i 8uluQ A8]IA\ UO (SUONIPUOD-PUR-SWIB)W0Y" AB 1M Alelq 1 pU1|UO//SdNY) SUONIPUOD Pue SWe | 8U)8eS *[¢20z/TT/yT] uo Ariqi]auliuo A8|IM ‘2STZT 21A/670T OT/I0p/W0d A | Im Ale.q 1 puljuo Yo essauil//sdny wouy pepeojumod ‘0 ‘0r96TS.T



12|

FAN ET AL.

Experimental results of the proposed SIIMvC and two
compared models are shown in Figure 5. It can be found
that the proposed SIIMvC achieves better results than the
other two models in most cases, which indicate that inte-
grating the consensus learning term is beneficial to the
clustering performance.

TABLE 7 Parameters of some methods (methods with no parameter
are not shown in this table) on BUAA dataset while missing rate is 0.3

Methods Parameters setting

BSV None

GPMvC alphas = [le-2 le-2], beta = 10

OMvC alpha = [le-2 1e-2], beta = [le-7 le-7] tol = le-5
MivC alpha = [le-3 1e-3], beta = [le-4 le-4]

MVL_IV gamaUp = 0.7, lambdaUp = 1.1, sigma = le-2
MultiNMF alpha = [le-2, le-2]

DAIMC alpha = lel, beta = 1

UEAF lambdal = le-2, lambda2 = le-1, lambda3 = le-1
AGC_IMC lambdal = lel, lambda4 = 1le-2 » = 3

SIIMvC lambdal = le-4, lambda4 = le-3

Abbreviations: AGC_IMC, adaptive graph completion-based incomplete multi-view
clustering; BSV, best single view; DAIMC, doubly aligned incomplete multi-view
clustering; GPMvC, partial multi-view clustering using graph regularized
nonnegative mattix factorization; MivC, multi-incomplete-view clustering;
MultiNMF, multi-view clustering via joint nonnegative matrix factorization;
MVL_IV, multi-view learning with incomplete views; OMvC, online multi-view
clustering algorithm; SIIMvC, self-inferring multi-view clustering; UEAF, unified
embedding alignment framework.

ACC(%)
ACC(%)

ACC(%)

M Tet5  1e-5 A2

(d) 3Sources

4.7 | Convergence analysis

We also analyse the convergence of the proposed SIIMvC. In
detail, we record the objective value while increasing the iteration
number, which was used to evaluate convergence performance.
Figure 6 shows the convergence curves of the proposed SIIMvC
on all experimental datasets under missing rate of 0.3. It is clear
that the objective values go down quickly to a convergence value
in the first five iterations. Itis obvious that the proposed SIIMvC
takes no more than 10 iterations to perform convergence, which
indicates a great convergence performance.

5 | CONCLUSION

In this paper, we propose a novel incomplete MvC algo-
rithm named SIIMvC, which exploits the existing instances
to infer missing instances. In the proposed SIIMvC, an
improved consensus learning method and an improved
similarity graph learning method ate unified for consensus
representation learning. Compared to the most relevant
UEAF methods, the proposed SIIMvC takes the same
amount of computational complexity but fewer calculated
parameters. Furthermore, the proposed SIIMvC can take the
local structure of the multi-view data into account for better
consensus representation learning, Extensive experiments on
five popular datasets show that the proposed SIIMvC can
achieve promising performance in incomplete multi-view
clustering, Also, the robustness on no mater the parameter
of algorithm or the change of the missing rate is verified in
the experiments. In the future, we will explore further the

ACC(%)

ACC(%)

M 1et5  1e5 A2

(e) BDGP

FIGURE 4 C(lassification accuracy (%) on different combinations of parameter A1 and parameter A2 for all experimental datasets. Results show that self-

inferring multi-view clustering is robust to parameter A2, and the optimal parameter A1 is in the range of [107°, 107"]. (a) Buaa, (b) Digit, (<) BBCSport,

(d) 3Sources and (¢) BDGP. BDGP, Berkeley Drosophila Genome Project
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FIGURE 5 Classification accuracy (%) of similarity graph learning component, consensus learning component, and the proposed SIIMvC on all
experimental datasets while the missing rate is 10%, 30% and 50% respectively. The results show that the proposed SIIMvC outpetforms the similarity graph
learning component and consensus learning component, specially when the missing rate is 50%. (a) Buaa, (b) digit, (c) BBCSport, (d) 3Sources and (¢) BDGP.

BDGP, Berkeley Drosophila Genome Project; SIIMvC, self-inferring multi-view clustering
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FIGURE 6 Convergence curves of the proposed self-inferring multi-
view clustering method on all experimental datasets under missing rate of
0.3. Results show that the objective values decrease quickly to a
convergence value in the first five iterations.

potential of the theoretical framework in more incomplete
multi-view learning tasks, for example, multimedia retrieval.
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